Distributed Coloring and MIS (part I)

Distributed systems

Alkida Balliu

University of Freiburg

Vertex coloring

Objective: Assign a color to each node such that:

Vertex coloring

Objective: Assign a color to each node such that:

- Neighbouring nodes get different colors

Vertex coloring

Objective: Assign a color to each node such that:

- Neighbouring nodes get different colors
- The total number of different colors is as small as possible

Maximal independent set (MIS)

Objective: Select nodes such that:

Maximal independent set (MIS)

Objective: Select nodes such that:

- Selected nodes form an independent set (they are not neighbors)

Maximal independent set (MIS)

Objective: Select nodes such that:

- Selected nodes form an independent set (they are not neighbors)
- The independent set is maximal (any non-selected node has at least one neighbor that is selected)

Distributed graph coloring

- The network is modeled as a graph

Distributed graph coloring

- The network is modeled as a graph

Distributed graph coloring

- Communication: message passing

Distributed graph coloring

- Synchronous rounds:
- Each node does some internal computation
- Sends messages to neighbors
- Receives messages from neighbors

Distributed graph coloring

- Synchronous rounds:
- Each node does some internal computation
- Sends messages to neighbors
- Receives messages from neighbors

LOCAL model

- Unbounded internal computation
- Unbounded size of messages

Notation:

- n, number of nodes
- Δ, maximum degree in the graph
- $\operatorname{deg}(v)$, degree of node v

Distributed graph algorithms

- Objective: solve some graph problem (e.g., MIS, vertex coloring)

- At the start: each node knows only its own ID
- At the end: each node must know its part of the output
- Coloring: its color
- MIS: whether it is in or out the MIS

Distributed graph algorithms

Distributed graph algorithms

Distributed graph algorithms

Distributed graph algorithms

Distributed graph algorithms

Distributed graph algorithms

Local outputs form a consistent global solution

Application of coloring and MIS

- Wireless Networks:
- Assign communication channels while avoiding collisions (coloring)
- Basic clustering in wireless networks (MIS)
- Generally:
- Important symmetry breaking problems
- Used as subroutine in many algorithms
- Techniques for solving these problems may apply for solving other problems of interest

Sequential greedy coloring

Sequential greedy coloring

MIS:

$$
S:=\varnothing
$$

for all $v \in V$ do // go through nodes in an arbitrary order
if v has no neighbor in S, add v to S

- S is an independent set, and each node $u \notin S$ has a neighbor in S (S is maximal)

Sequential greedy coloring

MIS:

$$
S:=\varnothing
$$

for all $v \in V$ do // go through nodes in an arbitrary order
if v has no neighbor in S, add v to S

- S is an independent set, and each node $u \notin S$ has a neighbor in S (S is maximal)

Coloring (use colors $1,2,3, \ldots$)
all nodes uncoloured
for all $v \in V$ do // go through nodes in an arbitrary order assign to v the smallest color not used by its neighbors

- Computes a valid (a.k.a. proper) coloring

Sequential greedy coloring

MIS:

$$
S:=\varnothing
$$

for all $v \in V$ do // go through nodes in an arbitrary order
if v has no neighbor in S, add v to S

- S is an independent set, and each node $u \notin S$ has a neighbor in S (S is maximal)

Coloring (use colors $1,2,3, \ldots$)
all nodes uncoloured
for all $v \in V$ do // go through nodes in an arbitrary order
assign to v the smallest color not used by its neighbors

- Computes a valid (a.k.a. proper) coloring
- What is the number of colors?

Greedy vertex coloring: how many colors?

- node v cannot get color 1 : there must exist a neighbor of v with color 1
- node v cannot get color 2: there must exist a neighbor of v with color 2
- node v cannot get color 3 : there must exist a neighbor of v with color 3

Greedy vertex coloring: how many colors?

- node v cannot get color 1 : there must exist a neighbor of v with color 1
- node v cannot get color 2 : there must exist a neighbor of v with color 2
- node v cannot get color 3 : there must exist a neighbor of v with color 3
.
- Each node v gets one of the first deg(v) +1 colors
- Hence one of the first deg $(v)+1$ colors is free for v
- For each node $v, \operatorname{color}(v) \leq \operatorname{deg}(v)+1 \leq \Delta+1$

Theorem: greedy vertex coloring requires at most $\Delta+1$ colors

Distributed vertex coloring

Usually, the target number of colors is $\Delta+1$

- Sometimes we want less colors, and we will see some of such examples

Distributed coloring algorithm

How can we color in a distributed way?

- Each node picks the smallest available color
- Available = color not picked by any neighbor
- How to avoid conflicts between neighbors?
- Neighbors should not choose a color at the same time!

