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Overview
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* Introduction

* Consensus #1: Shared Memory

 Consensus #2: Wait-free Shared Memory

* Consensus #3: Read-Modify-Write Shared Memory

* Consensus #4: Synchronous Systems

* Consensus #5: Byzantine Failures

* Consensus #6: A Simple Algorithm for Byzantine Agreement
 Consensus #7: The Queen Algorithm

* Consensus #8: The King Algorithm

* Consensus #9: Byzantine Agreement Using Authentication
 Consensus #10: A Randomized Algorithm

* Shared Coin

Most slides by R. Wattenhofer (ETHZ), based on slides by M. Herlihy (Brown Univ.)
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Concurrent Computation
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Fault Tolerance & Asynchrony
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processes

e Why fault-tolerance?

— Even if processes do not die, there are “near-death experiences”

e Sudden unpredictable delays:
— Cache misses (short)
— Page faults (long)
— Scheduling quantum used up (really long)
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Consensus
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Each thread/process has a private input
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Consensus
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The processes communicate
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Consensus
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They agree on some process’s input
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Consensus More Formally
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Setting:

* n processes/threads/nodes v4, vy, ..., Uy, 4{ bi”azgv CO{FE)SEESUSI }
* Each process has an input x4, x5, ..., x,, €D —

* Each (non-failing) process computes an output y4,y>, ..., y, € D

Agreement:
The outputs of all non-failing processes are equal.

Validity:
If all inputs are equal to x, all outputs are equal to x.

Termination:
All non-failing processes terminate after a finite number of steps.
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Remarks
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* Validity might sometimes depend on the (failure) model

Two Generals:

 The two generals (coordinated attack) problem is a variant of
binary consensus with 2 processes.

 Model:
— Communication is synchronous, messages can be lost
e Validity:

— If no messages are lost, and both nodes have the same input x,
X needs to be the output of both nodes

* We have seen that the problem cannot be solved in this setting.
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Consensus is Important
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With consensus, you can implement anything you can imagine...

 Examples:
— With consensus you can decide on a leader,
— implement mutual exclusion,
— or solve the two generals problem
— and much more...

* We will see that in some models, consensus is possible, in some other
models, it is not

e The goalis to learn whether for a given model consensus is possible or
not ... and prove it!
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Consensus #1: Shared Memory © . /., -
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e n > 1 processors A e

i
* Shared memory is memory that may be accessed simultaneously bym'

multiple threads/processes.
* Processors can atomically read from or write to (not both)

-
a shared memory cell ‘a

Protocol:

" There is a designated memory cell c.
= |nitially c is in a special state “?”
= Processor 1 writes its value x, into ¢, then decides on x;.
= Aprocessorj # 1reads c until j reads something
else than “?”, and then decides on that.

* Problems with this approach?
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Unexpected Delay
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Heterogeneous Architectures
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Fault-Tolerance
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Computability
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e Definition of computability

— Computable usually means Turing-computable,
i.e., the given problem can be solved using a
Turing machine

— Strong mathematical model!

e Shared-memory computability

— Model of as nous concurrent computation

— Computable means it is wait-free\computable on
a multiprocessor

— Wait-free...?

Theory of Distributed Systems Fabian Kuhn
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Consensus #2: Wait-free Shared Memory
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* n>1processors

* Processors can atomically read to or write from (not both)
a shared memory cell

* Processors might crash (stop... or become very slow...)
— e _——

Wait-free implementation:
* Every process completes in a finite number of steps

e Implies that locks cannot be used = The thread holding the lock may
crash and no other thread can make progress

* We assume that we have wait-free atomic registers
(i.e., reads and/or writes to same register do not overlap)
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A Wait-Free Algorithm
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« Thereis acell ¢, initially ¢ =?”

_ f—

* Every processor i does the following:

if (r == “?”) then
write(c, X;); decide Xx;;

decide r;

—_

I
* |Is|this algorlthm ci@r)*ect 2(2) 2

L\ A reet(
WAL

Lo ke (6

S 7
unLL(XZ)
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An Execution
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Atomic read/write
register
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Execution Tree
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Initial state

read

read @ rite
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Impossibility
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Beorem \ Tisdher, Lywdh, Talesson

There is no deterministic asynchronous wait-free
consensus algorithm using read/write atomic registers.

o o
° :
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Make it simple
— There are only two processes A and B and the input is binary

Assume that there is a protocol
In this protocol, either A or B “moves” in each step

—_—

Moving means
— Register read

— Register write.

