

Chapter 1 Introduction: Basics, Models, 2 Generals

Theory of Distributed Systems

Fabian Kuhn

Objectives

- Theoretical basics of distributed systems and algorithms
- Will cover a pretty diverse set of topics
- Lecture will be a mix of the previous Distributed Systems lecture and of the previous Network Algorithms lecture

General topics

- Coordination and agreement
- Faults and asynchrony
- Global states and time
- Distributed lower bound / impossibility proofs
- Distributed network / graph algorithms
- Massively parallel graph computations

Lecture Organization

Lecture and Exercises (online via zoom)

- Lecture: Monday 14:15 16:00
- Exercises: Wednesday 12:15 14:00
- Online Discussions through Zulip

Format of the lecture

- Weekly lecture and exercise sheets
- Doing the exercises is not mandatory, it is however highly recommended
- Oral exam at the end of the semester: Material covered in the exercises is also part of the oral exam!
- Try to keep the lecture interactive
 - Please ask questions!
 - Zoom has a feature to raise hand, use zoom chat, etc.

Theory of Distributed Systems

Fabian Kuhn

Web Page

http://ac.informatik.uni-freiburg.de

- \rightarrow Teaching \rightarrow SS 2021 \rightarrow (Theory of) Distributed Systems
- We will publish all important information there!
 - Slides, lecture notes, exercises, exercise solutions (if available), recordings, links to further literature for each lecture, ...
- Check the web page regularly!
- Recordings and additional literature will be put online

- Sometimes possibly with a short delay... Handling in exercises '. Daphne

A distributed system is a collection of individual computing devices that can communicate with each other.

•••

Each processor in a distributed system generally has its semiindependent agenda, but for various reasons, including sharing of resources, availability, and fault tolerance, processors need to coordinate their actions.

[Attiya, Welch 2004]

Why are Distributed Systems Important?

Distributed systems are everywhere!

- The Internet
- WWW
- Local area networks, corporate networks, ...
- Parallel architectures, multi-core computers
- Cell phones
- Internet applications
- Peer-to-peer networks
- Data centers
- ...

Distributed systems allow to

- share data between different places
- handle much larger amounts of data
- parallelize computations across many machines
- build systems that span large distances
- build communication infrastructures

and also to

• build robust and fault-tolerant systems

In distributed systems, we need to deal with many aspects and challenges besides the ones in non-distributed systems.

Some challenges in distributed systems:

- How to organize a distributed system
 - how to share computation / data, communication infrastructure, ...
- There is often no global time \rightarrow difficult to coordinate
- Coordination of multiple (potentially heterogeneous) nodes
- Coordination in networks of arbitrary (unknown) topologies
- Agreement on steps to perform
- All of this in the presence of asynchrony (unpredictable delays), message losses, and faulty, lazy, malicious, or selfish nodes

Why Theory?

For distributed systems, we do not have the same tools for managing complexity like in standard sequential programming!

Main reason: a lot of inherent nondeterminism

- unpredictable delays, failures, actions, concurrency, ...
- no node has a global view
- leads to a lot of **uncertainty**!

It is much harder to get distributed systems right

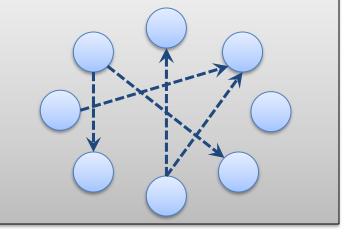
- Important to have theoretical tools to argue about correctness
- Correctness may be theoretical, but an incorrect system has practical impact!
- Easier to go from theory to practice than vice versa ...

Distributed System Models

Two basic abstract models for studying distributed systems...

