Exercise 1: Binary Search Trees I

Consider the following binary search tree.

1. Give all sequences of `insert(key)` operations that generate the tree.
2. Draw the tree after the following sequence of operations: `insert(6), insert(5), remove(3).

Sample Solution

1. (i) `insert(8), insert(3), insert(12), insert(10)`
 (ii) `insert(8), insert(12), insert(3), insert(10)`
 (iii) `insert(8), insert(12), insert(10), insert(3)`

2. After `insert(6)` and `insert(5):

 After `remove(3):`
Exercise 2: Binary Search Trees II

(a) Describe a function that takes a binary search tree \(B \) and a key \(x \) as input and generates the following output:

- If there is an element \(v \) in \(B \) with \(v.key = x \), return \(v \).
- Otherwise, return the pair \((u, w)\) where \(u \) is the tree element with the next smaller key and \(w \) is the element with the next larger key. It should be \(u = \text{None} \) if \(x \) is smaller than any key in the tree and \(w = \text{None} \) if \(x \) is larger than any key in the tree.

For your description you can use pseudo code or a sufficiently detailed description in English. Analyze the runtime of your function.

(b) Describe a function which returns the depth of a binary search tree and analyze the runtime.

(c) Describe a function that for a given binary search tree with \(n \) nodes and a given \(k \leq n \) returns a list with the \(k \) smallest keys from the tree. Analyze the runtime.

Sample Solution

(a) Algorithm 1 \texttt{return-closest}(x)

\begin{verbatim}
v ← \text{find}(x)
if v ≠ \text{None} then
 return v
else
 \text{insert}(x)
 \((p, s) \) ← \((\text{pred}(x), \text{succ}(x)) \)
 \text{delete}(x)
 return \((p, s) \)
\end{verbatim}

All subprocedures that we call (\texttt{find}, \texttt{insert}, \texttt{pred}, \texttt{succ}) are known from the lecture and take \(O(d) \) with \(d \) being the depth of the tree. So the overall runtime is \(O(d) \).

(b) We can do a recursive traversal of the tree where we keep track of the current recursion depth. Then a call of \texttt{depth}(v) on the root \(r \) of the BST returns its depth.

\begin{verbatim}
\text{Algorithm 2 depth}(v)
if \(v = \text{None} \) then
 return -1 \(\triangleright \text{depth of a childless node must be 0, hence we define the depth of None as -1} \)
else return max \((\text{depth}(v.left)+1, \text{depth}(v.right)+1) \)
\end{verbatim}

The runtime corresponds to the runtime of the traversal of the whole tree which is \(O(n) \) as we have just one recursive call for each node and each recursive call costs \(O(1) \) (c.f., pre-, in-, post-order traversal algorithms given in the lecture).

As an alternative solution, we can run a BFS which takes \(O(n) \). If \(v \) is the node visited last by the BFS, do
Algorithm 3 \texttt{traverse-up}(v)
\begin{verbatim}
d ← 0
while v.parent \neq None do
 d ← d + 1
 v ← v.parent
return d
\end{verbatim}
This takes $O(d)$ where d is the depth of the tree. Since $d \leq n$ the overall runtime is $O(n+d) = O(n)$.

(c) Initialize an empty list K. We roughly do the following. Make an in-order traversal of the tree and each time visiting a node, add it to K. Stop if $|K| \geq k$. The following pseudocode formalizes this.

Algorithm 4 \texttt{inorder_variant}(node) \quad \triangleright \text{Assume list K is given globally, initially empty}
\begin{verbatim}
if node \neq None then
 inorder_variant(node.left)
 if $|K| \geq k$ then
 return
 K.append(node.key)
 inorder_variant(node.right)
\end{verbatim}
The runtime is $O(d+k)$ where d is the depth of the tree. We prove this in the following.

Let K be the set of k nodes representing the k smallest keys in the BST. Obviously, the in-order traversal must visit all nodes in K once. In accordance with the lecture a call of \texttt{inorder_variant}(root) adds all keys in ascending order to K.

Let A be the set of nodes in the BST which are not in K but in which a recursive call will be made. Since the recursion is aborted (with the \texttt{return} statement) after reporting k nodes, the set A contains exactly the nodes which are ancestors of a node in K, but are not in K themselves. Since the runtime of a single recursive call (neglecting subcalls) is (1) the total runtime is $O(|A| + |K|)$.

By definition we have $|K| = k$, so it remains to determine the size of A. We claim that all nodes in A are on a path from the root to a leaf, that is, $|A| \leq d$. This is the case if there do not exist two nodes in A so that neither is an ancestor of the other.

For a contradiction, suppose that two such nodes u, v exist so that neither u is ancestor of v nor vice versa. Assume (without loss of generality) that $\text{key}(u) \leq \text{key}(v)$. That means u is in the left and v is in the right subtree of some common ancestor a of u and v.

By definition v has a node $w \in K$ in its subtree. Since v is in the right subtree and u is in the left subtree of a, we have $\text{key}(w) \geq \text{key}(u)$ and w has a higher in-order-position. But then we would have $u \in K$ as well, a contradiction to $u \in A$.