
Chapter 9

Synchronous agreement

Here we’ll consider synchronous agreement algorithm with stopping failures,
where a process stops dead at some point, sending and receiving no further
messages. We’ll also consider Byzantine failures, where a process deviates
from its programming by sending arbitrary messages, but mostly just to see
how crash-failure algorithms hold up; for algorithms designed specifically for
a Byzantine model, see Chapter 10.

If the model has communication failures instead, we have the coordinated
attack problem from Chapter 8.

9.1 Problem definition
We use the usual synchronous model with n processes with binary inputs and
binary outputs. Up to f processes may fail at some point; when a process
fails, one or one or more of its outgoing messages are lost in the round of
failure and all outgoing messages are lost thereafter.

There are two variants on the problem, depending on whether we want
a useful algorithm (and so want strong conditions to make our algorithm
more useful) or a lower bound (and so want weak conditions to make our
lower bound more general). For algorithms, we will ask for these conditions
to hold:

Agreement All non-faulty processes decide the same value.

Validity If all processes start with the same input, all non-faulty processes
decide it.

Termination All non-faulty processes eventually decide.

64



CHAPTER 9. SYNCHRONOUS AGREEMENT 65

For lower bounds, we’ll replace validity with non-triviality (often called
validity in the literature):

Non-triviality There exist failure-free executions A and B that produce
di�erent outputs.

Non-triviality follows from validity but doesn’t imply validity; for example,
a non-trivial algorithm might have the property that if all non-faulty processes
start with the same input, they all decide something else.

In §9.2, we’ll show that a simple algorithm gives agreement, termination,
and validity with f failures using f + 1 rounds. We’ll then show in §9.3 that
non-triviality, agreement, and termination imply that f + 1 rounds is the
best possible. In Chapter 10, we’ll show that the agreement is still possible
in f + 1 rounds even if faulty processes can send arbitrary messages instead
of just crashing, but only if the number of faulty processes is strictly less
than n/3.

9.2 Solution using flooding
The flooding algorithm, due to Dolev and Strong [DS83] gives a straightfor-
ward solution to synchronous agreement for the crash failure case. It runs in
f + 1 rounds assuming f crash failures. (This algorithm is also described in
more detail in [AW04, §5.1.3] or [Lyn96, §6.2.1].)

Each process keeps a set of (process, input) pairs, initially just {(myId, myInput)}.
At round r, I broadcast my set to everybody and take the union of my set
and all sets I receive. At round f + 1, I decide on f(S), where f is some
fixed function from sets of process-input pairs to outputs that picks some
input in S: for example, f might take the input with the smallest process-id
attached to it, take the max of all known input values, or take the majority
of all known input values.

Lemma 9.2.1. After f + 1 rounds, all non-faulty processes have the same
set.

Proof. Let Sr
i be the set stored by process i after r rounds. What we’ll really

show is that if there are no failures in round k, then Sr
i = Sr

j = Sk+1
i for all

i, j, and r > k. To show this, observe that no faults in round k means that
all processes that are still alive at the start of round k send their message
to all other processes. Let L be the set of live processes in round k. At the
end of round k, for i in L we have Sk+1

i =
t

jœL Sk
j = S. Now we’ll consider

some round r = k + 1 + m and show by induction on m that Sk+m
i = S; we



CHAPTER 9. SYNCHRONOUS AGREEMENT 66

already did m = 0, so for larger m notice that all messages are equal to S
and so Sk+1+m

i is the union of a whole bunch of S’s. So in particular we
have Sf+1

i = S (since some failure-free round occurred in the preceding f + 1
rounds) and everybody decides the same value f(S).

Flooding depends on being able to trust second-hand descriptions of
values; it may be that process 1 fails in round 0 so that only process 2 learns
its input. If process 2 can suddenly tell 3 (but nobody else) about the input
in round f + 1—or worse, tell a di�erent value to 3 and 4—then we may
get disagreement. This remains true even if Byzantine processes can’t fake
inputs (e.g., because an input value is really a triple (i, v, signature(v)) using
an unforgeable digital signature)—the reason is that a Byzantine process
could horde some input (i, v, signature(v)) until the very last round and then
deliver it to only some of the non-faulty processes.

9.3 Lower bound on rounds
Here we show that synchronous agreement requires at least f + 1 rounds
if f processes can fail. This proof is modeled on the one in [Lyn96, §6.7]
and works backwards from the final state; for a proof of the same result
that works in the opposite direction, see [AW04, §5.1.4]. The original result
(stated for Byzantine failures) is due to Dolev and Strong [DS83], based on
a more complicated proof due to Fischer and Lynch [FL82]; see the chapter
notes for Chapter 5 of [AW04] for more discussion of the history.

Note that unlike the algorithms in the preceding and following sections,
which provide validity, the lower bound applies even if we only demand
non-triviality.

Like the similar proof for coordinated attack (§8.2), the proof uses an
indistinguishability argument. But we have to construct a more complicated
chain of intermediate executions.