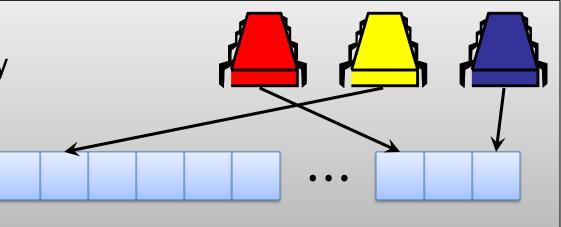
Message Passing:

- Nodes/processes interact by exchanging messages
- Fully connected topology or arbitrary network



Shared Memory:

Processes interact by reading/writing from/to common global memory



Message Passing

- Used to model large (decentralized) systems and networks
- Except for small-scale systems, real systems are implemented based on exchanging messages
- Certainly the right model for large systems that use a large number of machines, but also for many other practical systems

Shared Memory

- Classic model to study many standard coordination problems
- Models multi-core processors and also multi-threaded programs on a single machine
- Most convenient abstraction for programming

Distributed System Models

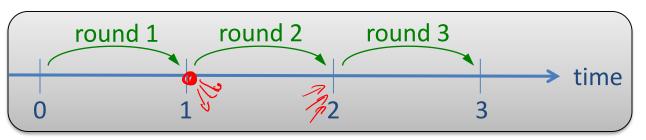
Message Passing vs. Shared Memory

- Generally, the two models can simulate each other
 - One can implement the functionality of a shared memory system based on exchanging messages
 - One can implement the functionality of a message passing system based on using a shared memory
- Many things we discuss hold for both models
- We will see both models and we will switch back and forth between the models (as convenient)
 - We will mostly consider message passing algorithms

Synchrony

Synchronous systems:

- System runs in synchronous time steps (usually called rounds)
 - Discrete time 0, 1, 2, 3, 4, ...
 - Round r takes place between time r-1 and time r



Synchronous message passing:

• Round *r*:

At time r - 1, each process sends out messages (or a single msg.) Messages are delivered and processed at time r

Synchronous shared memory:

 In each round (at each time step), every process can access one memory cell

Theory of Distributed Systems

Asynchronous systems:

- Process speeds and message delays are finite but otherwise completely unpredictable
- Assumption: process speeds / message delays are determined in a worst-case way by an adversarial scheduler

Asynchronous message passing:

- Messages are always delivered (in failure-free executions)
- Message delays are arbitrary (chosen by an adversary)

Asynchronous shared memory:

- All processes eventually do their next steps (if failure-free)
- Process speeds are arbitrary (chosen by an adversary)

Synchrony

There are modeling assumptions between completely synchronous and completely asynchronous systems.

• Bounded message delays / process speeds:

Nodes can measure time differences and there is a (known) upper bound T on message delays / time to perform 1 step.

- Model is equivalent to the synchronous model
- -1 round = T time units

Partial synchrony:

There is an upper bound on message delays / process speeds

- Variant 1: upper bound is not known to the nodes / processes
- Variant 2: upper bound only starts to hold at some unknown time

Failures

Crash Failure:

- A node / process stops working at some point in the execution
- Can be in the middle of a round (in synchronous systems)
 - some of the messages might already be transmitted...

Byzantine Failure:

- A node / process (starts) behaving in a completely arbitrary way
- Different Byzantine nodes might collude

Omission Failure:

- Node / process / communication link stops working temporarily
- E.g., some messages get lost

Resilience:

• Number of failing nodes / processes tolerated

Correctness of Distributed Systems

When dealing with distributed systems and protocols, there are different kinds correctness properties.

The three most important ones are...

Safety: Nothing bad ever happens

Liveness: Something good eventually happens

Fairness: Something good eventually happens to everyone

Safety

Nothing bad ever happens.

Equivalent: There are no bad reachable states in the system

Example:

 At each point in time, at most one of the two traffic lights is green.

Proving safety:

- Safety is often proved using invariants
- Every possible state transition keeps a safe system safe

Liveness

Something good eventually happens.

Example:

• My email is eventually either delivered or returned to me.

Remark:

- Not a property of a system state but of system executions
- Property must start holding at some finite time

Proving liveness:

• Proofs usually depend on other more basic liveness properties, e.g., all messages in the system are eventually delivered

Something good eventually happens to everybody.

