Chapter 4
Causality, Time,

and Global States

Distributed Systems
SS 2019

Fabian Kuhn

UNI

FREIBURG

Time in Distributed Systems

Goal: Establish a notion of time in (partially) asynchronous systems

Physical time:

e Establish an approximation of real time in a network

* Synchronize local clocks in a network

 Timestamp events (email, sensor data, file access times etc.)
* Synchronize audio and video streams

 Measure signal propagation delays (Localization)
 Wireless (TDMA, duty cycling)

» Digital control systems (ESP, airplane autopilot etc.)

(\Logical time:
 Determine an order on the events in a distributed system

L. Establish a global view on the system

Distributed Systems, SS 2019 Fabian Kuhn

UNI
f

FREIBURG

Logical Clocks

UNI
FREIBURG

Goal: Assign a timestamp to all events in an asynchronous message-
passing system

* Allows to give the nodes some notion of time

— which can be used by algorithms

* Logical clock values: numerical values that increase over time and
which are consistent with the observable behavior of the system

* The objective here is not to do clock synchronization:

Clock Synchronization: compute logical clocks at all nodes which
simulate real time and which are tightly synchronized.

— We will briefly talk about clock synchronization later...

Distributed Systems, SS 2019 Fabian Kuhn 3

Observable Behavior

UNI
FREIBURG

Recall Executions / Schedules

* An exec. is an alternating sequence of configurations and events
 Aschedule S is the sequence of events of an execution

— Possibly including node inputs

* Schedule restriction for node v:
S|v := "sequence of events seen by v"

B]

Causal Shuffles

—

We say that a scheduleﬁ'_ is a causal shuffle of scheduleiiff
vveV: Slv==S|v.

Observation: If S’ is a causal shuffle of S, no node/process can distinguish
between S and S'.

Distributed Systems, SS 2019 Fabian Kuhn 4

Causal Order

UNI
f

FREIBURG

Logical clocks are based on a causal order of the events
e

* |nthe order, evem@hould occur before event@f event e provably
occurs before event e’

— In that case, the clock value of e should be smaller than the one of €’

For a given schedule §:

* The distributed system cannot dlstlngwsh S from another schedule S’ if
and only if " is a causal shuffle of S.
— causal shuffle — no node can distinguish

— no causal shuffle — some node can distinguish

Event e provably occurs before e’ if and only if
e appears before e’ in all causal shuffles of S

Distributed Systems, SS 2019 Fabian Kuhn 5

Causal Shuffles / Causal Order Example

UNI

FREIBURG

Schedule S

shadule S, S, 84,00 Sy, My, 1), 5¢

A

Sl = S, %y,5, 53,7, / Tio

Distributed Systems, SS 2019 Fabian Kuhn

Causal Shuffles / Causal Order Example ;

UNI
FREIBURG

q Schedule S 51,%2, 5 r, 5, %3

Distributed Systems, SS 2019 Fabian Kuhn 7

UNI

Lamport’s Happens-Before Relation

FREIBURG

Assumption: message passing system, only send and receive events

——

Consider two events e and e’ occurring at nodes u and u
— send event occurs at sending node, recv. event at receiving node
— let’s define t and t’ be the (real) times when e and e’ occur

We know that e provably occurs before e’ if
1. The events occur at the same node and e occurs before e’

2. Event eis a send event, e’ the recv. event of the same message

e e

3. Thereisanevent e’ for which we know that provably,

aus i v)
e occurs before e’ and e’ occurs befori@) (draus j-ml?

) “ —_— I e
Q e e \ﬁF /C;D

el\ e'“l
Distributed Systems, SS 2019 Fabian Kuhn 8

Lamport’s Happens-Before Relation

UNI
FREIBURG

Definition: The happens-before relation =¢ on a schedule § is a pairwise
relation on the send/receive events of S and it contains

1. All pairs (e,e’) where e precedes e’ in S and e and e’ are events of
—_— - — =
the same node/process.

2. All pairs (e,e") where e is a send event and e’ the receive event for
the same message.

3. All pairs (e, e’) where there is a third event e’’ such that
- e=>se’’ AN e =5¢€

— Hence, we take the transitive closure of the relation defined by 1. and 2.

