
Chapter 6

Logical clocks

Logical clocks assign a timestamp to all events in an asynchronous message-
passing system that simulates real time, thereby allowing timing-based algo-
rithms to run despite asynchrony. In general, they don’t have anything to
do with clock synchronization or wall-clock time; instead, they provide nu-
merical values that increase over time and are consistent with the observable
behavior of the system. This means that local events on a single process
have increasing times, and messages are never delivered before they are sent,
when time is measured using the logical clock.

6.1 Causal ordering
The underlying notion of a logical clock is causal ordering, a partial order
on events that describes when one event e provably occurs before some other
event eÕ.

For the purpose of defining casual ordering and logical clocks, we will
assume that a schedule consists of send events and receive events, which
correspond to some process sending a single message or receiving a single
message, respectively.

Given two schedules S and SÕ, call S and SÕ similar if S|p = SÕ
|p for all

processes p; in other words, S and SÕ are similar if they are indistinguishable
by all participants. We can define a causal ordering on the events of some
schedule S implicitly by considering all schedules SÕ similar to S, and declare
that e < eÕ if e precedes eÕ in all such S. But it is usually more useful to
make this ordering explicit.

Following [AW04, §6.1.1] (and ultimately [Lam78]), define the happens-
before relation ∆

S
on a schedule S to consist of:

42

CHAPTER 6. LOGICAL CLOCKS 43

1. All pairs (e, eÕ) where e precedes eÕ in S and e and eÕ are events of the
same process.

2. All pairs (e, eÕ) where e is a send event and eÕ is the receive event for
the same message.

3. All pairs (e, eÕ) where there exists a third event eÕÕ such that e ∆
S

eÕÕ

and eÕÕ
∆
S

eÕ. (In other words, we take the transitive closure of the
relation defined by the previous two cases.)

It is not terribly hard to show that this gives a partial order; the main
observation is that if e ∆

S
eÕ, then e precedes eÕ in S. So ∆

S
is a subset of the

total order <S given by the order of events in S.
A causal shu�e SÕ of a schedule S is a permutation of S that is

consistent with the happens-before relation on S; that is, if e happens-before
eÕ in S, then e precedes eÕ in SÕ. The importance of the happens-before
relation follows from the following lemma, which says that the causal shu�es
of S are precisely the schedules SÕ that are similar to S.

Lemma 6.1.1. Let SÕ be a permutation of the events in S. Then the
following two statements are equivalent:

1. SÕ is a causal shu�e of S.

2. SÕ is the schedule of an execution fragment of a message-passing system
with S|p = SÕ

|p for all SÕ.

Proof. (1 ∆ 2). We need to show both similarity and that SÕ corresponds to
some execution fragment. We’ll show similarity first. Pick some p; then every
event at p in S also occurs in SÕ, and they must occur in the same order by
the first case of the definition of the happens-before relation. This gets us
halfway to showing SÕ is the schedule of some execution fragment, since it
says that any events initiated by p are consistent with p’s programming. To
get the rest of the way, observe that any other events are receive events. For
each receive event eÕ in S, there must be some matching send event e also in
S; thus e and eÕ are both in SÕ and occur in the right order by the second
case of the definition of happens-before.

(2 ∆ 1). First observe that since every event e in SÕ occurs at some
process p, if SÕ

|p = S|p for all p, then there is a one-to-one correspondence
between events in SÕ and S, and thus SÕ is a permutation of S. Now we need
to show that SÕ is consistent with ∆

S
. Let e ∆

S
eÕ. There are three cases.

CHAPTER 6. LOGICAL CLOCKS 44

1. e and eÕ are events of the same process p and e <S eÕ. But then e <SÕ eÕ

because S|p = SÕ
|p.

2. e is a send event and eÕ is the corresponding receive event. Then
e <SÕ eÕ because SÕ is the schedule of an execution fragment.

3. e ∆
S

eÕ by transitivity. Then each step in the chain connecting e to eÕ

uses one of the previous cases, and e <SÕ eÕ by transitivity of <SÕ .

There are two main applications for causal shu�es:

1. We can prove upper bounds by using a causal shu�e to turn some
arbitrary S into a nice SÕ, and argue that the niceness of SÕ means
that S at least looks nice to the processes. An example of this can be
found in Lemma 7.1.1.

2. We can prove lower bounds by using a causal shu�e to turn some
specific S into a nasty SÕ, and argue that the existence of SÕ tells us
that there exist bad schedules for some particular problem. An example
of this can be found in §7.4.2. This works particularly well because ∆

S
includes enough information to determine the latest possible time of
any event in either S or SÕ, so rearranging schedules like this doesn’t
change the worst-case time.

In both cases, we are using the fact that if I tell you ∆
S

, then you know
everything there is to know about the order of events in S that you can
deduce from reports from each process together with the fact that messages
don’t travel back in time.

In the case that we want to use this information inside an algorithm, we
run into the issue that ∆

S
is a pretty big relation (�(|S|

2) bits with a naive
encoding), and seems to require global knowledge of <S to compute. So we
can ask if there is some simpler, easily computable description that works
almost as well. This is where logical clocks come in.