• Strong kind of liveness property that avoids starvation

Starvation: Some node / process cannot make progress

Example 1: System that provides food to people

- Liveness properties:
 - Somebody gets food
 - System provides enough food for everybody

Example 2: Mutual Exclusion (exclusive access to some resource)

- Liveness properties:
 - some process can access the resource
 - the resource can be accessed infinitely often
 - when requesting the resource, a process can eventually access the resource

Safety, Liveness and Fairness

Traffic Light Example

Safety: At most one of the two lights is green at each point in time.

Liveness: There is a green light infinitely often

Fairness: Both lights are green infinitely often

Message Passing : More Formally

General remark: We'll try to keep the formalism as low as possible, however some formalism is needed to argue about correctness.

• For detailed models: [Attiya,Welch 2004], [Lynch 1996]

Basic System Model:

- 1. System consists of n (deterministic) nodes/processes v_1, \ldots, v_n and of pairwise communication channels
 - implicit assumption that nodes are numbered 1, ..., n, n is known
 - sometimes, we want to relax this condition
 - *n* known, but nodes might be labeled with unique IDs from a larger domain
 - sometimes only an upper bound on n is known
 - sometimes *n* is not known at all (uniform algorithms)
- 1. At each time, each node v_i has some internal state Q_i
- 2. System is event-based: states change based on discrete events

Internal State of a Node:

- Inputs, local variables, possibly some local clocks
- History of the whole sequence of observed events

Types of Events:

- Send Event: Some node v_i puts a message on the communication channel to node v_i
- **Receive Event:** Node v_i receives a message
 - must be preceded by a corresponding send event
- **Timing Event:** Event triggered at a node by some local clock

Remarks:

• Events might trigger local computations which might trigger other events

Schedules and Executions

Configuration *C***:** Set (vector) of all *n* node states (at a given time)

configuration = system state

Execution Fragment:

Sequence of alternating configurations and events

• Example: $C_0, \phi_1, C_1, \phi_2, C_2, \phi_3, ...$

- C_i are configurations, ϕ_i are events

- Each triple $\underline{C_{i-1}, \phi_i, C_i}$ needs to be consistent with the transition rules for event ϕ_i
 - e.g., rcv. event ϕ_i only affects the state of the node that received the msg.

Execution: execution fragment that starts with initial config. C_0

Schedule: execution without the configurations, but including inputs (the sequence of events of an execution & the inputs)

Message Passing Model: Remarks

Local State:

• State of a node v_i does not include the states of messages sent by v_i (v_i doesn't know if the message has arrived / been lost)

Adversary:

 Within the timing guarantees of the model (synchrony assumptions), execution/schedule is determined in a worst-case way (by an adversary)

Deterministic nodes:

- In the basic model, we assume that nodes are deterministic
- In some cases this will be relaxed and we consider nodes that can flip coins (randomized algorithms)
- Model details / <u>adversary</u> more tricky

Local Schedules

A node v's state is determined by v's inputs and observable events.

Schedule Restriction seq. of all events + inputs

• Given a schedule S, we define the restriction S|i as the subsequence of S consisting v_i 's inputs and of of all events happening at node v_i

Example:

- 3 nodes v_1 , v_2 , v_3 , send events (s_{ij}) , receive events (r_{ji})
- Schedule $S = (s_{13}, s_{23}, s_{31}, r_{13}, s_{32}, r_{31}, r_{23}, s_{13}, s_{21}, r_{31}, r_{12}, r_{32})$