Distributed Systems, SS 2019 Fabian Kuhn 9

Happens-Before Relation: Example :

UNI
FREIBURG

Schedule S
4 54\ \/. 710
&} 14 Se Tg
_/‘7
Yo S, =
S = ¢ (‘——7sQ , Sé_—_—vs\‘b/ fe :;7{“0
S‘ = U

Distributed Systems, SS 2019 Fabian Kuhn 10

Happens-Before and Causal Shuffles

UNI

Theorem: For a schedule S and two (send and/or receive) events
e and e’, the following two statements are equivalent:

|
a) Evente happens-before_g’, e, e =ge. (e =¢)
b EventgmaeM’ in all causal shuffles S’ of S. y

) r (e =e)

Some remarks before proving the theorem...

* Shows that the happens-before relation is exactly capturing what we
need about the causality between events

— It captures exactly what is observable about the order of events

—

* To prove the theorem, we show that QﬁmmL :
1. a)—b) ‘
2. b)—a) @S 1S G FW)-M‘ ocdor

Distributed Systems, SS 2019 Fabian Kuhn 11

FREIBURG

Happens-Before and Causal Shuffles

UNI

FREIBURG

If e =y e’, then _e_precedes g_’ in all causal shuffles S’ of §.

- \) Q,el cccurl aJ J/{u Caww wede /
_7) ¢, Velew (o et Sawe wsg. (€ semdd ¢ earve)
& €

D e 77\

> / ¥7 - :
\ / —) Q
- v e S

¢ ¥

y —= —_—) Q
lale s(wrl-'»l CLq'm gagc. g <, —- 75?\‘ S
\)
Q == e =, e
(R |

Distributed Systems, SS 2019 Fabian Kuhn

12

Happens-Before and Causal Shuffles

UNI

FREIBURG

If e precedes e’ in all causal shuffles S’ of S, then e =5 e’.

pa——

Proof: N A=B B=3A
* Sho @ here is a shuffle S" such that e’ precedes e in S

* W..o.g., assume that e precedes g_’ inS

— Consequently, e and e’ happen at different nodes
(otherwise, the ordeZ\remains the same in all causal shuffles)
~

ey — . N

A1) FE N
* N |
A / N
S . Xy
eu
B ¢
— >
* Events in red part can be shifted by fixed amount A

-

Distributed Systems, SS 2019 Fabian Kuhn

13

Happens-Before and Causal Shuffles

UNI

If e precedes e’ in all causal shuffles S’ of S, then e =¢ e'.

Proof:

* Show: e #g e’, there is a shuffle S’ such that e’ precedes e in S
e

* Events in red part can be shifted by fixed amount A
— Consider some message M with send/receive events sy, 1y
— If sp; and 1y, or only 1y, are shifted, message delay gets larger 2 OK
— Itis not possible to only shift sy,
— Choose A large enough to move e past e’

Distributed Systems, SS 2019 Fabian Kuhn 14

FREIBURG

Lamport Clocks

UNI

Basic Idea:
1. Each event e gets a clock value 7(e) € N

2. Ifeand e’ are events at the same node and e precedes e’, then

7(e) < 1(e’)

3. If sp; and 1y, are the send and receive events of some msg. M,
-~ T(sy) < t(ry)

Observation:
* For clock values t7(e) of events e satisfying 1., 2., and 3., we have

e>¢e' — 1(e)<t(e)
— because < relation (on N) is transitive

* Hence, the partial order defined by 7(¢e) is a superset of =
———— -

Distributed Systems, SS 2019 Fabian Kuhn 15

FREIBURG

Lamport Clocks

UNI

FREIBURG

Algorithm:

* Each node u keeps a counter ¢, which is initialized to 0

* For any non-receive event e at node u, node u computes
on-receive

Cy =cy +1; (e) = ¢y

* Forany send event s at node u, node u attaches the value of 7(s) to
the message

* For any receive event r at node u (with corresponding send event s),
node u computes -

Cy = max{c,,7(s)}+1; (r) ==cy

Distributed Systems, SS 2019 Fabian Kuhn 16

Lamport Clocks: Example

FREIBURG

z
-
Schedule S
S
v, I S1
:
S
Vs 152 72
S3
U3

Distributed Systems, SS 2019 Fabian Kuhn 17

Neiger-Toueg-Welch Clocks

UNI

FREIBURG

Discussion Lamport Clocks:
 Advantage: no changes in the behavior of the underlying protocol
e Disadvantage: clocks might make huge jumps (when recv. a msg.)

