
Chapter 5

Leader election

See [AW04, Chapter 3] or [Lyn96, Chapter 3] for details.
The basic idea of leader election is that we want a single process to

declare itself leader and the others to declare themselves non-leaders. The
non-leaders may or may not learn the identity of the leader as part of the
protocol; if not, we can always add an extra phase where the leader broadcasts
its identity to the others. Traditionally, leader election has been used as a
way to study the e�ects of symmetry, and many leader election algorithms
are designed for networks in the form of a ring.

A classic result of Angluin [Ang80] shows that leader election in a ring is
impossible if the processes do not start with distinct identities. The proof
is that if everybody is in the same state at every step, they all put on the
crown at the same time. We discuss this result in more detail in §5.1.

With ordered identities, a simple algorithm due to Le Lann [LL77] and
Chang and Roberts [CR79] solves the problem in O(n) time with O(n2)
messages: I send out my own id clockwise and forward any id bigger than
mine. If I get my id back, I win. This works with a unidirectional ring,
doesn’t require synchrony, and never produces multiple leaders. See §5.2.1
for more details.

On a bidirectional ring we can get O(n log n) messages and O(n) time
with power-of-2 probing, using an algorithm of Hirschberg and Sinclair [HS80].
This is described in §5.2.2.

An evil trick: if we have synchronized starting, known n, and known id
space, we can have process with id i wait until round i · n to start sending
its id around, and have everybody else drop out when they receive it; this
way only one process (the one with smallest id) ever starts a message and
only n messages are sent [FL87]. But the running time can be pretty bad.

29

CHAPTER 5. LEADER ELECTION 30

For general networks, we can apply the same basic strategy as in Le Lann-
Chang-Roberts by having each process initiate a broadcast/convergecast
algorithm that succeeds only if the initiator has the smallest id. This is
described in more detail in §5.3.

Some additional algorithms for the asynchronous ring are given in §§5.2.3
and 5.2.4. Lower bounds are shown in §5.4.

5.1 Symmetry
A system exhibits symmetry if we can permute the nodes without changing
the behavior of the system. More formally, we can define a symmetry as an
equivalence relation on processes, where we have the additional properties
that all processes in the same equivalence class run the same code; and
whenever p is equivalent to pÕ, each neighbor q of p is equivalent to the
corresponding neighbor qÕ of pÕ.

An example of a network with a lot of symmetries would be an anony-
mous ring, which is a network in the form of a cycle (the ring part) in
which every process runs the same code (the anonymous part). In this case
all nodes are equivalent. If we have a line, then we might or might not have
any non-trivial symmetries: if each node has a sense of direction that tells
it which neighbor is to the left and which is to the right, then we can identify
each node uniquely by its distance from the left edge. But if the nodes don’t
have a sense of direction, we can flip the line over and pair up nodes that
map to each other.1

Symmetries are convenient for proving impossibility results, as observed by
Angluin [Ang80]. The underlying theme is that without some mechanism for
symmetry breaking, a message-passing system escape from a symmetric
initial configuration. The following lemma holds for deterministic systems,
basically those in which processes can’t flip coins:

Lemma 5.1.1. A symmetric deterministic message-passing system that
starts in an initial configuration in which equivalent processes have the same
state has a synchronous execution in which equivalent processes continue to
have the same state.

Proof. Easy induction on rounds: if in some round p and pÕ are equivalent
and have the same state, and all their neighbors are equivalent and have the

1Typically, this does not mean that the nodes can’t tell their neighbors apart. But it
does mean that if we swap the labels for all the neighbors (corresponding to flipping the
entire line from left to right), we get the same executions.

CHAPTER 5. LEADER ELECTION 31

same state, then p and pÕ receive the same messages from their neighbors
and can proceed to the same state (including outgoing messages) in the next
round.

An immediate corollary is that you can’t do leader election in an anony-
mous system with a symmetry that puts each node in a non-trivial equivalence
class, because as soon as I stick my hand up to declare I’m the leader, so do
all my equivalence-class buddies.

With randomization, Lemma 5.1.1 doesn’t directly apply, since we can
break symmetry by having my coin-flips come up di�erently from yours. It
does show that we can’t guarantee convergence to a single leader in any fixed
amount of time (because otherwise we could just fix all the coin flips to get
a deterministic algorithm). Depending on what the processes know about
the size of the system, it may still be possible to show that a randomized
algorithm necessarily fails in some cases.2

A more direct way to break symmetry is to assume that all processes
have identities; now processes can break symmetry by just declaring that
the one with the smaller or larger identity wins. This approach is taken in
the algorithms in the following sections.