 $S|1 = s_{13}, r_{13}, s_{13}, r_{12}$

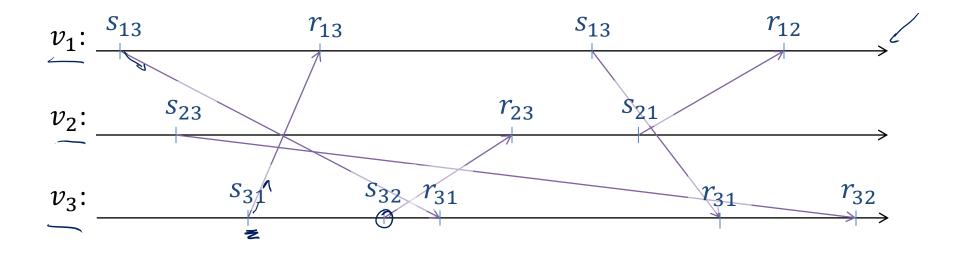
 $S|2 = s_{23}, r_{23}, s_{21}$

$$S|3 = s_{31}, s_{32}, r_{31}, r_{31}, r_{32}$$

Graphical Representation of Executions

Schedule $S = \frac{s_{13}}{s_{23}}, \frac{s_{23}}{s_{31}}, \frac{r_{13}}{r_{13}}, \frac{s_{32}}{r_{31}}, \frac{r_{23}}{r_{23}}, \frac{s_{13}}{s_{13}}, \frac{s_{21}}{r_{31}}, \frac{r_{12}}{r_{32}}, \frac{r_{32}}{r_{32}}$

Graphical representation of schedule / execution



Theorem (indistinguishability):

If for two schedules S and S' and for a node v_i with the same inputs in S and S', we have S|i = S'|i, if v_i takes the next action, it performs the same action in both schedules S and S'.

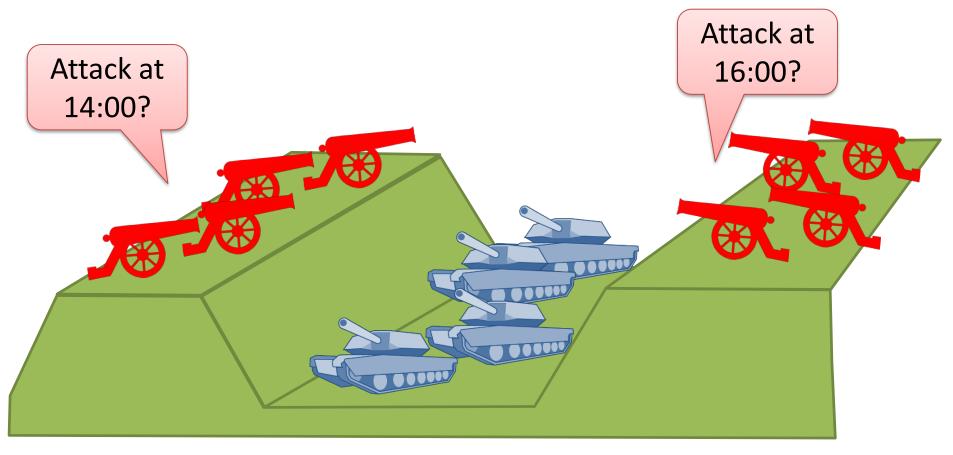
Proof:

- State of a node v_i only depends on inputs and on S|i
- For deterministic nodes, the next action only depends on the current state.

Lower Bounds / Impossibility Proofs:

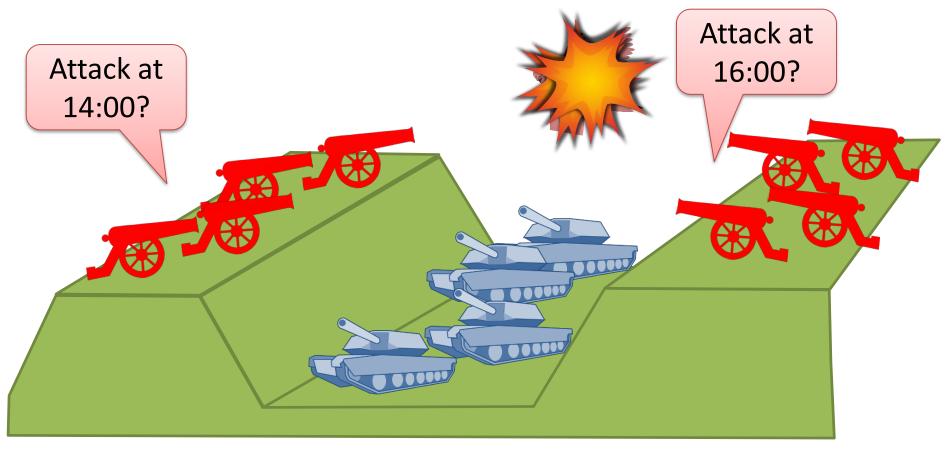
 Most lower bounds and impossibility proofs for distributed systems are based on indistinguishability arguments.

