Exercise 1: Constructing Turing Machines

(a) \(L_1 = \{a^i b^i a^j b^j | i, j > 0 \} \)
(b) Language \(L_2 \) of all strings over alphabet \(\{a, b\} \) with the same number of \(a \)'s and \(b \)'s.

Remark: It is sufficient to give a detailed description of the Turing Machines. You do not need to give formal definitions.

Exercise 2: Semi-Decidable vs. Recursively Enumerable

(a) Show that any recursively enumerable language is semi-decidable.
(b) Show that any semi-decidable language is recursively enumerable.

Exercise 3: Halting Problem

The special halting problem is defined as
\[H_s = \{ \langle M \rangle | \langle M \rangle \text{ encodes a TM and } M \text{ halts on } \langle M \rangle \} \].

(a) Show that \(H_s \) is undecidable.

Hint: Assume that \(M \) is a TM which decides \(H_s \) and then construct a TM which halts iff \(M \) does not halt. Use this construction to find a contradiction.

(b) Show that the special halting problem is recursively enumerable.

(c) Show that the complement of the special halting problem is not recursively enumerable.

Hint: What can you say about a language \(L \) if \(L \) and its complement are recursively enumerable? (if you make some observation for this, also prove it)

(d) Let \(L_1 \) and \(L_2 \) be recursively enumerable languages. Is \(L_1 \setminus L_2 \) recursively enumerable as well?

(e) Is \(L = \{ w \in H_s | |w| \leq 1742 \} \) decidable? Explain your answer!