Idea by Neiger, Toueg, and Welch:
* Assume nodes have some approximate knowledge of real time

— e.g., by using a clock synchronization algorithm

* Nodes increase their clock value periodically
* Combine with Lamport clock ideas to ensure safety

* When receiving a message with a time stamp which is larger than the
current local clock value, wait with processing the message.

Distributed Systems, SS 2019 Fabian Kuhn 18

Fidge-Mattern Vector Clocks

UNI
FREIBURG

* Lamport clocks give a superset of the happens-before relation

* Can we compute logical clocks to get =¢ exactly?

Vector Clocks:

* Each node u maintains an vector VC(u) of clock values
— one entry VC,(u) for eachnodev € V

* In the vector VC(e) assigned (by u) to some event e happening at node
u, the component x,, corresponding to v € V refers to the

)

number of events at node v, u knows about when e occurs

[—

Distributed Systems, SS 2019 Fabian Kuhn 19

Vector Clocks Algorithm

UNI
f

FREIBURG

All Nodes u keep a vector VC(u) with an entry for all nodes in V

— all components are initialized to 0

— component corresponding to node v: VC,(u)

* For any non-receive event e at node u, node u computes
VC,(u) :=VCy,(u) + 1; VC(e) :== VC(u)

* For any send event s at node u, node u attaches the value of VC(s) to
the message

* For any receive event r at node u (with corresponding send event s),
node u computes
vv # u: VC,(u) := max{VC,(s),VC,(u)};
VC,(u) ==VC,(u) + 1;
VC(r) = VC(u) ——

S—

Distributed Systems, SS 2019 Fabian Kuhn 20

Vector Clocks Example

|
FREIBURG

Schedule §
(L0,0) (21,00 (2,1,0) (4, 40) |
Vi (%) ;’2 5,0 S6 7’5(5; ok

) m %) o o
) \?o) \ "6 T4
v3 1 Sq4 N 3 Sg

lo;((o2) N\ i) "
C/) / (3/(/27 (4/,'5197

Distributed Systems, SS 2019 Fabian Kuhn 21

Vector Clocks and Happens-Before ()< (‘9'

UNI
FREIBURG

Definition: VC(e) < \L(e') — X<t A x;-gz N x,
- (Vwer:VC,(e) SVC,(e)) A (VC/(e)_;tV\C(e)

Theorem: Given a schedule S, for any two events e and €/,
VC(e) <VC(e') « e>e€
— e (3,2,2)

t’*“j{ .
7 e

Distributed Systems, SS 2019 Fabian Kuhn 22

Vector Clocks and Happens-Before

UNI
FREIBURG

Definition: VC(e) < VC(e’') =
(Vv € V:VC,(e) < VC,(e") A (VC(e) # VC(e"))

Theorem: Given a schedule S, for any two events e and €/,
VC(e) <VC(e') « e>=e€

g -~
Q (XI/XZ/ Xs)
F@

\\(x,x,',x;')z(x-/"e,"s) o
\ f@‘ 9,5,/ %)
S — ‘9(7’ XI
laL7/ XZ— — U(\Z> XZ
%)3” "3 N

Distributed Systems, SS 2019 Fabian Kuhn 23

Logical Clocks vs. Synchronizers

UNI
FREIBURG

Synchronizer:

. Algoritha that generates clock pulses that allow to run an synchronous
algorithm in an asynchronous network

— We will discuss synchronizers later

The clock pulses (local round numbers) generated by a synchronizer can
also used as logical clocks

* Send events of round r get clock value 2r — 1

* Receive events of round r get clock value>2_7_”