Distributed greedy vertex coloring

Distributed greedy coloring for a node v

1. wait until all neighbors of v with a smaller ID have a color
2. v chooses the smallest available color
3. v informs its neighbors

- No two neighbors choose a color at the same time: proper coloring with at most $\Delta+1$ colors
- Computes the same coloring as the sequential greedy algorithm when going through the nodes in order defined by IDs

Distributed greedy vertex coloring

Distributed greedy coloring for a node v

1. wait until all neighbors of v with a smaller ID have a color
2. v chooses the smallest available color
3. v informs its neighbors

- No two neighbors choose a color at the same time: proper coloring with at most $\Delta+1$ colors
- Computes the same coloring as the sequential greedy algorithm when going through the nodes in order defined by IDs

Distributed greedy MIS for a node v

1. wait until all neighbors of v with a smaller ID are decided
2. v joins MIS if no neighbor of v is already in the MIS
3. v informs its neighbors

Distributed greedy: time complexity

Theorem: The distributed greedy algorithms for $(\Delta+1)$-vertex coloring and MIS terminate after at most $O(n)$ rounds

- In each round, at least one new node is processed
- the node with smallest ID among the unprocessed nodes
- $O(n)$ rounds is very slow but unfortunately it is tight

Distributed greedy: time complexity

Theorem: The distributed greedy algorithms for $(\Delta+1)$-vertex coloring and MIS terminate after at most $O(n)$ rounds

- In each round, at least one new node is processed
- the node with smallest ID among the unprocessed nodes
- $O(n)$ rounds is very slow but unfortunately it is tight

Distributed greedy: time complexity

Theorem: The distributed greedy algorithms for $(\Delta+1)$-vertex coloring and MIS terminate after at most $O(n)$ rounds

- In each round, at least one new node is processed
- the node with smallest ID among the unprocessed nodes
- $O(n)$ rounds is very slow but unfortunately it is tight

Distributed greedy: time complexity

Theorem: The distributed greedy algorithms for $(\Delta+1)$-vertex coloring and MIS terminate after at most $O(n)$ rounds

- In each round, at least one new node is processed
- the node with smallest ID among the unprocessed nodes
- $O(n)$ rounds is very slow but unfortunately it is tight

Distributed greedy: time complexity

Theorem: The distributed greedy algorithms for $(\Delta+1)$-vertex coloring and MIS terminate after at most $O(n)$ rounds

- In each round, at least one new node is processed
- the node with smallest ID among the unprocessed nodes
- $O(n)$ rounds is very slow but unfortunately it is tight

Distributed greedy: time complexity

Theorem: The distributed greedy algorithms for $(\Delta+1)$-vertex coloring and MIS terminate after at most $O(n)$ rounds

- In each round, at least one new node is processed
- the node with smallest ID among the unprocessed nodes
- $O(n)$ rounds is very slow but unfortunately it is tight

Distributed greedy: time complexity

Theorem: The distributed greedy algorithms for ($\Delta+1$)-vertex coloring and MIS terminate after at most $O(n)$ rounds

- In each round, at least one new node is processed
- the node with smallest ID among the unprocessed nodes
- $O(n)$ rounds is very slow but unfortunately it is tight

- Can we be faster?
- How to process many nodes in parallel while avoiding conflicts?
- Observation: we can be faster if we are already given a proper coloring with C colors

From C-coloring to $(\Delta+1)$-coloring and MIS

Assumption: we are given a proper C-coloring of the nodes (with colors $1,2, \ldots, C$)

- In both algorithms, we can replace IDs with these colors

The algorithm runs in phases $1,2, \ldots, C$
In phase i :

- Nodes with initial color i are processed
- Coloring: pick smallest available color
- MIS: join MIS if no neighbor is in MIS
- At the end of the phase, newly processed nodes inform neighbors
- The algorithm works because only non-adjacent nodes are processed in parallel
- Time complexity: C rounds

From C-coloring to $(\Delta+1)$-coloring and MIS

Assumption: we are given a proper C-coloring of the nodes (with colors $1,2, \ldots, C$)

- In both algorithms, we can replace IDs with these colors

The algorithm runs in phases $1,2, \ldots, C$
In phase i :

- Nodes with initial color i are processed
- Coloring: pick smallest available color
- MIS: join MIS if no neighbor is in MIS
- At the end of the phase, newly processed nodes inform neighbors
- The algorithm works because only non-adjacent nodes are processed in parallel
- Time complexity: C rounds

From C-coloring to $(\Delta+1)$-coloring and MIS

Assumption: we are given a pro C-coloring of the nodes (with colors 1, 2, ... , C)

- In both algorithms, we can replace IDs with these colors

The algorithm runs in phases $1,2, \ldots, C$
In phase i :

- Nodes with initial color i are processed
- Coloring: pick smallest available color
- MIS: join MIS if no neighbor is in MIS
- At the end of the phase, newly processed nodes inform neighbors
- The algorithm works because only non-adjacent nodes are processed in parallel
- Time complexity: C rounds

Coloring special graph classes

Let's first take a look at special classes of graphs

Rooted trees:

- Graph is a tree, each node knows which neighbor is its parent
- The root knows it is the root

Coloring special graph classes

Trees can be colored with $\mathbf{2}$ colors:

- Color 0: even distance to root
- Color 1: odd distance to root

Distributed algorithm:

- Color level by level, starting at the root

Time complexity: $O(D)$

This is tight and can be $\Theta(n)$:

Nodes need to know the parity of their distance to the root (formal argument in a later lecture)

Coloring rooted trees with more colors

Color reduction:

- Assume we are given a proper coloring with C colors
- Initially, if we have unique IDs from an ID space of size N, we have $C=N$
- Can we reduce the number of colors?
- What happens if we reduce them iteratively?

