Distributed Coloring and MIS (part I) Distributed systems

Alkida Balliu University of Freiburg

Vertex coloring

Objective: Assign a color to each node such that:

Vertex coloring

Objective: Assign a color to each node such that:

- Neighbouring nodes get different colors

Vertex coloring

Objective: Assign a color to each node such that:

- Neighbouring nodes get different colors
- The total number of different colors is as small as possible

Maximal independent set (MIS)

Objective: Select nodes such that:

Maximal independent set (MIS)

Objective: Select nodes such that:

• Selected nodes form an independent set (they are not neighbors)

Maximal independent set (MIS)

Objective: Select nodes such that:

- Selected nodes form an independent set (they are not neighbors)
- is selected)

The independent set is maximal (any non-selected node has at least one neighbor that

• The network is modeled as a graph

• The network is modeled as a graph

- Synchronous rounds:
 - Each node does some internal computation
 - Sends messages to neighbors
 - Receives messages from neighbors

- Synchronous rounds:
 - Each node does some internal computation
 - Sends messages to neighbors
 - Receives messages from neighbors

Time complexity = number of rounds

LOCAL model

- Unbounded internal computation
- Unbounded size of messages

Notation:

- n, number of nodes
- Δ , maximum degree in the graph
- deg(v), degree of node v

• **Objective**: solve some graph problem (e.g., MIS, vertex coloring)

- At the start: each node knows only its own ID
- At the end: each node must know its part of the output
 - Coloring: its color
 - MIS: whether it is in or out the MIS

Local outputs form a consistent global solution

Application of coloring and MIS

- Wireless Networks:
 - Assign communication channels while avoiding collisions (coloring)
 - Basic clustering in wireless networks (MIS)

- **Generally**: ullet
 - Important symmetry breaking problems
 - Used as subroutine in many algorithms
 - interest

Techniques for solving these problems may apply for solving other problems of

MIS:

 $S \coloneqq \emptyset$ for all $v \in V$ do *//* go through nodes in an arbitrary order if v has no neighbor in S, add v to S

• S is an independent set, and each node $u \notin S$ has a neighbor in S (S is maximal)

MIS:

 $S \coloneqq \emptyset$ for all $v \in V$ do *//* go through nodes in an arbitrary order if v has no neighbor in S, add v to S

• S is an independent set, and each node $u \notin S$ has a neighbor in S (S is maximal)

Coloring (use colors 1, 2, 3, ...)

all nodes uncoloured for all $v \in V$ do *//* go through nodes in an arbitrary order assign to v the smallest color not used by its neighbors

Computes a valid (a.k.a. proper) coloring

MIS:

 $S \coloneqq \emptyset$ for all $v \in V$ do *//* go through nodes in an arbitrary order if v has no neighbor in S, add v to S

• S is an independent set, and each node $u \notin S$ has a neighbor in S (S is maximal)

Coloring (use colors 1, 2, 3, ...)

all nodes uncoloured for all $v \in V$ do *//* go through nodes in an arbitrary order assign to v the smallest color not used by its neighbors

- Computes a valid (a.k.a. proper) coloring
- What is the number of colors?

Greedy vertex coloring: how many colors?

- node v cannot get color 1: there must exist a neighbor of v with color 1
- node v cannot get color 2: there must exist a neighbor of v with color 2
- node v cannot get color 3: there must exist a neighbor of v with color 3

Greedy vertex coloring: how many colors?

- node v cannot get color 1: there must exist a neighbor of v with color 1
- node v cannot get color 2: there must exist a neighbor of v with color 2
- node v cannot get color 3: there must exist a neighbor of v with color 3

- Each node v gets one of the first deg(v) + 1 colors
- Hence one of the first deg(v) + 1 colors is free for v
- For each node v, $color(v) \le deg(v) + 1 \le \Delta + 1$

Theorem: greedy vertex coloring requires **at most** \triangle + 1 **colors**

Distributed vertex coloring

Usually, the **target number of colors** is $\Delta + 1$

Sometimes we want less colors, and we will see some of such examples

Distributed coloring algorithm

How can we color in a distributed way?

- Each node picks the smallest available color
 - Available = color not picked by any neighbor
 - How to avoid conflicts between neighbors?
 - Neighbors should not choose a color at the same time!

