Exercise 1: Constructing Turing Machines

Construct a Turing Machine for each of the following languages.

(a) \(L_1 = \{a^i b^j a^i b^j | i, j > 0 \} \)

(b) Language \(L_2 \) of all strings over alphabet \(\{a, b\} \) with the same number of \(a \)'s and \(b \)'s.

Remark: It is sufficient to give a detailed description of the Turing Machines. You do not need to give formal definitions.

Sample Solution

The sketch of the Turing Machines:

(a) The computation first makes sure that a string is in the form of having a non-empty substring \(A \) of only \(a \)'s, followed by a non-empty substring \(B \) of only \(b \)'s, a non-empty substring \(C \) of only \(a \)'s, and finally followed by a non-empty substring \(D \) of only \(b \)'s. Then, it checks whether \(A \) and \(C \) have the same size as follows. It replace an \(a \) in \(A \) with \(X \) and then look for an \(a \) in \(C \) to be replaced by \(Y \). If it can find a corresponding \(a \) in \(C \) for each and every \(a \) in \(A \), and having no \(a \)'s left in the input tape, then it confirms the equality of \(A \) and \(C \). It can thus continue the computation by comparing the length of \(B \) and \(D \). If it also confirms their equality, it accepts the input.

(b) The computation begins by finding the first \(a \) in the input and replacing it with an \(X \). Then the tape head is moved to the beginning of the tape. It then looks for a \(b \) in the input tape to replace it with an \(X \). If for each and every \(a \) in the input tape, it can find a corresponding \(b \), and finally no \(a \) or \(b \) left on the input string, it can confirm the equality of the numbers of \(a \)'s and \(b \)'s.

Exercise 2: Semi-Decidable vs. Recursively Enumerable

Very often people in computer science use the terms semi-decidable and recursively enumerable equivalently. The following exercise shows in which way they actually are equivalent. We first recall the definition of both terms.

A language \(L \) is semi-decidable if there is a Turing machine which accepts every \(w \in L \) and does not accept any \(w \notin L \) (this means the TM can either reject \(w \notin L \) or simply not stop for \(w \notin L \)).

A language is recursively enumerable if there is a Turing machine which eventually outputs every word \(w \in L \) and never outputs a word \(w \notin L \).

(a) Show that any recursively enumerable language is semi-decidable.

(b) Show that any semi-decidable language is recursively enumerable.
Sample Solution

(a) Let \(M_L \) be the TM which enumerates \(L \). Construct a TM which, on input \(w \), simulates \(M_L \). If \(M_L \) outputs \(w \) the TM accepts \(w \), otherwise it might run forever.

(b) Let \(M_L \) be a TM which semi-decides \(L \). We use a tricky simulation of \(M_L \) to construct a TM which recursively enumerates \(L \). We order all words lexicographically \(w_1, w_2, w_3, \ldots \) and then we simulate \(M_L \) as follows

1) Simulate one step of \(M_L \) on \(w_1 \)
2) Simulate one (further) step of \(M_L \) on \(w_1 \) and \(w_2 \)
3) Simulate one (further) step of \(M_L \) on \(w_1, w_2 \) and \(w_3 \)
4) Simulate one (further) step of \(M_L \) on \(w_1, w_2, w_3 \) and \(w_4 \)
5) etc.

Exercise 3: Halting Problem

(2+2+2+2 Points)

The special halting problem is defined as

\[H_s = \{ \langle M \rangle \mid \langle M \rangle \text{ encodes a TM and } M \text{ halts on } \langle M \rangle \}. \]

(a) Show that \(H_s \) is undecidable.

Hint: Assume that \(M \) is a TM which decides \(H_s \) and then construct a TM which halts iff \(M \) does not halt. Use this construction to find a contradiction.

(b) Show that the special halting problem is recursively enumerable.

(c) Show that the complement of the special halting problem is not recursively enumerable.

Hint: What can you say about a language \(L \) if \(L \) and its complement are recursively enumerable? (if you make some observation for this, also prove it)

(d) Let \(L_1 \) and \(L_2 \) be recursively enumerable languages. Is \(L_1 \setminus L_2 \) recursively enumerable as well?

(e) Is \(L = \{ w \in H_s \mid |w| \leq 1742 \} \) decidable? Explain your answer!

Sample Solution

(a) Assume that \(H_s \) is decidable. Then there is a TM \(M \) which decides it. Now let us define a TM \(\tilde{M} \) as follows. TM \(\tilde{M} \) on input \(w \) uses \(M \) to test whether \(w \in H_s \). If \(w \in H_s \) it enters a non terminating loop, otherwise it accepts \(w \). We now apply \(\tilde{M} \) on input \(\langle \tilde{M} \rangle \) and construct a contradiction.

\[\langle \tilde{M} \rangle \notin H_s: \] Then \(M \) rejects \(\langle \tilde{M} \rangle \). Thus \(\tilde{M} \) accepts \(\langle \tilde{M} \rangle \) by the definition of \(\tilde{M} \). Thus, \(\langle \tilde{M} \rangle \in H_s \), a contradiction.

\[\langle \tilde{M} \rangle \in H_s: \] Then \(M \) accepts \(\langle \tilde{M} \rangle \), i.e., \(\tilde{M} \) enters a non terminating loop on \(\langle \tilde{M} \rangle \) and does not halt on \(\langle \tilde{M} \rangle \) which means that \(\langle \tilde{M} \rangle \notin H_s \), a contradiction.

\[\langle \tilde{M} \rangle \in H_s \iff \langle \tilde{M} \rangle \notin H_s \]

(b) The special halting problem is semi-decidable because we can construct a TM which semi-decides it as follows: If the input is not a valid coding of a TM the TM rejects it. If the input is the coding of a TM \(M \) it simulates \(M \) on \(\langle M \rangle \) and accepts if this simulation stops.

With the previous exercise it follows that the halting problem is recursively enumerable.
(c) First note that if a language L and its complement are recursively enumerable the language L is a recursive language: Assume that L is recursively enumerable by TM M_1 and its complement by TM M_2. Then we construct a TM which, on input w interchangeably simulates one step of M_1 and one step of M_2. Eventually one of the two TMs will output w. If M_1 outputs w we accept w and if M_2 outputs w we reject w.

If the complement of the special halting problem was recursively enumerable, then H and its complement would be recursively enumerable. But then H_s would be a recursive language which is a contradiction.

(d) This does not hold in general. Let $L_1 = \{0,1\}^*$ be the language of all words over $\Sigma = \{0,1\}$ and let L_2 be the special halting problem. Then L_1 and L_2 are recursively enumerable (L_1 is even a recursive language) but $L_1 \setminus L_2$ equals the complement of the special halting problem and is not recursively enumerable.

(e) Even though we do not know what the language is we know that all words in the language have length at most 1742, that is, the language is finite. So, no matter which words with length of at most 1742 are actually contained in the language there is even a deterministic finite automaton which tests for it, i.e., the language is even regular!