Coloring rooted trees with more colors

Specific assumption:

- Initital coloring with colors in $\{0, \ldots, C-1\}$ for some $C \in \mathbb{N}$ (each node knows C)
- Interpret color as bit string of length $\left\lceil\log _{2} \mathrm{C}\right\rceil$
- Example for $C=12$

Cole-Vishkin color reduction scheme

- Consider node u and its parent v with colors c_{u} and $c_{v}\left(c_{u} \neq c_{v}\right)$
- x_{u} : binary representation of c_{u}
- x_{v} : binary representation of c_{v}
- Define:
- $i_{u}:=\left\{\right.$ index of the first bit where x_{u} and x_{v} differ $\}$
- $b_{u} \in\{0,1\}$ is the bit of x_{u} in position i_{u}

New color of u :

$c^{\prime}{ }_{u}=2 \cdot i_{u}+b_{u}$

Cole-Vishkin color reduction scheme

- Consider node u and its parent v with colors c_{u} and c_{v}
- x_{u} : binary representation of c_{u}
- x_{v} : binary representation of c_{v}
- Define:
- $i_{u}:=\left\{\right.$ index of the first bit where x_{u} and x_{v} differ $\}$
- $b_{u} \in\{0,1\}$ is the bit of x_{u} in position i_{u}

$$
\begin{aligned}
& c_{u}=60346 \\
& c_{v}=13242
\end{aligned}
$$

New color of u :

$c_{u}^{\prime}=2 \cdot i_{u}+b_{u}$

Cole-Vishkin color reduction scheme

- Consider node u and its parent v with colors c_{u} and c_{v}
- x_{u} : binary representation of c_{u}
- x_{v} : binary representation of c_{v}
- Define:
- $i_{u}:=\left\{\right.$ index of the first bit where x_{u} and x_{v} differ $\}$
- $b_{u} \in\{0,1\}$ is the bit of x_{u} in position i_{u}

$$
\begin{aligned}
& c_{u}=60346 \\
& c_{v}=13242
\end{aligned}
$$

New color of u :

$c^{\prime}{ }_{u}=2 \cdot i_{u}+b_{u}$

Cole-Vishkin color reduction scheme

- Consider node u and its parent v with colors c_{u} and c_{v}
- x_{u} : binary representation of c_{u}
- x_{v} : binary representation of c_{v}
- Define:
- $i_{u}:=\left\{\right.$ index of the first bit where x_{u} and x_{v} differ $\}$
- $b_{u} \in\{0,1\}$ is the bit of x_{u} in position i_{u}

$$
\begin{aligned}
& c_{u}=60346 \\
& c_{v}=13242 \\
& i_{u}=
\end{aligned}
$$

New color of u :
$c^{\prime}{ }_{u}=2 \cdot i_{u}+b_{u}$

Cole-Vishkin color reduction scheme

- Consider node u and its parent v with colors c_{u} and c_{v}
- x_{u} : binary representation of c_{u}
- x_{v} : binary representation of c_{v}
- Define:
- $i_{u}:=\left\{\right.$ index of the first bit where x_{u} and x_{v} differ $\}$
- $b_{u} \in\{0,1\}$ is the bit of x_{u} in position i_{u}

$$
\begin{aligned}
& c_{u}=60346 \\
& c_{v}=13242 \\
& i_{u}=
\end{aligned}
$$

New color of u :
$c^{\prime}{ }_{u}=2 \cdot i_{u}+b_{u}$

Cole-Vishkin color reduction scheme

- Consider node u and its parent v with colors c_{u} and c_{v}
- x_{u} : binary representation of c_{u}
- x_{v} : binary representation of c_{v}
- Define:
- $i_{u}:=\left\{\right.$ index of the first bit where x_{u} and x_{v} differ $\}$
- $b_{u} \in\{0,1\}$ is the bit of x_{u} in position i_{u}