6.2 Implementations
The basic idea of a logical clock is to compute a timestamp for each event,
so that comparing timestamps gives information about ∆

S
. Note that these

timestamps need not be totally ordered. In general, we will have a relation

CHAPTER 6. LOGICAL CLOCKS 45

<L between timestamps such that e ∆
S

eÕ implies e <L eÕ, but it may be that
there are some pairs of events that are ordered by the logical clock despite
being incomparable in the happens-before relation.

Examples of logical clocks that use small timestamps but add extra
ordering are Lamport clocks [Lam78], discussed in §6.2.1; and Neiger-Toueg-
Welch clocks [NT87, Wel87], discussed in §6.2.2. These both assign integer
timestamps to events and may order events that are not causally related.
The main di�erence between them is that Lamport clocks do not alter the
underlying execution, but may allow arbitrarily large jumps in the logical
clock values; while Neiger-Toueg-Welch clocks guarantee small increments at
the cost of possibly delaying parts of the system.1

More informative are vector clocks [Fid91, Mat93], discussed in §6.2.3.
These use n-dimensional vectors of integers to capture ∆

S
exactly, at the cost

of much higher overhead.

6.2.1 Lamport clock
Lamport’s logical clock [Lam78] runs on top of any other message-passing
protocol, adding additional state at each process and additional content to
the messages (which is invisible to the underlying protocol). Every process
maintains a local variable clock. When a process sends a message or executes
an internal step, it sets clock Ω clock + 1 and assigns the resulting value
as the clock value of the event. If it sends a message, it piggybacks the
resulting clock value on the message. When a process receives a message with
timestamp t, it sets clock Ω max(clock, t) + 1; the resulting clock value is
taken as the time of receipt of the message. (To make life easier, we assume
messages are received one at a time.)

Theorem 6.2.1. If we order all events by clock value, we get an execution
of the underlying protocol that is locally indistinguishable from the original
execution.

Proof. Let e <L eÕ if e has a lower clock value than eÕ. If e and eÕ are two
events of the same process, then e <L eÕ. If e and eÕ are send and receive
events of the same message, then again e <L eÕ. So for any events e, eÕ, if
e ∆

S
eÕ, then e <L eÕ. Now apply Lemma 6.1.1.

1This makes them similar to synchronizers, which we will discuss in Chapter 7.

CHAPTER 6. LOGICAL CLOCKS 46

6.2.2 Neiger-Toueg-Welch clock
Lamport’s clock has the advantage of requiring no changes in the behavior
of the underlying protocol, but has the disadvantage that clocks are entirely
under the control of the logical-clock protocol and may as a result make
huge jumps when a message is received. If this is unacceptable—perhaps the
protocol needs to do some unskippable maintenance task every 1000 clock
ticks—then an alternative approach due to Neiger and Toueg [NT87] and
Welch [Wel87] can be used.

Method: Each process maintains its own variable clock, which it in-
crements whenever it feels like it. To break ties, the process extends the
clock value to Èclock, id, eventCountÍ where eventCount is a count of send and
receive events (and possibly local computation steps). As in Lamport’s clock,
each message in the underlying protocol is timestamped with the current
extended clock value. Because the protocol can’t change the clock values on
its own, when a message is received with a timestamp later than the current
extended clock value, its delivery is delayed until clock exceeds the message
timestamp, at which point the receive event is assigned the extended clock
value of the time of delivery.

Theorem 6.2.2. If we order all events by clock value, we get an execution
of the underlying protocol that is locally indistinguishable from the original
execution.

Proof. Again, we have that (a) all events at the same process occur in
increasing order (since the event count rises even if the clock value doesn’t,
and we assume that the clock value doesn’t drop) and (b) all receive events
occur later than the corresponding send event (since we force them to). So
Lemma 6.1.1 applies.

The advantage of the Neiger-Toueg-Welch clock is that it doesn’t impose
any assumptions on the clock values, so it is possible to make clock be a
real-time clock at each process and nonetheless have a causally-consistent
ordering of timestamps even if the local clocks are not perfectly synchronized.
If some process’s clock is too far o�, it will have trouble getting its messages
delivered quickly (if its clock is ahead) or receiving messages (if its clock is
behind)—the net e�ect is to add a round-trip delay to that process equal
to the di�erence between its clock and the clock of its correspondent. But
the protocol works well when the processes’ clocks are closely synchronized,
which has become a plausible assumption in the last 10-15 years thanks to

CHAPTER 6. LOGICAL CLOCKS 47

the Network Time Protocol, cheap GPS receivers, and clock synchronization
mechanisms built into most cellular phone networks.2

6.2.3 Vector clocks
Logical clocks give a superset of the happens-before relation: if e ∆

S
eÕ, then

e <L eÕ (or conversely, if e ”<L eÕ, then it is not the case that e ∆
S

eÕ). This
is good enough for most applications, but what if we want to compute ∆

S
exactly?

