Exercise 1: Bad Hash Functions

Let \(m \) be the size of a hash table and \(M \gg m \) the largest possible key of the elements we want to store in the table. The following “hash functions” are poorly chosen. Explain for each function why it is not a suitable hash function.

(a) \(h : x \mapsto \lfloor \frac{x}{m} \rfloor \mod m \)

(b) \(h : x \mapsto (2x + 1) \mod m \) (\(m \) even).

(c) \(h : x \mapsto (x \mod m) + \lfloor \frac{m}{x+1} \rfloor \)

(d) For each calculation of the hash value of \(x \) one chooses for \(h(x) \) a uniform random number from \(\{0, \ldots, m-1\} \)

(e) \(h : x \mapsto \lfloor \frac{M}{xp \mod M} \rfloor \mod m \), where \(p \) is prime and \(\frac{M}{2} < p < M \)

(f) For a set of “good” hash functions \(h_1, \ldots, h_\ell \) with \(\ell \in \Theta(\log m) \), we first compute \(h_1(x) \), then \(h_2(h_1(x)) \) etc. until \(h_\ell(h_{\ell-1}(\ldots h_1(x)) \ldots) \). That is, the function is \(h : k \mapsto h_\ell(h_{\ell-1}(\ldots h_1(x)) \ldots) \)

Sample Solution

(a) Values are not scattered. \(m \) subsequent values have the same hash value.

(b) Only half of the hash table is used. The cells 0, 2, 4, \ldots, \(m-2 \) stay empty.

(c) \(h(m-1) = m \), but the table has only the positions 0, \ldots, m-1.

(d) The hash value of \(x \) can not be reproduced.

(e) First, consider the function \(h' : x \mapsto \lfloor \frac{M}{x} \rfloor \mod m \). \(h' \) maps all \(x > M/2 \) (i.e., half of the keys) to position 1, all \(x \) with \(M/3 < x \leq M/2 \) (i.e. 1/6 of the keys) to position 2 etc. So the table is filled asymmetrically. As the function \(x \mapsto x \cdot p \mod M \) is a bijection from \(\{0, \ldots, M-1\} \) to \(\{0, \ldots, M-1\} \), \(h \) has the same property of an asymmetrical filled table (but compared to \(h' \) we do not have that a long sequence of subsequent keys are mapped to the same position which would be another undesirable property, cf. part (a)).

(f) The calculation of a single hash value needs \(\Omega(\log m) \)
Exercise 2: (No) Families of Universal Hash Functions

(a) Let \(S = \{0, \ldots, M-1\} \) and \(H_1 := \{ h : x \mapsto a \cdot x^2 \mod m \mid a \in S \} \). Show that \(H_1 \) is not \(c \)-universal for constant \(c \geq 1 \) (that is \(c \) is fixed and must not depend on \(m \)).

(b) Let \(m \) be a prime and let \(k = \lfloor \log_m M \rfloor \). We consider the keys \(x \in S \) in base \(m \) presentation, i.e., \(x = \sum_{i=0}^{k} x_i m^i \). Consider the set of functions from the lecture (week 5, slide 15)

\[H_2 := \left\{ h : x \mapsto \sum_{i=0}^{k} a_i x_i \mod m \mid a_i \in \{0, \ldots, m-1\} \right\}. \]

Show that \(H_2 \) is 1-universal.

Hint: Two keys \(x \neq y \) have to differ at some digit \(x_j \neq y_j \) in their base \(m \) representation.

Sample Solution

(a) For an \(x \in S \) let \(y = x + i \cdot m \in S \) for some \(i \in \mathbb{Z} \setminus \{0\} \). Such a \(y \) exists for any \(x \) if \(M > 2m \). Let \(h \in H_1 \). We obtain

\[
\begin{align*}
 h(y) &= a \cdot y^2 \mod m \\
 &\equiv a \cdot (x + im)^2 \mod m \\
 &\equiv a \cdot (x^2 + 2xim + (im)^2) \mod m \\
 &\equiv ax^2 \mod m = h(x).
\end{align*}
\]

It follows that \(|\{h \in H_1 \mid h(x) = h(y)\}| = |H_1|\), so for \(m > c \) we have

\[
|\{h \in H_1 \mid h(x) = h(y)\}| > \frac{c}{m}|H_1|.
\]

This means that for \(m > c \), \(H_1 \) is not \(c \)-universal.

(b) Let \(x, y \in S \) with \(x \neq y \). Let \(x_j \neq y_j \) be the position where \(x \) and \(y \) differ in their base \(m \) representation. Let \(h \in H_2 \) such that \(h(x) = h(y) \). We have

\[
\begin{align*}
 h(x) &= h(y) \\
 \iff \sum_{i=0}^{k} a_i x_i &\equiv \sum_{i=0}^{k} a_i y_i \mod m \\
 \iff a_j (x_j - y_j) &\equiv \sum_{i \neq j \neq 0} a_i (y_i - x_i) \mod m \\
 \iff a_j &\equiv (x_j - y_j)^{-1} \sum_{i \neq j} a_i (y_i - x_i) \mod m \quad (x_j - y_j)^{-1} \text{ exists because } m \text{ is prime}
\end{align*}
\]

This means that for any values \(a_0, \ldots, a_{j-1}, a_{j+1}, \ldots, a_k \) there is a unique \(a_j \) such that the function \(h \) defined by \(a_0, \ldots, a_k \) is in \(\{h \in H_2 \mid h(x) = h(y)\} \). So we have \(m^k \) possibilities to choose a function from \(\{h \in H_2 \mid h(x) = h(y)\} \). It follows

\[
\begin{align*}
\frac{|\{h \in H_2 \mid h(x) = h(y)\}|}{|H_2|} &= \frac{m^k}{m^{k+1}} = \frac{1}{m}.
\end{align*}
\]