$$
\begin{aligned}
& c_{u}=60346 \\
& c_{v}=13242 \\
& i_{u}=
\end{aligned}
$$

New color of u :
$c^{\prime}{ }_{u}=2 \cdot i_{u}+b_{u}$

Cole-Vishkin color reduction scheme

- Consider node u and its parent v with colors c_{u} and c_{v}
- x_{u} : binary representation of c_{u}
- x_{v} : binary representation of c_{v}
- Define:
- $i_{u}:=\left\{\right.$ index of the first bit where x_{u} and x_{v} differ $\}$
- $b_{u} \in\{0,1\}$ is the bit of x_{u} in position i_{u}

$$
\begin{aligned}
& c_{u}=60346 \\
& c_{v}=13242 \\
& i_{u}=11
\end{aligned}
$$

New color of u :
$c_{u}^{\prime}=2 \cdot i_{u}+b_{u}$

Cole-Vishkin color reduction scheme

- Consider node u and its parent v with colors c_{u} and c_{v}
- x_{u} : binary representation of c_{u}
- x_{v} : binary representation of c_{v}
- Define:
- $i_{u}:=\left\{\right.$ index of the first bit where x_{u} and x_{v} differ $\}$
- $b_{u} \in\{0,1\}$ is the bit of x_{u} in position i_{u}

$$
\begin{aligned}
& c_{u}=60346 \\
& c_{v}=13242 \\
& i_{u}=11 \\
& b_{u}=1
\end{aligned}
$$

New color of u :
$c^{\prime}{ }_{u}=2 \cdot i_{u}+b_{u}$

Cole-Vishkin color reduction scheme

- Consider node u and its parent v with colors c_{u} and c_{v}
- x_{u} : binary representation of c_{u}
- x_{v} : binary representation of c_{v}
- Define:
- $i_{u}:=\left\{\right.$ index of the first bit where x_{u} and x_{v} differ $\}$
- $b_{u} \in\{0,1\}$ is the bit of x_{u} in position i_{u}

$$
\begin{aligned}
& c_{u}=60346 \\
& c_{v}=13242 \\
& i_{u}=11 \\
& b_{u}=1
\end{aligned}
$$

New color of u :

$c^{\prime}{ }_{u}=2 \cdot i_{u}+b_{u}$
$c^{\prime}{ }_{u}=\mathbf{2} \cdot \mathbf{1 1 + 1 = 2 3}$

Cole-Vishkin color reduction scheme

- Consider node u and its parent v with colors c_{u} and c_{v}
- X_{u} : binary representation of c_{u}
- x_{v} : binary representation of c_{v}
- Define:
- $i_{u}:=\left\{\right.$ index of the first bit where x_{u} and x_{v} differ $\}$
- $b_{u} \in\{0,1\}$ is the bit of x_{u} in position i_{u}

Theorem: For any two neighbors, if $c_{u} \neq c_{v}$ then it holds $c^{\prime}{ }_{u} \neq c^{\prime}{ }_{v}$

Cole-Vishkin color reduction scheme

- Consider node u and its parent v with colors c_{u} and c_{v}
- x_{u} : binary representation of c_{u}
- x_{v} : binary representation of c_{v}
- Define:
- $i_{u}:=\left\{\right.$ index of the first bit where x_{u} and x_{v} differ $\}$
- $b_{u} \in\{0,1\}$ is the bit of x_{u} in position i_{u}

Theorem: For any two neighbors, if $c_{u} \neq c_{v}$ then it holds $c^{\prime}{ }_{u} \neq c^{\prime}{ }_{v}$

Proof:

- we have that $c^{\prime}{ }_{u}=2 \cdot i_{u}+b_{u}$ and $c^{\prime}{ }_{v}=2 \cdot i_{v}+b_{v}$
- we have that $c^{\prime}{ }_{u} \neq c^{\prime}{ }_{v}$ if and only if $i_{u} \neq i_{v}$ or $b_{u} \neq b_{v}$

Cole-Vishkin color reduction scheme

- Consider node u and its parent v with colors c_{u} and c_{v}
- x_{u} : binary representation of c_{u}
- x_{v} : binary representation of c_{v}
- Define:
- $i_{u}:=\left\{\right.$ index of the first bit where x_{u} and x_{v} differ $\}$
- $b_{u} \in\{0,1\}$ is the bit of x_{u} in position i_{u}

Theorem: For any two neighbors, if $c_{u} \neq c_{v}$ then it holds $c^{\prime}{ }_{u} \neq c^{\prime}{ }_{v}$

Proof:

- we have that $c^{\prime}{ }_{u}=2 \cdot i_{u}+b_{u}$ and $c^{\prime}{ }_{v}=2 \cdot i_{v}+b_{v}$
- we have that $c^{\prime}{ }_{u} \neq c^{\prime}{ }_{v}$ if and only if $i_{u} \neq i_{v}$ or $b_{u} \neq b_{v}$
- w.l.o.g., assume v is the parent of u

Cole-Vishkin color reduction scheme

- Consider node u and its parent v with colors c_{u} and c_{v}
- x_{u} : binary representation of c_{u}
- x_{v} : binary representation of c_{v}
- Define:
- $i_{u}:=\left\{\right.$ index of the first bit where x_{u} and x_{v} differ $\}$
- $b_{u} \in\{0,1\}$ is the bit of x_{u} in position i_{u}