* superset of the happens-before relation

* requires to drastically change the protocol and its behavior

— synchronizer determines when messages can be sent

e avery heavy-weight method to get logical clock values

_oavy"Whs
— requires a lot of messages

Distributed Systems, SS 2019 Fabian Kuhn 24

Application of Logical Times

UNI

FREIBURG

Replicated State Machine
* main application suggested by Lamport in his original paper
* ashared state machine where every node can issue operations

e state machine is simulated by several replicas

Solution:
e add current clock value (and issuer node ID) to every operation
* operations have to be carried out in order of clock values / IDs
e Safety:
— all replicas use same order of operations
— order of operations is a possible actual order (consistent with local views)

e [iveness:

— progress is guaranteed if nodes regularly send messages to each other

Distributed Systems, SS 2019 Fabian Kuhn 25

Global States

UNI
FREIBURG

Sometimes the nodes of a distributed system need to figure out the
global state of the system

— e.g., tofind out if some property about the system state is true

Executions/schedules which lead to the same happens-before relation
(i.e., causal shifts) cannot be distinguished by the system.

Generally not possible to record the global state at any given time of
the execution

Best solution: A global state which is consistent with all local views

— i.e., a state which could have been true at some time

Called a consistent or global snapshot of the system and based on
consistent cuts of the schedule

Distributed Systems, SS 2019 Fabian Kuhn 26

UNI

Consistent Cut

Cut

Given a schedule S, a cut is a subset C of the events of S such that for all
nodes v € V, the events in C happening at v form a prefix of the

f tsin S|v. N
sequence of events in S|v ¢ ol o Cislent
vl S1 > Sa , m Te 10

Distributed Systems, SS 2019 Fabian Kuhn 27

FREIBURG

Consistent Cut

UNI
FREIBURG

Consistent Cut

Given a schedule S, a consistent cut C is cut such that for all events e € C
and all events f in S, it holds that

f:se—>fEC

b

Distributed Systems, SS 2019 Fabian Kuhn 28

Consistent Cut

UNI
i

FREIBURG

Schedule S

Some Causal Shuffle S’

(Y 1 S1)
S
v 2
2 S \
1%
3 3 TN

Distributed Systems, SS 2019 Fabian Kuhn 29

Consistent Cuts

UNI
FREIBURG

Claim: Given a schedule §, a cut C is a consistent cut if and only if for each

message M with send event s;, and receive event 1y, ifry € C, theniit
_— ——

also holds that sy, € C.

\dM! (\Mec — SMQC N /> C Gsus)skm[]l
QM.,(Cws?s\-)eﬂ) (HJ}

6(“1-0 &':L (‘4)

R sSuml C uol‘ ConsS ‘A
H (
—t
\ . F

f

C '7'75 Q‘ d?st 4751; ""'_‘-DS e

Distributed Systems, SS 2019 Fabian Kuhn 30

Consistent Snapshot

UNI

Consistent Snapshot = Global Snapshot = Consistent Global State

* A consistent snapshot is a global system state which is consistent with
all local views.

Global System State (for schedule)

* Avector of intermediate states (in §) of all nodes and a description of
the messages currently in transit

— Remark: If nodes keep logs of messages sent and received, the local states
contain the information about messages in transit.

Consistent Snapshot

—_

* A global system state which is an intermediate global state for some
causal shuffle of S (consistent with all local views)

Distributed Systems, SS 2019 Fabian Kuhn 31

FREIBURG

Consistent Snapshot

UNI
f

FREIBURG

Claim: A global system state is a consistent snapshot if and only if it

corresponds to the node states of some consistent cut C.
!

= CWSI\SOL—MJ‘ We‘

Cousb. quLod'

CMJ“
\> tubsw. Slale rc I froeses —> cnt [
Covstlat V
D A)

\ > — =

L) Cous. cuh

— <7 \ X

l —és ‘§> Sn / (rM
| ' N P“é C — gM c C

SdC —> [eC

0
Distributed Systems, SS 2019 Fabian Kuhn 32

Computing a Consistent Snapshot

UNI
f

FREIBURG

Using Logical Clocks

* Assume that each event e has a clock value T(e) such that for two
events e, e,
e=>¢e — 1(e) <t(e)

* Given 7, define C(7) as the set of events e with 7(e) < 1,

Claim: VT = 0: C(7) is a consistent cut.