5.2 Leader election in rings
Here we’ll describe some basic leader election algorithms for rings. Histor-
ically, rings were the first networks in which leader election was studied,
because they are the simplest networks whose symmetry makes the problem
di�cult, and because of the connection to token-ring networks, a method for
congestion control in local-area networks that is no longer used much.

5.2.1 The Le-Lann-Chang-Roberts algorithm
This is about the simplest leader election algorithm there is. It works in
a unidirectional ring, where messages can only travel clockwise.3 The
algorithms works does not require synchrony, but we’ll assume synchrony to
make it easier to follow.

2Specifically, if the processes don’t know the size of the ring, we can imagine a ring
of size 2n in which the first n processes happen to get exactly the same coin-flips as the
second n processes for long enough that two matching processes, one in each region, both
think they have won the fight in a ring of size n and declare themself to be the leader.

3We’ll see later in §5.2.3 that the distinction between unidirectional rings and bidirec-
tional rings is not a big deal, but for now let’s imagine that having a unidirectional ring is
a serious hardship.

CHAPTER 5. LEADER ELECTION 32

Formally, we’ll let the state space for each process i consist of two variables:
leader, initially 0, which is set to 1 if i decides it’s a leader; and maxId, the
largest id seen so far. We assume that i denotes i’s position rather than its
id, which we’ll write as idi. We will also treat all positions as values mod n,
to simplify the arithmetic.

Code for the LCR algorithm is given in Algorithm 5.1.

1 initially do
2 leader Ω 0
3 maxId Ω idi

4 send idi to clockwise neighbor
5 upon receiving j do
6 if j = idi then
7 leader Ω 1
8 if j > maxId then
9 maxId Ω j

10 send j to clockwise neighbor

Algorithm 5.1: LCR leader election

5.2.1.1 Proof of correctness for synchronous executions

By induction on the round number k. The induction hypothesis is that in
round k, each process i’s leader bit is 0, its maxId value is equal to the largest
id in the range (i ≠ k) . . . i, and that it sends idi≠k if and only if idi≠k is
the largest id in the range (i ≠ k) . . . i. The base case is that when k = 0,
maxId = idi is the largest id in i . . . i, and i sends idi. For the induction step,
observe that in round k ≠ 1, i ≠ 1 sends id(i≠1)≠(k≠1) = idi≠k if and only if it
is the largest in the range (i ≠ k) . . . (i ≠ 1), and that i adopts it as the new
value of maxId and sends it just in case it is larger than the previous largest
value in (i ≠ k + 1) . . . (i ≠ 1), i.e., if it is the largest value in (i ≠ k) . . . i.

Finally, in round n ≠ 1, i ≠ 1 sends idi≠N = idi if and only if i is the
largest id in (i ≠ n + 1) . . . i, the whole state space. So i receives idi and sets
leaderi = 1 if and only if it has the maximum id.

5.2.1.2 Performance

It’s immediate from the correctness proof that the protocols terminates after
exactly n rounds.

CHAPTER 5. LEADER ELECTION 33

To count message tra�c, observe that each process sends at most 1
message per round, for a total of O(n2) messages. This is a tight bound
since if the ids are in decreasing order n, n ≠ 1, n ≠ 2, . . . 1, then no messages
get eaten until they hit n.

5.2.2 The Hirschberg-Sinclair algorithm
This algorithm improves on Le-Lann-Chang-Roberts by reducing the message
complexity. The idea is that instead of having each process send a message all
the way around a ring, each process will first probe locally to see if it has the
largest id within a short distance. If it wins among its immediate neighbors,
it doubles the size of the neighborhood it checks, and continues as long as
it has a winning id. This means that most nodes drop out quickly, giving
a total message complexity of O(n log n). The running time is a constant
factor worse than LCR, but still O(n).

To specify the protocol, it may help to think of messages as mobile agents
and the state of each process as being of the form (local-state, {agents I’m carrying}).
Then the sending rule for a process becomes ship any agents in whatever
direction they want to go and the transition rule is accept any incoming
agents and update their state in terms of their own internal transition rules.
An agent state for LCR will be something like (original-sender, direction,
hop-count, max-seen) where direction is R or L depending on which way the
agent is going, hop-count is initially 2k when the agent is sent and drops
by 1 each time the agent moves, and max-seen is the biggest id of any node
the agent has visited. An agent turns around (switches direction) when
hop-count reaches 0.

To prove this works, we can mostly ignore the early phases (though we
have to show that the max-id node doesn’t drop out early, which is not too
hard). The last phase involves any surviving node probing all the way around
the ring, so it will declare itself leader only when it receives its own agent
from the left. That exactly one node does so is immediate from the same
argument for LCR.