Theorem: For any two neighbors, if $c_{u} \neq c_{v}$ then it holds $c^{\prime}{ }_{u} \neq c^{\prime}{ }_{v}$

Proof:

- we have that $c^{\prime}{ }_{u}=2 \cdot i_{u}+b_{u}$ and $c^{\prime}{ }_{v}=2 \cdot i_{v}+b_{v}$
- we have that $c^{\prime}{ }_{u} \neq c^{\prime}{ }_{v}$ if and only if $i_{u} \neq i_{v}$ or $b_{u} \neq b_{v}$
- w.l.o.g., assume v is the parent of u
- if $i_{u} \neq i_{v}$ then we are done

Cole-Vishkin color reduction scheme

- Consider node u and its parent v with colors c_{u} and c_{v}
- X_{u} : binary representation of c_{u}
- x_{v} : binary representation of c_{v}
- Define:
- $i_{u}:=\left\{\right.$ index of the first bit where x_{u} and x_{v} differ $\}$
- $b_{u} \in\{0,1\}$ is the bit of x_{u} in position i_{u}

Theorem: For any two neighbors, if $c_{U} \neq c_{V}$ then it holds $c^{\prime}{ }_{U} \neq c^{\prime}{ }_{v}$

Proof:

- we have that $c^{\prime}{ }_{u}=2 \cdot i_{u}+b_{u}$ and $c^{\prime}{ }_{v}=2 \cdot i_{v}+b_{v}$
- we have that $c^{\prime}{ }_{u} \neq c^{\prime}{ }_{v}$ if and only if $i_{u} \neq i_{v}$ or $b_{u} \neq b_{v}$
- w.l.o.g., assume v is the parent of u
- if $i_{u} \neq i_{v}$ then we are done
- if $i_{u}=i_{v}=i$ it means that, in that position, the bits differ, hence $b_{u} \neq b_{v}$

Cole-Vishkin color reduction scheme

1. How much do we reduce the collors in one step?
2. How much can we reduce the colors if we iteratively apply the color reduction scheme?
3. What is the runtime of this procedure?

Cole-Vishkin color reduction scheme

How much do we reduce the colors in one step?

- Each node u has an initial color c_{u}
- c_{u} can be written as a $\left\lceil\log _{2} C\right\rceil$-bit number

Cole-Vishkin color reduction scheme

How much do we reduce the colors in one step?

- Each node u has an initial color c_{u}
- c_{u} can be written as a $\left\lceil\log _{2} C\right\rceil$-bit number
- Therefore:

$$
i_{u} \in\left\{0,1, \ldots,\left\lceil\log _{2} C\right\rceil-1\right\}
$$

- And thus:

$$
c^{\prime}{ }_{u}=2 \cdot i_{u}+b_{u} \leq 2 \cdot i_{u}+1 \leq 2\left\lceil\log _{2} C\right\rceil-1
$$

Cole-Vishkin color reduction scheme

How much do we reduce the colors in one step?

- Each node u has an initial color c_{u}
- c_{u} can be written as a $\left\lceil\log _{2} C\right\rceil$-bit number
- Therefore:

$$
i_{u} \in\left\{0,1, \ldots,\left\lceil\log _{2} C\right\rceil-1\right\}
$$

- And thus:

$$
c^{\prime}{ }_{u}=2 \cdot i_{u}+b_{u} \leq 2 \cdot i_{u}+1 \leq 2\left\lceil\log _{2} C\right\rceil-1
$$

Theorem: In one color reduction step, the number of colors is reduced from C to 2 $\left\lceil\log _{2} C\right\rceil$

Cole-Vishkin color reduction scheme

How much can we reduce the colors if we iteratively apply the color reduction scheme?

- In one color reduction step, the number of colors is reduced from C to $2\left\lceil\log _{2} C\right\rceil$

Theorem: Applying the color reduction step iteratively, the algorithm eventually computes a coloring with the six colors $\{0,1, \ldots, 5\}$

Proof: $C>2\left\lceil\log _{2} C\right\rceil$ for all $C>6$

Cole-Vishkin color reduction scheme

How much can we reduce the colors if we iteratively apply the color reduction scheme?

- In one color reduction step, the number of colors is reduced from C to $2\left\lceil\log _{2} C\right\rceil$

Theorem: Applying the color reduction step iteratively, the algorithm eventually computes a coloring with the six colors $\{0,1, \ldots, 5\}$

Proof: $C>2\left\lceil\log _{2} C\right\rceil$ for all $C>6$

What is the runtime of this procedure?