-

A movey \B moves
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Execution Tree
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<N\ —
biv:ﬁnt Initial state
- critical
univalent with
Q - the next step)
2 essseeym—

(O DO O C

univalent

@ @
N Final states (decision values)

————
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Bivalent vs. Univalent
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* Wait-free computation is a tree
* Bivalent system states

— Qutcome is not fixed

* Univalent states
— Outcome is fixed
— Maybe not “known” yet
— 1-valent and 0O-valent states

Claim:
 Some initial system state is bivalent
* Hence, the outcome is not always fixed from the start

Theory of Distributed Systems Fabian Kuhn
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Proof of Claim: A 0-Valent Initial State
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o All executions lead to the decision O

Similarly, the
decision is always
1 if both threads

start with 1!

Theory of Distributed Systems Fabian Kuhn
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Proof of Claim: Indistinguishable Situations  _
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e Situations are indistinguishable to red process

— The outcome must be the same
N —

The decision is 0!

N

The decision is 0!

—_—

Similarly, the decision is 1 if
the red thread crashed!
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Proof of Claim: A Bivalent Initial State
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‘,@Q [ Decision: 0 } [ Decision: 1
)
“ ¢ 0> Q:Q.} e‘eclsmn 0 } [ Decision: 1 J

—‘V‘
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Critical States
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e Starting from a bivalent initial state
* The protocol must reach a critical state

— Otherwise we could stay bivalent forever
— And the protocol is not wait-free

* The goal is now to show that the
system can always remain bivalent

Theory of Distributed Systems Fabian Kuhn
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Reaching a Critical State
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The system can remain bivalent forever if there is always an action that
prevents the system from reaching a critical state:

Amove/ : ‘, Bmoves

@ @ 1-valent ]
A moves ,‘ \B moves
> D,

A moves . Bmoves
[ 1-valent 1

@ @ O-valent |

Amove/ . Bmoves
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e So far, everything was memory-independent!

* True for
— Registers
— Message-passing
— Carrier pigeons
— Any kind of asynchronous computation

Steps with Shared Read/Write Registers

* Processes/Threads ﬁ reads
— Perform reads and/or writes & B wales
— To the same or different registers ‘\/} read § AN
— Possible interactions? A Lenleg

Theory of Distributed Systems Fabian Kuhn 30



Possible Interactions
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A reads x

x.readQ) | y.readQ |x.write() |y.writeQ)
x.read() ? ? ? ?
y.read() ? ? ? ?
x.write() ? ? ? ?
y.write() ? ? ? ?

B writes y
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Reading Registers
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gq 12\3 reads x s

A runs solo, decides

A runs solo, decifles

States look the same to A

Theory of Distributed Systems Fabian Kuhn 32



Possible Interactions
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x.read() | y.read() | x.writeQ |y.write()
X.read() no no no no
y.read() no no no no
x.write() no no : ?
Sawl |l 0@,\‘@ ce,C(g
y.write() no no ? ?
%‘“.aﬂs | SR _cel
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Writing Distinct Registers
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B writes x

States look the same to Aand B

Theory of Distributed Systems Fabian Kuhn
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Possible Interactions

UNI

FREIBURG

x.read() | y.read() | x.write(Q) |y.write()
x.read() no no no no
y.read() no no no no
x.write() no no @ no
y.write() no no no @
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Writing Same Registers

UNI
f

FREIBURG

A writes x / 0 1 B writes x

[ A writes x
>
[A runs sglo, decides

A runs solo, decid

States look the same to A
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This Concludes the Proof ©
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x.read() | y.read() | x.write(Q) |y.write()
x.read() no no no no
y.read() no no no no
x.write() no no no no
y.write() no no no no
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Consensus in Distributed Systems? :
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* We want to build a concurrent FIFO Queue ",
with multiple dequeuers eni| i

TROmALA) &Mrwzcw
O @
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A Consensus Protocol
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* Assume we have such a FIFO queue and a 2-element array

s

/g

® |6

— e
L =

J N\

Coveted red ball Dreaded black ball

Theory of Distributed Systems Fabian Kuhn
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A Consensus Protocol
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Process i writes its value into the array at position i

L

0
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A Consensus Protocol
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 Then, the thread takes the next element from the queue

o

5

Theory of Distributed Systems
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A Consensus Protocol
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7

| got the cqveted red ball,
so | wiﬂ%Zcide my value
-

\

~N
| got the dreaded black ball,

so | will decide the other’s
value from the array

L

Theory of Distributed Systems
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A Consensus Protocol
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Why does this work?