Here we can use a vector clock, invented independently by Fidge [Fid91]
and Mattern [Mat93]. Instead of a single clock value, each event is stamped
with a vector of values, one for each process. When a process executes a
local event or a send event, it increments only its own component xp of the
vector. When it receives a message, it increments xp and sets each xq to the
max of its previous value and the value of xq piggybacked on the message.
We define VC(e) Æ VC(eÕ), where VC(e) is the value of the vector clock for e,
if VC(e)i Æ VC(eÕ)i for all i.

Theorem 6.2.3. Fix a schedule S; then for any e, eÕ, V C(e) < V C(eÕ) if
and only if e ∆

S
eÕ.

Proof. The if part follows immediately from the update rules for the vector
clock. For the only if part, suppose e does not happen-before eÕ. Then e and
eÕ are events of distinct processes p and pÕ. For VC(e) < VC(eÕ) to hold, we
must have VC(e)p < VC(eÕ)p; but this can occur only if the value of VC(e)p

is propagated to pÕ by some sequence of messages starting at p and ending
at pÕ at or before eÕ occurs. In this case we have e ∆

S
eÕ.

6.3 Consistent snapshots
A consistent snapshot of a message-passing computation is a description
of the states of the processes (and possibly messages in transit, but we
can reduce this down to just states by keeping logs of messages sent and
received) that gives the global configuration at some instant of a schedule
that is a consistent reordering of the real schedule (a consistent cut in
the terminology of [AW04, §6.1.2]. Without shutting down the protocol

2As I write this, my computer reports that its clock is an estimated 289 microseconds
o� from the timeserver it is synchronized to, which is less than a tenth of the round-trip
delay to machines on the same local-area network and a tiny fraction of the round-trip
delay to machines elsewhere, including the timeserver machine.

CHAPTER 6. LOGICAL CLOCKS 48

before taking a snapshot this is the about the best we can hope for in a
message-passing system.

Logical clocks can be used to obtain consistent snapshots: pick some
logical clock time and have each process record its state at this time (i.e.,
immediately after its last step before the time or immediately before its first
step after the time). We have already argued that the logical clock gives a
consistent reordering of the original schedule, so the set of values recorded is
just the configuration at the end of an appropriate prefix of this reordering.
In other words, it’s a consistent snapshot.

If we aren’t building logical clocks anyway, there is a simpler consistent
snapshot algorithm due to Chandy and Lamport [CL85]. Here some central
initiator broadcasts a snap message, and each process records its state and
immediately forwards the snap message to all neighbors when it first receives
a snap message. To show that the resulting configuration is a configuration
of some consistent reordering, observe that (with FIFO channels) no process
receives a message before receiving snap that was sent after the sender sent
snap: thus causality is not violated by lining up all the pre-snap operations
before all the post-snap ones.

The full Chandy-Lamport algorithm adds a second marker message that is
used to sweep messages in transit out of the communications channels, which
avoids the need to keep logs if we want to reconstruct what messages are in
transit (this can also be done with the logical clock version). The idea is that
when a process records its state after receiving the snap message, it issues
a marker message on each outgoing channel. For incoming channels, the
process all records all messages received between the snapshot and receiving
a marker message on that channel (or nothing if it receives marker before
receiving snap). A process only reports its value when it has received a
marker on each channel. The marker and snap messages can also be combined
if the broadcast algorithm for snap resends it on all channels anyway, and a
further optimization is often to piggyback both on messages of the underlying
protocol if the underlying protocol is chatty enough.

Note that Chandy-Lamport is equivalent to the logical-time snapshot
using Lamport clocks, if the snap message is treated as a message with a
very large timestamp. For Neiger-Toueg-Welch clocks, we get an algorithm
where processes spontaneously decide to take snapshots (since Neiger-Toueg-
Welch clocks aren’t under the control of the snapshot algorithm) and delay
post-snapshot messages until the local snapshot has been taken. This can be
implemented as in Chandy-Lamport by separating pre-snapshot messages
from post-snapshot messages with a marker message, and essentially turns
into Chandy-Lamport if we insist that a process advance its clock to the

CHAPTER 6. LOGICAL CLOCKS 49

snapshot time when it receives a marker.

6.3.1 Property testing
Consistent snapshots are in principle useful for debugging (since one can
gather a consistent state of the system without being able to talk to every
process simultaneously), and in practice are mostly used for detecting stable
properties of the system. Here a stable property is some predicate on
global configurations that remains true in any successor to a configuration
in which it is true, or (bending the notion of properties a bit) functions
on configurations whose values don’t change as the protocol runs. Typical
examples are quiescence and its evil twin, deadlock. More exotic examples
include total money supply in a banking system that cannot create or destroy
money, or the fact that every process has cast an irrevocable vote in favor
of some proposal or advanced its Neiger-Toueg-Welch-style clock past some
threshold.

The reason we can test such properties using consistent snapshot is
that when the snapshot terminates with value C in some configuration C Õ,
even though C may never have occurred during the actual execution of the
protocol, there is an execution which leads from C to C Õ. So if P holds in
C, stability means that it holds in C Õ.

Naturally, if P doesn’t hold in C, we can’t say much. So in this case we
re-run the snapshot protocol and hope we win next time. If P eventually
holds, we will eventually start the snapshot protocol after it holds and obtain
a configuration (which again may not correspond to any global configuration
that actually occurs) in which P holds.