Distributed greedy vertex coloring

Distributed greedy coloring for a node v

- 1. wait until all neighbors of v with a smaller ID have a color
- 2. v chooses the smallest available color
- 3. v informs its neighbors
- No two neighbors choose a color at the same time: proper coloring with at most $\Delta + 1$ colors
- Computes the same coloring as the sequential greedy algorithm when going through the nodes in order defined by IDs

Distributed greedy vertex coloring

Distributed greedy coloring for a node v

- 1. wait until all neighbors of v with a smaller ID have a color
- 2. v chooses the smallest available color
- 3. *v* informs its neighbors
- No two neighbors choose a color at the same time: proper coloring with at most $\Delta + 1$ colors
- Computes the same coloring as the sequential greedy algorithm when going through the nodes in order defined by IDs

Distributed greedy MIS for a node v

- 1. wait until all neighbors of v with a smaller ID are decided
- 2. v joins MIS if no neighbor of v is already in the MIS
- 3. *v* informs its neighbors

Distributed greedy: time complexity

Theorem: The **distributed greedy algorithms** for $(\Delta + 1)$ -vertex coloring and MIS terminate after at most O(n) rounds

- In each round, at least one new node is processed
 - the node with smallest ID among the unprocessed nodes
- O(n) rounds is very slow but unfortunately it is tight

Distributed greedy: time complexity

Theorem: The **distributed greedy algorithms** for $(\Delta + 1)$ -vertex coloring and MIS terminate after at most O(n) rounds

- In each round, at least one new node is processed
 - the node with smallest ID among the unprocessed nodes
- O(n) rounds is very slow but unfortunately it is tight

- In each round, at least one new node is processed
 - the node with smallest ID among the unprocessed nodes
- O(n) rounds is very slow but unfortunately it is tight

- In each round, at least one new node is processed
 - the node with smallest ID among the unprocessed nodes
- O(n) rounds is very slow but unfortunately it is tight

- In each round, at least one new node is processed
 - the node with smallest ID among the unprocessed nodes
- O(n) rounds is very slow but unfortunately it is tight

- In each round, at least one new node is processed
 - the node with smallest ID among the unprocessed nodes
- O(n) rounds is very slow but unfortunately it is tight

- In each round, at least one new node is processed
 - the node with smallest ID among the unprocessed nodes
- O(n) rounds is very slow but unfortunately it is tight

- Can we be **faster**?
 - How to process many nodes in parallel while avoiding conflicts?
- **Observation**: we can be faster if we are already given a proper coloring with C colors

From C-coloring to $(\Delta + 1)$ -coloring and MIS

Assumption: we are **given a proper C-coloring** of the nodes (with colors 1, 2, ..., C)

In both algorithms, we can replace IDs with these colors

The algorithm runs in phases 1, 2, ..., C In phase *i*:

- Nodes with initial color *i* are processed
 - Coloring: pick smallest available color
 - MIS: join MIS if no neighbor is in MIS
- At the end of the phase, newly processed nodes inform neighbors
- Time complexity: **C** rounds

The algorithm works because only non-adjacent nodes are processed in parallel

From C-coloring to $(\Delta + 1)$ -coloring and MIS

Assumption: we are **given a proper C-coloring** of the nodes (with colors 1, 2, ..., C)

In both algorithms, we can replace IDs with these colors

The algorithm runs in phases 1, 2, ..., C In phase *i*:

- Nodes with initial color *i* are processed
 - Coloring: pick smallest available color
 - MIS: join MIS if no neighbor is in MIS
- At the end of the phase, newly processed nodes inform neighbors
- Time complexity: **C** rounds

The algorithm works because only non-adjacent nodes are processed in parallel

Can we do better?

From C-coloring to $(\Delta + 1)$ -coloring and MIS

Assumption: we are **given a prove C-coloring** of the nodes (with colors 1, 2, ..., C)

• In both algorithms, we can replace IDs with these colors

The algorithm runs in phases 1, 2, ..., C In phase *i*:

- Nodes with initial color *i* are processed
 - Coloring: pick smallest available color
 - MIS: join MIS if no neighbor is in MIS
- At the end of the phase, newly processed nodes inform neighbors
- Time complexity: **C** rounds

The algorithm works because only non-adjacent nodes are processed in parallel

Can we do better?

Coloring special graph classes

Let's first take a look at special classes of graphs **Rooted trees**:

- Graph is a tree, each node knows which neighbor is its parent
- The root knows it is the root

Coloring special graph classes

Trees can be colored with 2 colors:

- Color 0: even distance to root
- Color 1: odd distance to root

Distributed algorithm:

• Color level by level, starting at the root

Time complexity: **O(D)**

This is tight and can be $\Theta(n)$:

Nodes need to know the parity of their distance to the root (formal argument in a later lecture)

Coloring rooted trees with more colors

Color reduction:

- Assume we are given a proper coloring with C colors
 - Initially, if we have unique IDs from an ID space of size N, we have C = N
- Can we reduce the number of colors?
 - What happens if we reduce them iteratively?

