Exercise 1: Knuth-Morris-Pratt Algorithm

Consider the pattern $P = BBABAB$ and the text $T = ABBABBABABBABABBA$.

(a) Compute the array S of the Knuth-Morris-Pratt algorithm.

(b) Use the Knuth-Morris-Pratt algorithm to find all appearances of P in T. Document the steps analogously to the lecture.

Exercise 2: Rabin-Karp Algorithm

Let T be a given text of length n and let P_1, \ldots, P_k be k patterns, each of length exactly m. The goal is to know if there is at least one pattern in the text, that is, we want to answer True if there exists at least one index $i \in \{1, \ldots, k\}$ such that $P_i \in T$, and answer False if for any $i \in \{1, \ldots, k\}$, $P_i \notin T$. It is easy to solve this problem in $O(k(n + m))$ by running the Rabin-Karp algorithm once for each pattern. Give an algorithm (based on Rabin-Karp) that requires only $O(n + km)$.