The Two Generals' Problem



- To win, the two red armies need attack together
- They need to agree on a time to attack the blue army

The Two Generals' Problem



- Communication across the valley only by carrier pigeons
- Problem: pigeons might not make it

UNI

Problem is relevant in the real world...

- Alice and Bob plan to go out on Saturday evening
- They need to agree on:
 - when and where to meet
 - who makes the dinner reservation
 - ..
- They can only communicate by an unreliable messaging service
- Nodes in a network need to agree on
 - who's the leader for some computation
 - which of two / several conflicting data accesses to perform
 - whether to commit a distributed database transaction

- ...

Two Generals More Formally

Model: two deterministic nodes, synchronous communication, unreliable messages (messages can be lost) Input: each node starts with one of two possible inputs 0 or 1

say input encodes time to attack

Output: Each node needs to decide either 0 or 1

calety Agréement: Both nodes must output the same decision (0 or 1) Safety Validity: If both nodes have the same input $x \in \{0,1\}$ and no messages are lost, both nodes output x.

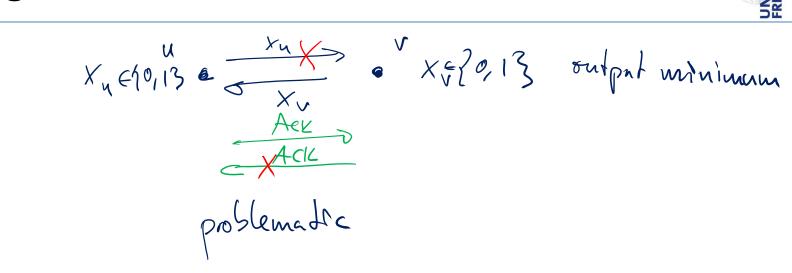
- If nodes start with different inputs or one or more messages are lost, nodes can output 0 or 1 as long as they agree. lineness

V .

say in ET rounds

Termination: Both nodes terminate in a bounded # of rounds.

Solving the Two Generals Problem?



Indistinguishability Proof:

Execution \underline{E} is indistinguishable from execution E' for some node v if vsees the same things in both executions. S|v = S|v

 $E_{1v} = E_{1v}$

- same inputs and messages (schedule)
- If E is indistinguishable from E'_{i} for v, then v does the same thing in both executions. To decides same output

- We abuse notation and denote this by E|v = E'|v

Similarity:

- Consider all possible executions E_1, E_2, \dots
- Call E_i and E_j similar if $E_i | v = E_j | v$ for some node v $\underline{E_i \sim_{v} E_j} \Leftrightarrow E_i | v = E_j | v$ $E_i \sim E_i \iff \exists v : E_i \sim E_i$

Consider a chain $E_0, E_1, E_2, ..., E_k$ of executions such that for all $i \in \{1, ..., k\}, E_{i-1}$ and E_i are similar. $- \forall i \in \{1, ..., k\} : E_{i-1} \sim_v E_i$ for some node v $E_{i-1} | v = E_i | v$ $\Rightarrow v$ does exactly the same thing in E_{i-1} and E_i $\Rightarrow v$ outputs the same decision in E_{i-1} and E_i