Coloring rooted trees with more colors

Specific assumption:

- Initital coloring with colors in $\{0, ..., C 1\}$ for some $C \in \mathbb{N}$ (each node knows C) Interpret color as bit string of length [log₂ C]
- Example for C = 12

- Consider node *u* and its parent *v* with colors c_u and c_v ($c_u \neq c_v$)
 - X_u: binary representation of C_u
 - x_v: binary representation of c_v
- Define:
 - $i_u = \{ \text{index of the first bit where } x_u \text{ and } x_v \text{ differ} \}$
 - $b_u \in \{0, 1\}$ is the bit of x_u in position i_u

New color of *u*: $\mathbf{c'}_{u} = \mathbf{2} \cdot \mathbf{i}_{u} + \mathbf{b}_{u}$

- Consider node u and its parent v with colors cu and cv
 - X_u: binary representation of C_u
 - x_v: binary representation of c_v
- Define:
 - $i_u = \{ \text{index of the first bit where } x_u \text{ and } x_v \text{ differ} \}$
 - $b_u \in \{0, 1\}$ is the bit of x_u in position i_u

C_{*u*} = 60346 $C_v = 13242$

- Consider node u and its parent v with colors cu and cv
 - X_u: binary representation of C_u
 - x_v: binary representation of c_v
- Define:
 - $i_u = \{\text{index of the first bit where } x_u \text{ and } x_v \text{ differ} \}$
 - $b_u \in \{0, 1\}$ is the bit of x_u in position i_u

C_{*u*} = 60346 $C_v = 13242$

- Consider node u and its parent v with colors cu and cv
 - X_u: binary representation of C_u
 - x_v: binary representation of c_v
- Define:
 - $i_u = \{\text{index of the first bit where } x_u \text{ and } x_v \text{ differ} \}$
 - $b_u \in \{0, 1\}$ is the bit of x_u in position i_u

C_{*u*} = 60346 $C_v = 13242$ **i**_u =

- Consider node u and its parent v with colors cu and cv
 - X_u: binary representation of C_u
 - x_v: binary representation of c_v
- Define:
 - $i_u = \{\text{index of the first bit where } x_u \text{ and } x_v \text{ differ} \}$
 - $b_u \in \{0, 1\}$ is the bit of x_u in position i_u

C_{*u*} = 60346 $C_v = 13242$ **i**_u =

New color of *u*: $c'_{ii} = 2 \cdot i_{ii} + b_{ii}$

- Consider node u and its parent v with colors cu and cv
 - X_u: binary representation of C_u
 - x_v: binary representation of C_v
- Define:
 - $i_u = \{\text{index of the first bit where } x_u \text{ and } x_v \text{ differ} \}$
 - $b_u \in \{0, 1\}$ is the bit of x_u in position i_u

C_{*u*} = 60346 $C_v = 13242$ **i**_u =

- Consider node u and its parent v with colors cu and cv
 - X_u: binary representation of C_u
 - x_v: binary representation of C_v
- Define:
 - $i_u := \{ \text{index of the first bit where } x_u \text{ and } x_v \text{ differ} \}$
 - $b_u \in \{0, 1\}$ is the bit of x_u in position i_u

C_{*u*} = 60346 $C_v = 13242$ **i**_u = 11

New color of *u*: $c'_{ii} = 2 \cdot i_{ii} + b_{ii}$

- Consider node u and its parent v with colors cu and cv
 - X_u: binary representation of C_u
 - x_v: binary representation of C_v
- Define:
 - $i_u := \{ \text{index of the first bit where } x_u \text{ and } x_v \text{ differ} \}$
 - $b_u \in \{0, 1\}$ is the bit of x_u in position i_u

C_{*u*} = 60346 $C_v = 13242$ **i**_u = 11 $b_{u} = 1$

- Consider node u and its parent v with colors cu and cv
 - X_u: binary representation of C_u
 - x_v: binary representation of C_v
- Define:
 - $i_u := \{ \text{index of the first bit where } x_u \text{ and } x_v \text{ differ} \}$
 - $b_u \in \{0, 1\}$ is the bit of x_u in position i_u

C_{*u*} = 60346 $c_v = 13242$ **i**_u = 11 $b_{u} = 1$

New color of *u*: $\mathbf{c'}_{u} = \mathbf{2} \cdot \mathbf{i}_{u} + \mathbf{b}_{u}$ $c'_{II} = 2 \cdot 11 + 1 = 23$