Rooted tree coloring: time complexity

The log-star function:

- For a real number $n>1$ and an integer $i \geq 1$, we define

$$
\log _{2}^{(i)} n:=\log _{2}\left(\log _{2}^{(i-1)} n\right) \quad \log _{2}^{(1)} n:=\log _{2} n
$$

- For an integer $n \geq 2$, the function log* n is defined as

$$
\log ^{*} n:=\min \left\{i: \log _{2}^{i} n \leq 1\right\}
$$

- log* n : number of times one has to apply the function $\log _{2} n$ in order to obtain a number that is ≤ 1
- Examples:

$$
\log ^{*} 2=1, \log ^{*} 4=2, \log ^{*} 16=3, \log ^{*} 2^{16}=4, \log ^{*} 2^{2^{16}}=5
$$

Rooted tree coloring: time complexity

The log-star function:

- For a real number $n>1$ and an integer $i \geq 1$, we define

$$
\log _{2}^{(i)} n:=\log _{2}\left(\log _{2}^{(i-1)} n\right) \quad \log _{2}^{(1)} n:=\log _{2} n
$$

- For an integer $n \geq 2$, the function log* n is defined as

$$
\log ^{*} n:=\min \left\{i: \log _{2}^{i} n \leq 1\right\}
$$

Theorem: When starting with colors in $\{0, \ldots, n-1\}$ the Cole-Vishkin color reduction algorithm computes a 6 -coloring of a rooted tree in $O\left(\log ^{*} n\right)$ rounds

Rooted tree coloring: time complexity

The log-star function:

- For a real number $n>1$ and an integer $i \geq 1$, we define

$$
\log _{2}^{(i)} n:=\log _{2}\left(\log _{2}^{(i-1)} n\right) \quad \log _{2}^{(1)} n:=\log _{2} n
$$

- For an integer $n \geq 2$, the function log* n is defined as

$$
\log ^{*} n:=\min \left\{i: \log _{2}^{i} n \leq 1\right\}
$$

Theorem: When starting with colors in $\{0, \ldots, n-1\}$ the Cole-Vishkin color reduction algorithm computes a 6 -coloring of a rooted tree in $O\left(\right.$ log $\left.^{*} n\right)$ rounds

Proof sketch: Colors are reduced as follows

$$
n \rightarrow 2\left\lceil\log _{2} n\right\rceil
$$

Rooted tree coloring: time complexity

The log-star function:

- For a real number $n>1$ and an integer $i \geq 1$, we define

$$
\log _{2}^{(i)} n:=\log _{2}\left(\log _{2}^{(i-1)} n\right) \quad \log _{2}^{(1)} n:=\log _{2} n
$$

- For an integer $n \geq 2$, the function log* n is defined as

$$
\log ^{*} n:=\min \left\{i: \log _{2}^{i} n \leq 1\right\}
$$

Theorem: When starting with colors in $\{0, \ldots, n-1\}$ the Cole-Vishkin color reduction algorithm computes a 6 -coloring of a rooted tree in $O\left(\right.$ log $\left.^{*} n\right)$ rounds

Proof sketch: Colors are reduced as follows

$$
n \rightarrow O(\log n)
$$

Rooted tree coloring: time complexity

The log-star function:

- For a real number $n>1$ and an integer $i \geq 1$, we define

$$
\log _{2}^{(i)} n:=\log _{2}\left(\log _{2}^{(i-1)} n\right) \quad \log _{2}^{(1)} n:=\log _{2} n
$$

- For an integer $n \geq 2$, the function log* n is defined as

$$
\log ^{*} n:=\min \left\{i: \log _{2}^{i} n \leq 1\right\}
$$

Theorem: When starting with colors in $\{0, \ldots, n-1\}$ the Cole-Vishkin color reduction algorithm computes a 6 -coloring of a rooted tree in $O\left(\right.$ log $\left.^{*} n\right)$ rounds

Proof sketch: Colors are reduced as follows

$$
n \rightarrow O(\log n) \rightarrow O(\log \log n) \rightarrow O(\log \log \log n) \rightarrow \ldots
$$

From six to three colors

Coloring rooted trees:

- We have seen that computing a 2 -coloring requires $\Omega(D)$
- We have seen how to compute a 6 -coloring in $O\left(\log ^{*} n\right)$ rounds
- What about 3, 4, and 5 colors?

From six to three colors

Coloring rooted trees:

- We have seen that computing a 2-coloring requires $\Omega(D)$
- We have seen how to compute a 6 -coloring in $O\left(\log ^{*} n\right)$ rounds
-What about 3, 4, and 5 colors?
Reducing from 6 to 5 colors:
- Can we recolour nodes with color 5 with a smaller color?
- If $\Delta \leq 4$, for every node with color 5 there is a free color in $\{0, \ldots, 4\}$ available: recolor them in parallel in one round
- What can we do if $\Delta>4$?