• Agreement: all nodes output the same value in E_{i-1} and E_i

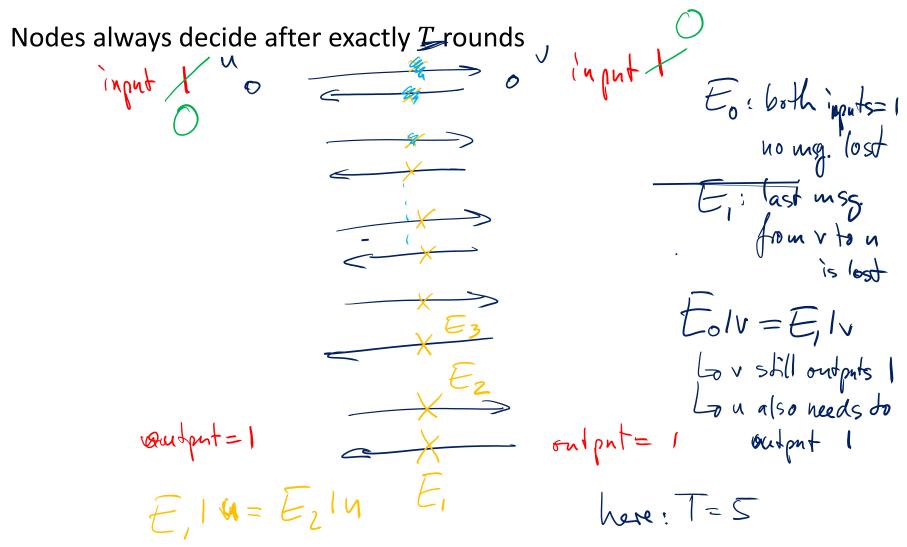
•
$$E_0 \sim_{v_1} E_1 \sim_{v_2} E_3 \sim_{v_4} \cdots \sim_{v_{k-1}} E_{k-1} \sim_{v_k} E_k$$

 \Rightarrow all nodes output the same value in all executions E_0, \dots, E_k

Proof Idea:

- Assume there is a *T*-round protocol
 - Then, nodes can always decide after exactly T rounds
- Construct sequence of executions E_0 , E_1 , ..., E_k s.t.
 - For all $i \in \{1, \dots, k\}$ $E_{i-1} \sim_v E_i$ for some node $v \in \{v_1, v_2\}$
 - In E_0 output needs to be 0 and in E_k output needs to be 1

Execution E_0 : both inputs are 0, no messages are lost**Execution** E_k : both inputs are 1, no messages are lost



Nodes always decide after exactly T rounds	
Execution E_0	: both inputs are 0, no messages are lost
Execution E_1	: one of the messages in round T is lost

Execution E_i : last message M is delivered in round t**Execution** E_{i+1} : drop message M

Execution E_{2T} : both inputs are 0, no messages are delivered

• All nodes output 0 (because of similarity chain)

Execution E_{2T} : both inputs are 0, no messages are delivered

• All nodes output 0 (because of similarity chain)

Execution E_{2T+1} : input of v_1 is 0, input of v_2 is 1, no msg. delivered

Execution E_{2T+2} : input of both nodes are 1, no msg. delivered

Execution E_{4T+2} : input of both nodes are 1 and no msg. are lost

- from E_{2T+2} to E_{4T+2} deliver messages one by one
- same chain as from E_0 to E_{2T} , but in opposite direction
- In E_{4T+2} , all nodes must output $1 \Rightarrow$ contradiction!

Two Generals Impossibility: Summary

- We start with an execution in which both nodes have input 0 and no messages are lost ⇒ both nodes must decide 0.
- We prune messages one by one to get a sequence of executions s.t. consecutive executions are similar.
- From an execution with no messages delivered and both inputs 0, we can get to an execution with no messages delivered and both inputs 1 (in two steps).
- By adding back messages one-by-one, we get to an execution in which both nodes have input 1 and no messages are lost ⇒ both nodes must decide 1 ⇒ contradiction!
- Not hard to generalize to an arbitrary number $n \ge 2$ of nodes
- Upper bound on number of rounds not necessary
 - as long as nodes need to decide in finite time