- Consider node *u* and its parent *v* with colors *c_u* and *c_v*
 - X_u: binary representation of C_u
 - x_v: binary representation of c_v
- Define:
 - $i_u = \{\text{index of the first bit where } x_u \text{ and } x_v \text{ differ} \}$
 - $b_u \in \{0, 1\}$ is the bit of x_u in position i_u

Theorem: For any two neighbors, if $c_u \neq c_v$ then it holds $c'_u \neq c'_v$

- Consider node *u* and its parent *v* with colors *c_u* and *c_v*
 - X_u: binary representation of C_u
 - x_v: binary representation of c_v
- Define:
 - $i_u = \{\text{index of the first bit where } x_u \text{ and } x_v \text{ differ} \}$
 - $b_u \in \{0, 1\}$ is the bit of x_u in position i_u

Theorem: For any two neighbors, if $c_u \neq c_v$ then it holds $c'_u \neq c'_v$

Proof:

- we have that $\mathbf{c'}_{u} = 2 \cdot \mathbf{i}_{u} + \mathbf{b}_{u}$ and $\mathbf{c'}_{v} = 2 \cdot \mathbf{i}_{v} + \mathbf{b}_{v}$
- we have that $\mathbf{c'}_{u} \neq \mathbf{c'}_{v}$ if and only if $\mathbf{i}_{u} \neq \mathbf{i}_{v}$ or $\mathbf{b}_{u} \neq \mathbf{b}_{v}$

- Consider node *u* and its parent *v* with colors *c_u* and *c_v*
 - X_u: binary representation of C_u
 - \rightarrow x_v: binary representation of c_v
- Define:
 - $i_u = \{\text{index of the first bit where } x_u \text{ and } x_v \text{ differ} \}$
 - $b_u \in \{0, 1\}$ is the bit of x_u in position i_u

Theorem: For any two neighbors, if $c_u \neq c_v$ then it holds $c'_u \neq c'_v$

Proof:

- we have that $\mathbf{c'}_{u} = 2 \cdot \mathbf{i}_{u} + \mathbf{b}_{u}$ and $\mathbf{c'}_{v} = 2 \cdot \mathbf{i}_{v} + \mathbf{b}_{v}$
- we have that $\mathbf{c'}_{u} \neq \mathbf{c'}_{v}$ if and only if $\mathbf{i}_{u} \neq \mathbf{i}_{v}$ or $\mathbf{b}_{u} \neq \mathbf{b}_{v}$
- w.l.o.g., assume v is the parent of u

- Consider node *u* and its parent *v* with colors *c_u* and *c_v*
 - X_u: binary representation of C_u
 - \rightarrow x_v: binary representation of c_v
- Define:
 - $i_u = \{\text{index of the first bit where } x_u \text{ and } x_v \text{ differ} \}$
 - $b_u \in \{0, 1\}$ is the bit of x_u in position i_u

Theorem: For any two neighbors, if $c_u \neq c_v$ then it holds $c'_u \neq c'_v$

Proof:

- we have that $\mathbf{c'}_{u} = 2 \cdot \mathbf{i}_{u} + \mathbf{b}_{u}$ and $\mathbf{c'}_{v} = 2 \cdot \mathbf{i}_{v} + \mathbf{b}_{v}$
- we have that $\mathbf{c'}_{u} \neq \mathbf{c'}_{v}$ if and only if $\mathbf{i}_{u} \neq \mathbf{i}_{v}$ or $\mathbf{b}_{u} \neq \mathbf{b}_{v}$
- w.l.o.g., assume v is the parent of u
- if $i_{u} \neq i_{v}$ then we are done

- Consider node *u* and its parent *v* with colors *c_u* and *c_v*
 - x_u: binary representation of c_u
 - \rightarrow x_v: binary representation of c_v
- Define:
 - $i_{u} = \{\text{index of the first bit where } x_{u} \text{ and } x_{v} \text{ differ} \}$
 - $b_u \in \{0, 1\}$ is the bit of x_u in position i_u

Theorem: For any two neighbors, if $c_u \neq c_v$ then it holds $c'_u \neq c'_v$

Proof:

- we have that $\mathbf{c'}_{u} = 2 \cdot \mathbf{i}_{u} + \mathbf{b}_{u}$ and $\mathbf{c'}_{v} = 2 \cdot \mathbf{i}_{v} + \mathbf{b}_{v}$
- we have that $\mathbf{c'}_{u} \neq \mathbf{c'}_{v}$ if and only if $\mathbf{i}_{u} \neq \mathbf{i}_{v}$ or $\mathbf{b}_{u} \neq \mathbf{b}_{v}$
- w.l.o.g., assume v is the parent of u
- if $i_{u} \neq i_{v}$ then we are done
- if $i_u = i_v = i$ it means that, in that position, the bits differ, hence $b_u \neq b_v$

- 1. How much do we **reduce the colors in one step**?
- 3. What is the **runtime** of this procedure?