C.(T) ;S q c«i ¥ Qa‘,é, q)—rocggg/ c('ou‘c \/QWS Iucmas.\}

—

C (D wemshkat 1 T(SY) < TN

Remark: Not always clear how to choose 1
-——
— Tg large: not clear how long it takes until snapshot is computed

— To small: snapshot is “less up-to-date”

Distributed Systems, SS 2019 Fabian Kuhn 33

Chandy-Lamport Snapshot Algorithm

UNI
FREIBURG

Goals: Compute a consistent snapshot in a running system

Assumptions: /a
Does not require logical clocks //;

7

Channels are assumed to have FIFO property &,

, No failures (uo necls £«‘-lmes, Uuo \MSD. (0%(57

Network is (strongly) connected

Any node can issue a new snapshot

Remark: The FIFO property can always be guaranteed

— sender locally numbers messages on each outgoing channel

— messages with smaller numbers have to be processed before messages with larger
numbers

— works as long as messages are not lost

Distributed Systems, SS 2019 Fabian Kuhn 34

Chandy-Lamport Snapshot Algorithm

UNI
FREIBURG

Overview: l \M'Z et

<&
Assume that node s initiates the snapshot computation

The times for recording the state at different nodes is determined by
sending around marker messages

When receiving the first marker message, a node records its state and
sends marker messages to all (outgoing) neighbors
—

On each incoming channel, the set of messages which are received
between recording the state and receiving the marker message (on this
channel) are in transit in the snapshot.

After receiving a marker message on all incoming channels, a nodes
has finished its part of the snapshot computation

Distributed Systems, SS 2019 Fabian Kuhn 35

Chandy-Lamport Snapshot Algorithm

UNI

FREIBURG

Initially: Node s records its state f s &l wior ke wc,j do <ll

lu_,u)(

When node u receives a marker message from node v:
— —_— —

if u has not recorded its state then " v
u records its state u z/w\
set of msg. in transit from v to u is empty f =

u starts recording messages on all other incoming channels
else
r . . .
the set of msg. in transit from v to u is the set of recorded msg.
since starting to record msg. on the channel o

(Immediately) after node u records its state:

Node u sends marker msg. on all outgoing channels

— before sending any other message on those channels

Distributed Systems, SS 2019 Fabian Kuhn

36

Chandy-Lamport Snapshot Algorithm

UNI

FREIBURG

Theorem: The Chandy-Lamport algorithm computes a consistent cut and
it correctly computes the messages in transit over this cut.

CousPth«Ol Catd

A
b
g

Distributed Systems, SS 2019 Fabian Kuhn 37

Chandy-Lamport Snapshot Algorithm

UNI
FREIBURG

Theorem: The Chandy-Lamport algorithm computes a consistent cut and
it correctly computes the messages in transit over this cut.

_ | :

’ T
U
9y

—

mal

Distributed Systems, SS 2019 Fabian Kuhn 38

Applications of Consistent Snapshots

UNI
FREIBURG

Testing Stable System Properties

 Astable property is a property which once true, remains true

 More formally: a predicate P on global configurations such thatif P is
true for some configuration C, P also holds for all configurations which
can be reached fromC

Testing a stable property:

* test whether property holds for a consistent snapshot

Safety: Only evaluates to true if the property holds

— the current state is reachable from every consistent snapshot state

Liveness: If the property holds, it will eventually be detected

— initiating a snapshot (using Chandy-Lamport) leads to snapshot configuration
which is reachable from the current configuration

Distributed Systems, SS 2019 Fabian Kuhn 39

Applications of Consistent Snapshots

UNI
f

FREIBURG

Distributed Garbage Collection

* Erase objects (e.g., variables stored at some node(s)) to which no
reference exists any more

* References can be at other nodes, in messages in transit, ...
* “No reference to object x” is a stable system property

Distributed Deadlock Detection
* Two processes/nodes wait for each other
 Deadlock is also a stable property

Distributed Termination Detection
 “Distributed computation has terminated” is a stable property
* Note, need also see messages in transit

Distributed Systems, SS 2019 Fabian Kuhn 40