Complexity analysis is mildly painful but basically comes down to the
fact that any node that sends a message 2k hops had to be a winner at phase
2k≠1, which means that it is the largest of some group of 2k≠1 ids. Thus
the 2k-hop senders are spaced at least 2k≠1 away from each other and there
are at most n/2k≠1 of them. Summing up over all Álg nË phases, we get
qÁlg nË

k=0 2kn/2k≠1 = O(n log n) messages and
qÁlg nË

k=0 2k = O(n) time.

CHAPTER 5. LEADER ELECTION 34

5.2.3 Peterson’s algorithm for the unidirectional ring
This algorithm is due to Peterson [Pet82] and assumes an asynchronous,
unidirectional ring. It gets O(n log n) message complexity in all executions.

The basic idea (2-way communication version): Start with n candidate
leaders. In each of at most lg n asynchronous phases, each candidate probes
its nearest neighbors to the left and right; if its ID is larger than the IDs of
both neighbors, it survives to the next phase. Non-candidates act as relays
passing messages between candidates. As in Hirschberg and Sinclair (§5.2.2),
the probing operations in each phase take O(n) messages, and at least half
of the candidates drop out in each phase. The last surviving candidate wins
when it finds that it’s its own neighbor.

To make this work in a 1-way ring, we have to simulate 2-way communi-
cation by moving the candidates clockwise around the ring to catch up with
their unsendable counterclockwise messages. Peterson’s algorithm does this
with a two-hop approach that is inspired by the 2-way case above; in each
phase k, a candidate e�ectively moves two positions to the right, allowing it
to look at the ids of three phase-k candidates before deciding to continue
in phase k + 1 or not. Here is a very high-level description; it assumes that
we can bu�er and ignore incoming messages from the later phases until we
get to the right phase, and that we can execute sends immediately upon
receiving messages. Doing this formally in terms of the model of §2.1 means
that we have to build explicit internal bu�ers into our processes, which we
can easily do but won’t do here (see [Lyn96, pp. 483–484] for the right way
to do this.)

We can use a similar trick to transform any bidirectional-ring algorithm
into a unidirectional-ring algorithm: alternative between phases where we
send a message right, then send a virtual process right to pick up any left-
going messages deposited for us. The problem with this trick is that it
requires two messages per process per phase, which gives us a total message
complexity of O(n2) if we start with an O(n)-time algorithm. Peterson’s
algorithm avoids this by only propagating the surviving candidates.

Pseudocode for Peterson’s algorithm is given in Algorithm 5.2.
Note: the phase arguments in the probe messages are useless if one has

FIFO channels, which is why [Lyn96] doesn’t use them. Note also that the
algorithm does not elect the process with the highest ID, but the process
that is carrying the sole surviving candidate in the last phase.

Proof of correctness is essentially the same as for the 2-way algorithm.
For any pair of adjacent candidates, at most one of their current IDs survives
to the next phase. So we get a sole survivor after lg n phases. Each process

CHAPTER 5. LEADER ELECTION 35

1 procedure candidate()
2 phase Ω 0
3 current Ω pid

4 while true do
5 send probe(phase, current)
6 wait for probe(phase, x)
7 id2 Ω x
8 send probe(phase, current)
9 wait for probe(phase, x)

10 id3 Ω x
11 if id2 = current then
12 I am the leader!
13 return
14 else if id2 > current and id2 > id3 do
15 current Ω id2
16 phase Ω phase + 1
17 else
18 switch to relay()

19 procedure relay()
20 upon receiving probe(p, i) do
21 send probe(p, i)

Algorithm 5.2: Peterson’s leader-election algorithm

CHAPTER 5. LEADER ELECTION 36

sends or relays at most 2 messages per phases, so we get at most 2n lg n total
messages.

5.2.4 A simple randomized O(n log n)-message algorithm
An alternative to running a more sophisticated algorithm is to reduce the
average cost of LCR using randomization. The presentation here follows the
average-case analysis done by Chang and Roberts [CR79].

Run LCR where each id is constructed by prepending a long random
bit-string to the real id. This gives uniqueness (since the real id’s act as
tie-breakers) and something very close to a random permutation on the
constructed id’s. When we have unique random id’s, a simple argument
shows that the i-th largest id only propagates an expected n/i hops, giving
a total of O(nHn) = O(n log n) hops.4 Unique random id’s occur with high
probability provided the range of the random sequence is ∫ n2.

The downside of this algorithm compared to Peterson’s is that knowledge
of n is required to pick random id’s from a large enough range. It also has
higher bit complexity since Peterson’s algorithm is sending only IDs (in the
o�cial version) without any random padding.