2. How much can we reduce the colors if we iteratively apply the color reduction scheme?

How much do we reduce the colors in one step?

- Each node *u* has an initial color *c*_{*u*}
- **c**_u can be written as a **log**₂ **C-bit** number

How much do we reduce the colors in one step?

- Each node *u* has an initial color *c*_{*u*}
- **c**_u can be written as a **log**₂ **C-bit** number
- Therefore:

• And thus:

- $i_{u} \in \{0, 1, \dots, \lceil \log_2 C \rceil 1\}$
- $c'_{u} = 2 \cdot i_{u} + b_{u} \le 2 \cdot i_{u} + 1 \le 2 \lceil \log_{2} C \rceil 1$

How much do we reduce the colors in one step?

- Each node *u* has an initial color *c*_{*u*}
- **c**_u can be written as a **log**₂ **C-bit** number
- Therefore:

 $i_{u} \in \{0, 1, .$

• And thus:

 $c'_{ii} = 2 \cdot i_{ii} + b_{ii} \leq 1$

Theorem: In one color reduction step, the number of colors is reduced from C to 2 log₂ C

$$2 \cdot i_u + 1 \leq 2 \lceil \log_2 C \rceil - 1$$

How much can we reduce the colors if we iteratively apply the color reduction scheme?

• In one color reduction step, the number of colors is reduced from C to $2 \log_2 C$

Theorem: Applying the color reduction step iteratively, the algorithm eventually computes a coloring with the six colors $\{0, 1, ..., 5\}$

Proof: $C > 2 \log_2 C$ for all C > 6

How much can we reduce the colors if we iteratively apply the color reduction scheme?

• In one color reduction step, the number of colors is reduced from C to $2 \log_2 C$

Theorem: Applying the color reduction step iteratively, the algorithm eventually computes a coloring with the six colors $\{0, 1, ..., 5\}$

Proof: $C > 2 \log_2 C$ for all C > 6

What is the runtime of this procedure?

The log-star function:

• For a real number n > 1 and an integer $i \ge 1$, we define

$$\log_2^{(i)} n := \log_2(\log_2^{(i-1)})$$

- For an integer $n \ge 2$, the function log* n is defined as $\log^* n := \min\{i : \log_2^i n \le 1\}$
- $\log^* n$: number of times one has to apply the function $\log_2 n$ in order to obtain a number that is ≤ 1
- Examples:

$$\log^* 2 = 1, \log^* 4 = 2, \log^* 16 = 3, \log^* 2^{16} = 4, \log^* 2^{2^{16}} = 5$$

The log-star function:

• For a real number n > 1 and an integer $i \ge 1$, we define

$$\log_2^{(i)} n := \log_2(\log_2^{(i-1)})$$

• For an integer $n \ge 2$, the function log* n is defined as $\log^* n := \min\{i : \log_2^i n \le 1\}$

Theorem: When starting with colors in $\{0, ..., n - 1\}$ the Cole-Vishkin color reduction algorithm computes a **6-coloring** of a **rooted tree** in **O(log* n)** rounds

The log-star function:

• For a real number n > 1 and an integer $i \ge 1$, we define

$$\log_2^{(i)} n := \log_2(\log_2^{(i-1)})$$

• For an integer $n \ge 2$, the function log* n is defined as $\log^* n := \min\{i : \log_2^i n \le 1\}$

Theorem: When starting with colors in $\{0, ..., n - 1\}$ the Cole-Vishkin color reduction algorithm computes a **6-coloring** of a **rooted tree** in **O(log* n)** rounds

Proof sketch: Colors are reduced as follows

 $n \to 2\lceil \log_2 n \rceil$

The log-star function:

• For a real number n > 1 and an integer $i \ge 1$, we define

$$\log_2^{(i)} n := \log_2(\log_2^{(i-1)})$$

• For an integer $n \ge 2$, the function log* n is defined as $\log^* n := \min\{i : \log_2^i n \le 1\}$

Theorem: When starting with colors in $\{0, ..., n - 1\}$ the Cole-Vishkin color reduction algorithm computes a **6-coloring** of a **rooted tree** in **O(log* n)** rounds

Proof sketch: Colors are reduced as follows

 $n \to O(\log n)$

Rooted tree coloring: time complexity

The log-star function:

• For a real number n > 1 and an integer $i \ge 1$, we define

$$\log_2^{(i)} n := \log_2(\log_2^{(i-1)})$$

• For an integer $n \ge 2$, the function log* n is defined as $\log^* n := \min\{i : \log_2^i n \le 1\}$

Theorem: When starting with colors in {0, ..., n - 1} the Cole-Vishkin color reduction algorithm computes a 6-coloring of a rooted tree in O(log* n) rounds

Proof sketch: Colors are reduced as follows

 $n \to O(\log n) \to O(\log \log n) \to O(\log \log \log n) \to \dots$

(1) n $\log_2^{(1)} n := \log_2 n$

From six to three colors

Coloring rooted trees:

- We have seen that computing a 2-coloring requires $\Omega(D)$
- We have seen how to compute a 6-coloring in O(log* n) rounds
- What about **3**, **4**, **and 5 colors**?