From six to five colors

- Consider a rooted tree colored with 6 colors from $\{0, \ldots, 5\}$
- Can we get rid of color 5 ?
- Solution: shift down colors

From six to five colors

- Consider a rooted tree colored with 6 colors from $\{0, \ldots, 5\}$
- Can we get rid of color 5 ?
- Solution: shift down colors

From six to five colors

- Consider a rooted tree colored with 6 colors from $\{0, \ldots, 5\}$
- Can we get rid of color 5?
- Solution: shift down colors

From six to five colors

- Consider a rooted tree colored with 6 colors from $\{0, \ldots, 5\}$
- Can we get rid of color 5 ?
- Solution: shift down colors

From six to five colors

- Consider a rooted tree colored with 6 colors from $\{0, \ldots, 5\}$
- Can we get rid of color 5?
- Solution: shift down colors

From six to five colors

- Consider a rooted tree colored with 6 colors from $\{0, \ldots, 5\}$
- Can we get rid of color 5?
- Solution: shift down colors

From six to three colors

Color reduction phase for rooted trees

1. Shift-down step
2. Color reduction step

Theorem: As long as the number of colors C is larger than three, we can reduce the number of colors by one in two rounds

Rooted trees: coloring and MIS

Cole-Vishkin (to get 6-coloring) + color reduction $=3$-coloring
Theorem: When starting with colors in $\{0, \ldots, n-1\}$, there is a distributed algorithm to computes a 3 -coloring of a rooted tree in $O\left(\log ^{*} n\right)$ rounds

- Unique IDs in $\{0, \ldots, n-1\}$ can be used as an initial coloring

Rooted trees: coloring and MIS

Cole-Vishkin (to get 6-coloring) + color reduction $=3$-coloring
Theorem: When starting with colors in $\{0, \ldots, n-1\}$, there is a distributed algorithm to computes a 3 -coloring of a rooted tree in $O\left(\log ^{*} n\right)$ rounds

- Unique IDs in $\{0, \ldots, n-1\}$ can be used as an initial coloring

Theorem: When starting with colors in $\{0, \ldots, n-1\}$, there is a distributed algorithm to computes an MIS of a rooted tree in $O\left(\log ^{*} n\right)$ rounds

- One first computes a 6-coloring (or a 3-coloring)
- Then an MIS can be computed in $O(1)$ rounds
- We have seen before that from a C-coloring we get MIS in C rounds

Coloring directed pseudoforests

Pseudoforest

- A graph in which each connected component has at most one cycle

Directed pseudoforest

- A graph where the out-degree of every node is at most 1

Coloring directed pseudoforests

Directed pseudoforest

- A graph where the out-degree of every node is at most 1

Claim: The 3-coloring algorithm for rooted trees can also be applied in a directed pseudoforest

Coloring directed pseudoforests

Directed pseudoforest

- A graph where the out-degree of every node is at most 1

Claim: The 3-coloring algorithm for rooted trees can also be applied in a directed pseudoforest

- The Cole-Vishkin algorithm works as before
- Nodes with out-degree 1 treat their out-neighbors as parent
- Other nodes behave like the root and imagine an out-neighbor with some color

Coloring directed pseudoforests

Directed pseudoforest

- A graph where the out-degree of every node is at most 1

Claim: The 3-coloring algorithm for rooted trees can also be applied in a directed pseudoforest

- The Cole-Vishkin algorithm works as before
- Nodes with out-degree 1 treat their out-neighbors as parent
- Other nodes behave like the root and imagine an out-neighbor with some color
- The color reduction algorithm also works in the same way
- Shift-down: Every node with out-degree 1 picks the color of their out-neighbor, every other node just picks a new color (either 0 or 1)
- All in-neighbors of a node then have the same color and each node therefore only sees 2 different colors among its neighbors

Coloring graphs with maximum degree Δ

- We first orient each edge on the graph arbitrarily
- E.g., orient edge $\{u, v\}$ from u to v iff $\operatorname{ID}(u)<\operatorname{ID}(v)$
- Assume that a node v has d_{v} out-degree edges. Node v labels these edges from 1 to d_{v} (note that $d_{v} \leq \Delta$)

Coloring graphs with maximum degree Δ

- We first orient each edge on the graph arbitrarily
- E.g., orient edge $\{u, v\}$ from u to v iff $\operatorname{ID}(u)<\operatorname{ID}(v)$
- Assume that a node v has d_{v} out-degree edges. Node v labels these edges from 1 to d_{v} (note that $d_{v} \leq \Delta$)

Coloring graphs with maximum degree Δ

- We first orient each edge on the graph arbitrarily
- E.g., orient edge $\{u, v\}$ from u to v iff $\operatorname{ID}(u)<\operatorname{ID}(v)$
- Assume that a node v has d_{v} out-degree edges. Node v labels these edges from 1 to d_{v} (note that $d_{v} \leq \Delta$)