5.3 Leader election in general networks
For general networks, a simple approach is to have each node initiate a
breadth-first-search and convergecast, with nodes refusing to participate in
the protocol for any initiator with a lower id. It follows that only the node
with the maximum id can finish its protocol; this node becomes the leader.
If messages from parallel broadcasts are combined, it’s possible to keep the
message complexity of this algorithm down to O(DE).

More sophisticated algorithms reduce the message complexity by coalesc-
ing local neighborhoods similar to what happens in the Hirschberg-Sinclair
and Peterson algorithms. A noteworthy example is an O(n log n) message-
complexity algorithm of Afek and Gafni [AG91], who also show an �(n log n)
lower bound on message complexity for any synchronous algorithm in a
complete network.

4Alternatively, we could consider the average-case complexity of the algorithm when
we assume all n! orderings of the ids are equally likely; this also gives O(n log n) expected
message complexity [CR79].

CHAPTER 5. LEADER ELECTION 37

5.4 Lower bounds
Here we present two classic �(log n) lower bounds on message complexity
for leader election in the ring. The first, due to Burns [Bur80], assumes
that the system is asynchronous and that the algorithm is uniform: it
does not depend on the size of the ring. The second, due to Frederickson
and Lynch [FL87], allows a synchronous system and relaxes the uniformity
assumption, but requires that the algorithm can’t do anything to ids but
copy and compare them.

5.4.1 Lower bound on asynchronous message complexity
Here we describe a lower bound for uniform asynchronous leader election in
the ring. The description here is based on [AW04, §3.3.3]; a slightly di�erent
presentation can also be found in [Lyn96, §15.1.4]. The original result is due
to Burns [Bur80]. We assume the system is deterministic.

The basic idea is to construct a bad execution in which n processes send
lots of messages recursively, by first constructing two bad (n/2)-process
executions and pasting them together in a way that generates many extra
messages. If the pasting step produces �(n) additional messages, we get a
recurrence T (n) Ø 2T (n/2) + �(n) for the total message tra�c, which has
solution T (n) = �(n log n).

We’ll assume that all processes are trying to learn the identity of the
process with the smallest id. This is a slightly stronger problem that mere
leader election, but it can be solved with at most an additional 2n messages
once we actually elect a leader. So if we get a lower bound of f(n) messages
on this problem, we immediately get a lower bound of f(n) ≠ 2n on leader
election.

To construct the bad execution, we consider “open executions” on rings
of size n where no message is delivered across some edge (these will be partial
executions, because otherwise the guarantee of eventual delivery kicks in).
Because no message is delivered across this edge, the processes can’t tell if
there is really a single edge there or some enormous unexplored fragment of
a much larger ring. Our induction hypothesis will show that a line of n/2
processes can be made to send at least T (n/2) messages in an open execution
(before seeing any messages across the open edge); we’ll then show that a
linear number of additional messages can be generated by pasting two such
executions together end-to-end, while still getting an open execution with n
processes.

In the base case, we let n = 1. Somebody has to send a message eventually,

CHAPTER 5. LEADER ELECTION 38

giving T (2) Ø 1.
For larger n, suppose that we have two open executions on n/2 processes

that each send at least T (n/2) messages. Break the open edges in both
executions and paste the resulting lines together to get a ring of size n;
similarly paste the schedules ‡1 and ‡2 of the two executions together to
get a combined schedule ‡1‡2 with at least 2T (n/2) messages. Note that in
the combined schedule no messages are passed between the two sides, so the
processes continue to behave as they did in their separate executions.

Let e and eÕ be the edges we used to past together the two rings. Extend
‡1‡2 by the longest possible su�x ‡3 in which no messages are delivered
across e and eÕ. Since ‡3 is as long as possible, after ‡1‡2‡3, there are no
messages waiting to be delivered across any edge except e and eÕ and all
processes are quiescent—they will send no additional messages until they
receive one.

We now consider some su�x ‡4 such causes the protocol to finish. While
executing ‡4, construct two sets of processes S and SÕ by the following rules:

1. If a process is not yet in S or SÕ and receives a message delivered across
e, put it in S; similarly if it receives a message delivered across eÕ, put
it in SÕ.

2. If a process is not yet in S or SÕ and receives a message that was sent
by a process in S, put it in S; similarly for SÕ.

triggered by a delivery across e
Observe that S fi SÕ includes every process on the half of the ring with

the larger minimum id, because any such process that doesn’t receive a
message in ‡4 doesn’t learn the global minimum. So |S fi SÕ

| Ø n/2 and thus
min(|S|, |SÕ

|) Ø n/4.
Assume without loss of generality that it is |S| that is at least n/4.