From six to three colors

Coloring rooted trees:

- We have seen that computing a 2-coloring requires $\Omega(D)$
- We have seen how to compute a 6-coloring in O(log* n) rounds
- What about **3**, **4**, **and 5 colors**?

Reducing from 6 to 5 colors:

- Can we recolour nodes with color 5 with a smaller color?
 - recolor them in parallel in one round
 - What can we do if $\Delta > 4$?

• If $\Delta \leq 4$, for every node with color 5 there is a free color in {0, ..., 4} available:

- Consider a rooted tree colored with 6 colors from {0, ..., 5}
- Can we get rid of color 5?
- Solution: shift down colors

- Consider a rooted tree colored with 6 colors from {0, ..., 5}
- Can we get rid of color 5?
- Solution: shift down colors

- Consider a rooted tree colored with 6 colors from {0, ..., 5}
- Can we get rid of color 5?
- Solution: shift down colors

- Consider a rooted tree colored with 6 colors from {0, ..., 5}
- Can we get rid of color 5?
- Solution: shift down colors

- Consider a rooted tree colored with 6 colors from {0, ..., 5}
- Can we get rid of color 5?
- Solution: shift down colors

- Consider a rooted tree colored with 6 colors from {0, ..., 5}
- Can we get rid of color 5?
- Solution: shift down colors

From six to three colors

Color reduction phase for rooted trees

- 1. Shift-down step
- **2.** Color reduction step

Theorem: As long as the number of colors C is larger than three, we can reduce the number of colors by one in two rounds

Rooted trees: coloring and MIS

Cole-Vishkin (to get 6-coloring) + color reduction = 3-coloring

computes a **3-coloring of a rooted tree** in **O(log* n)** rounds

Unique IDs in {0, ..., n - 1} can be used as an initial coloring

Theorem: When starting with colors in {0, ..., n - 1}, there is a distributed algorithm to

Rooted trees: coloring and MIS

Cole-Vishkin (to get 6-coloring) + color reduction = 3-coloring

computes a **3-coloring of a rooted tree** in **O(log* n)** rounds

Unique IDs in {0, ..., n - 1} can be used as an initial coloring.

computes an MIS of a rooted tree in O(log* n) rounds

- One first computes a 6-coloring (or a 3-coloring)
- Then an MIS can be computed in O(1) rounds
 - We have seen before that from a C-coloring we get MIS in C rounds

Theorem: When starting with colors in {0, ..., n - 1}, there is a distributed algorithm to

Theorem: When starting with colors in {0, ..., n - 1}, there is a distributed algorithm to

Pseudoforest

• A graph in which each connected component has at most one cycle

Directed pseudoforest

A graph where the out-degree of every node is at most 1

Directed pseudoforest

• A graph where the out-degree of every node is at most 1

Claim: The 3-coloring algorithm for rooted trees can also be applied in a directed pseudoforest

Directed pseudoforest

• A graph where the out-degree of every node is at most 1

Claim: The 3-coloring algorithm for rooted trees can also be applied in a directed pseudoforest

- The Cole-Vishkin algorithm works as before
 - Nodes with out-degree 1 treat their out-neighbors as parent
 - Other nodes behave like the root and imagine an out-neighbor with some color

Directed pseudoforest

A graph where the out-degree of every node is at most 1

Claim: The 3-coloring algorithm for rooted trees can also be applied in a directed pseudoforest

- The Cole-Vishkin algorithm works as before
 - Nodes with out-degree 1 treat their out-neighbors as parent
 - Other nodes behave like the root and imagine an out-neighbor with some color
- The color reduction algorithm also works in the same way
 - Shift-down: Every node with out-degree 1 picks the color of their out-neighbor, every other node just picks a new color (either 0 or 1)
 - All in-neighbors of a node then have the same color and each node therefore only sees 2 different colors among its neighbors

- We first orient each edge on the graph arbitrarily
 - E.g., orient edge $\{u, v\}$ from u to v iff ID(u) < ID(v)
- (note that $d_v \leq \Delta$)

