Exercise 1: Happens Before in Shared Memory

Consider \(n \) processors and \(m \) shared variables. Every processor can access every shared variable with atomic read and write operations (i.e., a process can either read from or write to a shared variable and the system guarantees that such accesses of different processes to the same variable happen atomically). Define a happens before relation similar to the one for message passing.

Exercise 2: Unique Maximal Cut Preceding a Given Cut

Given a schedule \(S \) with some cut \(C \). Show that there is a unique, maximal consistent cut \(C' \) of \(S \) which precedes the cut \(C \).

Remarks: A cut \(C' \) precedes \(C \) if \(C' \subseteq C \). A cut is maximal with respect to a given property if it contains the most events among all cuts with that property.

Exercise 3: Happens Before Relation

Let \(S \) be a schedule with events \(a \), \(b \), and \(c \). Show that if \(a \not\Rightarrow_S b \) and \(a \not\Rightarrow_S c \) holds, then there exists some causal shuffle \(S' \) of \(S \) in which \(b \) and \(c \) occur before \(a \).

Exercise 4: Logical Clocks

You are given a clique graph on \(n \) nodes. Find two executions \(A \) and \(B \), in which each node sends exactly one message to every other node, such that

a) the largest Lamport clock value in \(A \) is as small as possible, and

b) the largest Lamport clock value in \(B \) is as large as possible.