Except for the two processes incident to e, every process that is added to S
is added in response to a message sent in ‡4. So there are at least n/4 ≠ 2
such messages. We can also argue that all of these messages are sent in
the subschedule · of ‡4 that contains only messages that do not depend on
messages delivered across eÕ. It follows that ‡1‡2‡3· is an open execution
on n processes with at least 2T (n/2) + n/4 ≠ 2 sent messages. This gives
T (n) Ø 2T (n/2) + n/4 ≠ 2 = 2T (n/2) + �(n) as claimed.

5.4.2 Lower bound for comparison-based algorithms
Here we give an �(n log n) lower bound on messages for synchronous-start
comparison-based algorithms in bidirectional synchronous rings. For full

CHAPTER 5. LEADER ELECTION 39

details see [Lyn96, §3.6], [AW04, §3.4.2], or the original JACM paper by
Frederickson and Lynch [FL87].

Basic ideas:

• Two fragments i . . . i+k and j . . . j +k of a ring are order-equivalent
provided idi+a > idi+b if and only if idj+a > idj+b for b = 0 . . . k.

• An algorithm is comparison-based if it can’t do anything to IDs but
copy them and test for <. The state of such an algorithm is modeled
by some non-ID state together with a big bag of IDs, messages have a
pile of IDs attached to them, etc. Two states/messages are equivalent
under some mapping of IDs if you can translate the first to the second
by running all IDs through the mapping.
An equivalent version uses an explicit equivalence relation between
processes. Let executions of p1 and p2 be similar if both processes
send messages in the same direction(s) in the same rounds and both
processes declare themselves leader (or not) at the same round. Then
an algorithm is comparison-based based if order-equivalent rings yield
similar executions for corresponding processes. This can be turned
into the explicit-copying-IDs model by replacing the original protocol
with a full-information protocol in which each message is replaced
by the ID and a complete history of the sending process (including all
messages it has every received).

• Define an active round as a round in which at least 1 message is
sent. Claim: actions of i after k active rounds depends up to an order-
equivalent mapping of ids only on the order-equivalence class of ids
in i ≠ k . . . i + k (the k-neighborhood of i). Proof: by induction on
k. Suppose i and j have order-equivalent (k ≠ 1)-neighborhoods; then
after k ≠ 1 active rounds they have equivalent states by the induction
hypothesis. In inactive rounds, i and j both receive no messages and
update their states in the same way. In active rounds, i and j receive
order-equivalent messages and update their states in an order-equivalent
way.

• If we have an order of ids with a lot of order-equivalent k-neighborhoods,
then after k active rounds if one process sends a message, so do a lot
of other ones.

Now we just need to build a ring with a lot of order-equivalent neighbor-
hoods. For n a power of 2 we can use the bit-reversal ring, e.g., id sequence

CHAPTER 5. LEADER ELECTION 40

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

Figure 5.1: Labels in the bit-reversal ring with n = 32

000, 100, 010, 110, 001, 101, 011, 111 (in binary) when n = 8. Figure 5.1 gives
a picture of what this looks like for n = 32.

For n not a power of 2 we look up Frederickson and Lynch [FL87] or
Attiya et al. [ASW88]. In either case we get �(n/k) order-equivalent members
of each equivalence class after k active rounds, giving �(n/k) messages per
active round, which sums to �(n log n).

For non-comparison-based algorithms we can still prove �(n log n) mes-
sages for time-bounded algorithms, but it requires techniques from Ram-
sey theory, the branch of combinatorics that studies when large enough
structures inevitably contain substructures with certain properties.5 Here
“time-bounded” means that the running time can’t depend on the size of the
ID space. See [AW04, §3.4.2] or [Lyn96, §3.7] for the textbook version, or
[FL87, §7] for the original result.

The intuition is that for any fixed protocol, if the ID space is large
enough, then there exists a subset of the ID space where the protocol

5The classic example is Ramsey’s Theorem, which says that if you color the edges of
a complete graph red or blue, while trying to avoid having any subsets of k vertices with
all edges between them the same color, you will no longer be able to once the graph is large
enough (for any fixed k). See [GRS90] for much more on the subject of Ramsey theory.

CHAPTER 5. LEADER ELECTION 41

acts like a comparison-based protocol. So the existence of an O(f(n))-
message time-bounded protocol implies the existence of an O(f(n))-message
comparison-based protocol, and from the previous lower bound we know
f(n) is �(n log n). Note that time-boundedness is necessary: we can’t prove
the lower bound for non-time-bounded algorithms because of the i · n trick.