* If one thread gets the red ball, then the other gets the black ball
* Winner can take its own value
* Loser can find winner’s value in array

— Because processes write array before dequeuing from queue

Implication

* We can solve 2-thread consensus using only

-—

— A two-dequeuer queue
— Atomic registers

Theory of Distributed Systems Fabian Kuhn 43



Implications
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Assume there exists
— A queue implementation from atomic registers

Given
— A consensus protocol from queue and registers

Substitution yields
— A wait-free consensus protocol from atomic registers

T

Corollary

It is impossible to implement a t/w@wait-free FIFO queue
with read/write shared memory.

This was a proof by reduction;
important beyond NP-completeness...
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Consensus #3: Read-Modify-Write Memory
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« n > 1 processes (processors/nodes/threads)
 Wait-free implementation

* Processors can read and write a shared memory cell in one atomic
step: the value written can depend on the value read

* We call this a read-modify-write (RMW) register
* Can we solve consensus using a RMW register...?

Theory of Distributed Systems Fabian Kuhn 45



Consensus Protocol Using a RMW Register
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« Thereis acell ¢, initially ¢ =?”
_,—/_,_\
* Every processor i does the following

RMW(c)

if| (c == “?”) then
write(c, x;)i decide x;

N
atomic step
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Discussion
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Protocol works correctly
— One processor accesses c first; this processor will determine decision

Protocol is wait-free

RMW is quite a strong primitive
— Can we achieve the same with a weaker primitive?

Theory of Distributed Systems Fabian Kuhn
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Read-Modify-Write More Formally
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 Method takes 2 arguments:

— Cellc
—

— Function [

« Method call: rj
— Replaces value x of cell ¢ wit@ X

P ——

— Returns value x of cell ¢

Theory of Distributed Systems Fabian Kuhn

ree

‘.eA—V\'I\(A X

48



Read-Modify-Write
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public class RMW {
private int value; Return prior value

public synchroni;gd»%ﬁizfﬁzZ?unction ) {
int prior = this.value;

AN
this.value = f(this.va1ue)'%~] AP

return prior; &—

} Apply function

Theory of Distributed Systems Fabian Kuhn
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Read-Modify-Write: Read
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public class RMW {
private int value;

public synchronized int read() {
int prior = this.value;
this.value = this.value;

return prior; ‘\‘\~\:ES:;\
}

Identify function

Theory of Distributed Systems Fabian Kuhn 50



Read-Modify-Write: Test&Set
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public class RMW {
private int value;

public synchronized int TAS(Q {
int prior = this.value;

this.value = 1;
return prior;
}

Constant function

Theory of Distributed Systems Fabian Kuhn
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Read-Modify-Write: Fetch&Inc
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public class RMW {
private int value;

public synchronized int FAI() {
int prior = this.value;
this.value = this.value+1:

return prior; w
}

Increment function
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Read-Modify-Write: Fetch&Add
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public class RMW {
private int value;

public synchronized int FAA(Int x) {
int prior = this.value;
this.value = this.value+x;
return prior;

} Addition function

Theory of Distributed Systems Fabian Kuhn
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Read-Modify-Write: Swap
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public class RMW {
private int value;

public synchronized int swap(int x) {
int prior = this.value;

this.value = x;
return prior;
}

Set to x

Theory of Distributed Systems Fabian Kuhn
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Read-Modify-Write: Compare&Swap
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public class RMW {
private int value;

public synchronized int CAS(int old, int new) {

int prior = this.value;

[1f(this.va1ue == 0l1d)
this.value = new;
return prior;

}

Theory of Distributed Systems

“Complex” function

Fabian Kuhn
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Definition of Consensus Number

UNI

FREIBURG

* An object has consensus number n

— If it can be used
» Together with atomic read/write registers

— To implement n-process consensus, but not (n + 1)-process consensus

* Example: Atomic read/write registers have consensus number 1
— Works with 1 process
— We have shown impossibility with 2

Theory of Distributed Systems Fabian Kuhn
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Consensus Number Theorem
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y
If you can implement X from Y and
X has consensus number ¢, then

Y has consensus number at least c.