- We first orient each edge on the graph arbitrarily
 - E.g., orient edge $\{u, v\}$ from u to v iff ID(u) < ID(v)
- (note that $d_v \leq \Delta$)

- We first orient each edge on the graph arbitrarily
 - E.g., orient edge $\{u, v\}$ from u to v iff ID(u) < ID(v)
- (note that $d_v \leq \Delta$)

- We first orient each edge on the graph arbitrarily
 - E.g., orient edge $\{u, v\}$ from u to v iff ID(u) < ID(v)
- (note that $d_v \leq \Delta$)

- We first orient each edge on the graph arbitrarily
 - E.g., orient edge $\{u, v\}$ from u to v iff ID(u) < ID(v)
- (note that $d_v \leq \Delta$)

- We first orient each edge on the graph arbitrarily
 - E.g., orient edge $\{u, v\}$ from u to v iff ID(u) < ID(v)
- (note that $d_v \leq \Delta$)

- Every node has at most one outgoing edge for each label
- For all $i \in \{1, ..., \Delta\}$, compute a **3-coloring of G**_i in **O(log* n)** rounds

- Every node has at most one outgoing edge for each label
- For all $i \in \{1, ..., \Delta\}$, compute a **3-coloring of G**_i in **O(log* n)** rounds

- Every node has at most one outgoing edge for each label
- For all $i \in \{1, ..., \Delta\}$, compute a **3-coloring of G**_i in **O(log* n)** rounds

- Every node has at most one outgoing edge for each label
- For all $i \in \{1, ..., \Delta\}$, compute a **3-coloring of G**_i in **O(log* n)** rounds

- Every node has at most one outgoing edge for each label
- For all $i \in \{1, ..., \Delta\}$, compute a **3-coloring of G**_i in **O(log* n)** rounds

- Every node has at most one outgoing edge for each label
- For all $i \in \{1, ..., \Delta\}$, compute a **3-coloring of G**_i in **O(log* n)** rounds

- Every node has at most one outgoing edge for each label
- For all $i \in \{1, ..., \Delta\}$, compute a **3-coloring of G**_i in **O(log* n)** rounds

- Every node has at most one outgoing edge for each label
- For all $i \in \{1, ..., \Delta\}$, compute a **3-coloring of G**_i in **O(log* n)** rounds

- Every node has at most one outgoing edge for each label
- For all $i \in \{1, ..., \Delta\}$, compute a **3-coloring of G**_i in **O(log* n)** rounds

- graph G_i
- For every two neighbors u and v, we have $c_u \neq c_v$
 - If the edge $\{u, v\}$ has label *i*, we have $c_{u,i} \neq c_{v,i}$

• Every node $v \in V$ then gets a vector $c_v \in \{0, 1, 2\}^{\Delta}$ of colors, where $c_{v,i}$ is the color of v in

Theorem: For a graph with maximum degree Δ , there is a distributed algorithm to compute a 3^{Δ} -coloring in $O(\log^* n)$ rounds

Theorem: For a graph with maximum degree Δ , there is a distributed algorithm to compute a 3^{Δ} -coloring in $O(\log^* n)$ rounds

- As we saw, the *n* in O(log* *n*) represent the size of initial input coloring
- Usually, we assume that the IDs represent the initial input coloring, but how large can the ID space be?
 - Usual assumption: IDs are from 1 to n^c, where n is the number of nodes and c is a constant
 - The algorithm would have the same runtime even if IDs were to be from 0 to $2^{2^{-1}}$, where the power tower is of size at most $O(\log^* n)$

Coloring bounded-degree graphs

Theorem: For a graph with maximum degree Δ , there is a distributed algorithm to compute a **3⁴-coloring in O(log*** *n***) rounds**

compute a (Δ + 1)-coloring and an MIS in O(log* n) rounds

• If $\Delta = O(1)$, then $3^{\Delta} = O(1)$: we get a $C = 3^{\Delta}$ coloring in $O(\log^* n)$ rounds (where C is a constant)

• We saw that if a C-coloring is given, we can compute a (Δ + 1)-coloring and an MIS in C rounds

Theorem: For a graph with maximum degree $\Delta = O(1)$, there are distributed algorithms to

Coloring unrooted trees

How can we **color a tree** that is **not rooted**?