A crash failure at process i means that (a) in some round r, some or
all of the messages sent by i are not delivered, and (b) in subsequent rounds,
no messages sent by i are delivered. The intuition is that i keels over dead
in the middle of generating its outgoing messages for a round. Otherwise i
behaves perfectly correctly. A process that crashes at some point during an
execution is called faulty

We will show that if up to f processes can crash, and there are at least
f + 2 processes,1 then at least f + 1 rounds are needed (in some execution)

1With only f + 1 processes, we can solve agreement in f rounds using flooding. The



CHAPTER 9. SYNCHRONOUS AGREEMENT 67

for any algorithm that satisfies agreement, termination, and non-triviality.
In particular, we will show that if all executions run in f or fewer rounds,
then the indistinguishability graph is connected; this implies non-triviality
doesn’t hold, because (as in §8.2), two adjacent states must decide the same
value because of the agreement property.2

Now for the proof. To simplify the argument, let’s assume that all
executions terminate in exactly f rounds (we can always have processes send
pointless chitchat to pad out short executions) and that every processes sends
a message to every other process in every round where it has not crashed
(more pointless chitchat). Formally, this means we have a sequence of rounds
0, 1, 2, . . . , f ≠ 1 where each process sends a message to every other process
(assuming no crashes), and a final round f where all processes decide on a
value (without sending any additional messages).

We now want to take any two executions A and B and show that both
produce the same output. To do this, we’ll transform A’s inputs into B’s
inputs one process at a time, crashing processes to hide the changes. The
problem is that just crashing the process whose input changed might change
the decision value—so we have to crash later witnesses carefully to maintain
indistinguishability all the way across the chain.

Let’s say that a process p crashes fully in round r if it crashes in round
r and no round-r messages from p are delivered. The communication
pattern of an execution describes which messages are delivered between
processes without considering their contents—in particular, it tells us which
processes crash and what other processes they manage to talk to in the round
in which they crash.

With these definitions, we can state and prove a rather complicated
induction hypothesis:

Lemma 9.3.1. For any f -round protocol with n Ø f +2 processes permitting
up to f crash failures; any process p; and any execution A in which at
most one process crashes per round in rounds 0 . . . r ≠ 1, p crashes fully in
round r + 1, and no other processes crash; there is a sequence of executions
A = A0A1 . . . Ak such that each Ai is indistinguishable from Ai+1 by some

idea is that either (a) at most f ≠ 1 processes crash, in which case the flooding algorithm
guarantees agreement; or (b) exactly f processes crash, in which case the one remaining
non-faulty process agrees with itself. So f + 2 processes are needed for the lower bound
to work, and we should be suspicious of any lower bound proof that does not use this
assumption.

2The same argument works with even a weaker version of non-triviality that omits the
requirement that A and B are failure-free, but we’ll keep things simple.



CHAPTER 9. SYNCHRONOUS AGREEMENT 68

process, each Ai has at most one crash per round, and the communication
pattern in Ak is identical to A except that p crashes fully in round r.

Proof. By induction on f ≠ r. If r = f , we just crash p in round r and
nobody else notices. For r < f , first crash p in round r instead of r + 1, but
deliver all of its round-r messages anyway (this is needed to make space for
some other process to crash in round r + 1). Then choose some message m
sent by p in round r, and let pÕ be the recipient of m. We will show that we
can produce a chain of indistinguishable executions between any execution
in which m is delivered and the corresponding execution in which it is not.

If r = f ≠ 1, this is easy; only pÕ knows whether m has been delivered,
and since n Ø f + 2, there exists another non-faulty pÕÕ that can’t distinguish
between these two executions, since pÕ sends no messages in round f or later.
If r < f ≠ 1, we have to make sure pÕ doesn’t tell anybody about the missing
message.

By the induction hypothesis, there is a sequence of executions starting
with A and ending with pÕ crashing fully in round r + 1, such that each
execution is indistinguishable from its predecessor. Now construct the
sequence

A æ (A with pÕ crashing fully in r + 1)
æ (A with pÕ crashing fully in r + 1 and m lost)
æ (A with m lost and pÕ not crashing).

The first and last step apply the induction hypothesis; the middle one yields
indistinguishable executions since only pÕ can tell the di�erence between m
arriving or not and its lips are sealed.

We’ve shown that we can remove one message through a sequence of
executions where each pair of adjacent executions is indistinguishable to
some process. Now paste together n ≠ 1 such sequences (one per message)
to prove the lemma.

The rest of the proof: Crash some process fully in round 0 and then
change its input. Repeat until all inputs are changed.

9.4 Variants
So far we have described binary consensus, since all inputs are 0 or 1. We
can also allow larger input sets. With crash failures, this allows a stronger
validity condition: the output must be equal to some input. Note that this



CHAPTER 9. SYNCHRONOUS AGREEMENT 69

stronger condition doesn’t work if we have Byzantine failures. (Exercise:
why not?)