Y \
@eorem) / oAanes D{' /aim

Theory of Distributed Systems Fabian Kuhn
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Consensus Number Theorem
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Beorem)

If you can implement X from Y and
X has consensus number ¢, then
Y has consensus number at least c.

 Consensus numbers are a useful way of measuring synchronization
power

e An alternative formulation:

— If X has consensus number ¢
— And Y has consensus numberd < ¢

— Then there is no way to construct a
wait-free implementation of X by Y

e This theorem is very useful

— Unforeseen practical implications!

Theory of Distributed Systems Fabian Kuhn
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Theorem
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* A RMW is non-trivial if there exists a value v such that v # f(v)
— Test&Seft, Fetch&Inc, Fetch&Add, Swap, Compare&Swap, general RMW...
— But not read

@eorem)
Any non-trivial RMW object has

consensus humber at least 2.

* Implies no wait-free implementation of RMW registers from
read/write registers

e (Hardware RMW [nstructions not just a convenience

Theory of Distributed Systems Fabian Kuhn
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Proof
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* A two-process consensus protocol using any non-trivial RMW object:

fine v

public class RMwWConsensusFor2 implements Consensus{

public Object decide() {

int 1 = Thread.myIndex(); :
1f(rrm_w(f) ==@%— Am | first?

return [this.announcel[i];L—__
= — Yes, return

—

else .
return |this.announce[1l-i]; my input

} (// &
No, return
} ?é//ﬂ&:ﬁifﬂa>’” other’s input
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Interfering RMW
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* Let F be a set of functions such that for all f. and f. either

— They commute: f(f;(x))=fj(f(x)) = f(x) = new value of cell
— They overwrite: fi(f;(x))= f(X) (not return value of f))

?

Claim: Any such non-trivial RMW object has

consensus number exactly 2
—E———

Examples:

e Qverwrite

( CO NS Sn w—\\u\ A AL,
— Test&Set, Swap Ceen EORNAS f

 Commute CO\V\\A0+ ga(\;\g COUS, V\B‘f’é\ P <

— Fetch&Inc, Fetch&Add
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Proof
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e There are three threads, A, B, and C
e Consider a critical state c:

A about to apply f, B about to apply f;
_— = i
ent

0-val 1-valent

GD/ \G—D
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Proof: Maybe the Functions Commute

FREIBURG

B applies fB§ : A applies fa
— ] .
O-valent = et eirrreeeeaee 1-valent
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Proof: Maybe the Functions Commute
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| These states look the same to C |

A applies f, B applies f;

B applies fB§ : A applies fa

C runs solo.” "...Cruns solo
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Proof: Maybe the Functions Overwrite

FREIBURG

: A applies fa

“...Cruns solo
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Proof: Maybe the Functions Overwrite
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| These states look the same to C |

A applies f,

B applies f;

C runs solo: : A applies f,

“...Cruns solo
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Impact
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Many early machines used these “weak” RMW instructions
— Test&Set (IBM 360)

— Fetch&Add (NYU Ultracomputer)

— Swap

We now understand their limitations

Theory of Distributed Systems Fabian Kuhn
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Consensus with Compare & Swap
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public class RMwWConsensus 1mplements Consensus {

- a L
private RMW r;’ = |pitialized to -1
—_—

public Object decide() {
int 1 = Thread.myIndex(); Am | first?

int j = r.CW
if(j == D 3

return [this.announce[i]; YE&rean
else Vi my input
return this.ahnouncéfiz;izhi
} | No, return

other’s input
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The Consensus Hierarchy
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-_

e Read/Write o Test&Set e CAS

Registers e Fetch&Inc LL/SC

e Fetch&Add

® Swap_

QWML
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