- Electing a root and orienting towards the root costs $\Theta(D)$ rounds!
- Rooted tree → out-degree of each node is at most 1

- Electing a root and orienting towards the root costs $\Theta(D)$ rounds!
- Rooted tree → out-degree of each node is at most 1
- Graphs of max degree $\Delta \rightarrow$ out-degree of each node is at most Δ (3^{Δ}-coloring)

- Electing a root and orienting towards the root costs $\Theta(D)$ rounds!
- Rooted tree → out-degree of each node is at most 1
- Graphs of max degree $\Delta \rightarrow$ out-degree of each node is at most Δ (3^{Δ}-coloring)
- Goal \rightarrow out-degree of each node is at most c (for a constant c)
 - We can use the algorithm from before to obtain $C = 3^{\circ}$ -coloring

- Electing a root and orienting towards the root costs $\Theta(D)$ rounds!
- Rooted tree → out-degree of each node is at most 1
- Graphs of max degree $\Delta \rightarrow$ out-degree of each node is at most Δ (3^{Δ}-coloring)
- Goal \rightarrow out-degree of each node is at most c (for a constant c)
 - We can use the algorithm from before to obtain $C = 3^{\circ}$ -coloring
- How can we compute such an orientation for a small c?
 - Let's try c = 2 (this would give a 9-coloring)

Observation 1: Computing an orientation with **out-degree \leq 2** is trivial for of **degree \leq 2** (orient arbitrarily)

Observation 1: Computing an orientation with **out-degree \leq 2** is trivial for of **degree \leq 2** (orient arbitrarily)

Observation 2: In an n-node tree, at **least** *n*/**3 nodes** have **degree** ≤ **2**

(orient arbitrarily)

Observation 2: In an n-node tree, at **least** *n*/**3 nodes** have **degree** ≤ **2**

• Assume that k nodes have degree ≥ 3

Observation 1: Computing an orientation with out-degree ≤ 2 is trivial for of degree ≤ 2

- number of edges = n 1
- $\sum \deg(v) = 2n 2 < 2n$

 $\sum \deg(v) \ge 3k < 2n$

$$k < \frac{2}{3}n$$

0

- •

- - •

How to orient edges?

How to orient edges?

Edges inside each level: orient arbitrarily

How to orient edges?

Edges inside each level: orient arbitrarily

Edges between levels: orient from smallest to largest

How to orient edges?

Edges inside each level: orient arbitrarily

Edges between levels: orient from smallest to largest

Nodes in **Level 0** have degree ≤ 2

How to orient edges?

Edges inside each level: orient arbitrarily

Edges between levels: orient from smallest to largest

How to orient edges?

Edges inside each level: orient arbitrarily

Edges between levels: orient from smallest to largest

Nodes in Level *i* have degree ≤ 2 in the graph induced by nodes in Level j ≥ i

How to orient edges?

Edges inside each level: orient arbitrarily

Edges between levels: orient from smallest to largest

How many levels?

How to orient edges?

Edges inside each level: orient arbitrarily

Edges between levels: orient from smallest to largest

How many levels?

Nr. of nodes in Level $\geq i$: at most $n \cdot (2/3)^i$

How to orient edges?

Edges inside each level: orient arbitrarily

Edges **between** levels: orient from smallest to largest

How many levels?

Nr. of nodes in Level $\geq i$: at most $n \cdot (2/3)^i$

Each time we process a constant fraction of the nodes: **O(log n) levels**

- 1. Compute an orientation with out-degree ≤ 2 in O(log n) rounds
- 2. Color each forest with 3 colors in O(log* n) rounds
 - Every **node** v then has **two colors**: $c_{v,1}$ for forest 1 and $c_{v,2}$ for forest 2
 - The total number of colors used is $3^{out-degree} \le 3^2 = 9$
 - ► For every edge {u, v}, we have $c_{u,1} \neq c_{v,1}$ or $c_{u,2} \neq c_{v,2}$

Remark: The algorithm also works for (undirected) pseudoforests

• This creates two directed forests (it's not a pseudoforest since in a tree there are no cycles)

Coloring trees

- Trees can be colored with 2 colors, this however requires time $\Omega(D)$
- Rooted trees can be 3-colored in time O(log* n)
- Unrooted trees can be 9-colored in time O(log n) (it is possible to obtain 3 colors!)

Coloring general graphs with maximum degree Δ

- 3^{Δ} -coloring can be done in time $O(\log^* n)$
- $(\Delta + 1)$ -coloring can be done in time $O(3^{\Delta} + \log^* n)$
 - If $\Delta = O(1)$, this is $O(\log^* n)$

Outlook

- Next lecture: randomized algorithms for $(\Delta + 1)$ -coloring and MIS in general graphs

• This algorithm can be improved significantly: the current best runtime is roughly $O(\sqrt{\Delta} + \log^* n)$

• Later lecture: we will see that, for deterministic algorithms, some bounds from today's lecture are tight