Coloring graphs with maximum degree Δ

- We first orient each edge on the graph arbitrarily
- E.g., orient edge $\{u, v\}$ from u to v iff $\operatorname{ID}(u)<\operatorname{ID}(v)$
- Assume that a node v has d_{v} out-degree edges. Node v labels these edges from 1 to d_{v} (note that $d_{v} \leq \Delta$)

Coloring graphs with maximum degree Δ

- We first orient each edge on the graph arbitrarily
- E.g., orient edge $\{u, v\}$ from u to v iff $\operatorname{ID}(u)<\operatorname{ID}(v)$
- Assume that a node v has d_{v} out-degree edges. Node v labels these edges from 1 to d_{v} (note that $d_{v} \leq \Delta$)

Coloring graphs with maximum degree Δ

- We first orient each edge on the graph arbitrarily
- E.g., orient edge $\{u, v\}$ from u to v iff $\operatorname{ID}(u)<\operatorname{ID}(v)$
- Assume that a node v has d_{v} out-degree edges. Node v labels these edges from 1 to d_{v} (note that $d_{v} \leq \Delta$)

Coloring graphs with maximum degree Δ

- Every node has at most one outgoing edge for each label
- For all $i \in\{1, \ldots, \Delta\}$, compute a 3 -coloring of G_{i} in $O\left(\log ^{*} n\right)$ rounds

Coloring graphs with maximum degree Δ

- Every node has at most one outgoing edge for each label
- For all $i \in\{1, \ldots, \Delta\}$, compute a 3 -coloring of G_{i} in $O\left(\log ^{*} n\right)$ rounds

Coloring graphs with maximum degree Δ

- Every node has at most one outgoing edge for each label
- For all $i \in\{1, \ldots, \Delta\}$, compute a 3 -coloring of G_{i} in $O\left(\log ^{*} n\right)$ rounds

Coloring graphs with maximum degree Δ

- Every node has at most one outgoing edge for each label
- For all $i \in\{1, \ldots, \Delta\}$, compute a 3 -coloring of G_{i} in $O\left(\log ^{*} n\right)$ rounds

Coloring graphs with maximum degree Δ

- Every node has at most one outgoing edge for each label
- For all $i \in\{1, \ldots, \Delta\}$, compute a 3 -coloring of G_{i} in $O\left(\log ^{*} n\right)$ rounds

Coloring graphs with maximum degree Δ

- Every node has at most one outgoing edge for each label
- For all $i \in\{1, \ldots, \Delta\}$, compute a 3 -coloring of G_{i} in $O\left(\log ^{*} n\right)$ rounds

Coloring graphs with maximum degree Δ

- Every node has at most one outgoing edge for each label
- For all $i \in\{1, \ldots, \Delta\}$, compute a 3 -coloring of G_{i} in $O\left(\log ^{*} n\right)$ rounds

Coloring graphs with maximum degree Δ

- Every node has at most one outgoing edge for each label
- For all $i \in\{1, \ldots, \Delta\}$, compute a 3 -coloring of G_{i} in $O\left(\log ^{*} n\right)$ rounds

Coloring graphs with maximum degree Δ

- Every node has at most one outgoing edge for each label
- For all $i \in\{1, \ldots, \Delta\}$, compute a 3 -coloring of G_{i} in $O\left(\log ^{*} n\right)$ rounds

Coloring graphs with maximum degree Δ

- Every node $v \in V$ then gets a vector $c_{v} \in\{0,1,2\}^{\Delta}$ of colors, where $c_{v, i}$ is the color of v in graph G_{i}
- For every two neighbors u and v, we have $c_{u} \neq c_{v}$
- If the edge $\{u, v\}$ has label i, we have $c_{u, i} \neq c_{v, i}$

Coloring graphs with maximum degree Δ

Theorem: For a graph with maximum degree Δ, there is a distributed algorithm to compute a 3^{Δ}-coloring in $O\left(\right.$ log* $\left.^{*} n\right)$ rounds

Coloring graphs with maximum degree Δ

Theorem: For a graph with maximum degree Δ, there is a distributed algorithm to compute a 3^{Δ}-coloring in $O\left(\right.$ log $\left.^{*} n\right)$ rounds

- As we saw, the \boldsymbol{n} in $O\left(\log ^{\star} \boldsymbol{n}\right)$ represent the size of initial input coloring
- Usually, we assume that the IDs represent the initial input coloring, but how large can the ID space be?
- Usual assumption: IDs are from 1 to n^{c}, where n is the number of nodes and c is a constant
- The algorithm would have the same runtime even if IDs were to be from 0 to $2^{2 \cdot}$, where the power tower is of size at most $O\left(\log ^{\star} n\right)$

Coloring bounded-degree graphs

Theorem: For a graph with maximum degree Δ, there is a distributed algorithm to compute a 3^{Δ}-coloring in $O\left(\log ^{*} n\right)$ rounds

- If $\Delta=O(1)$, then $3^{\Delta}=O(1)$: we get a $C=3^{\Delta}$ coloring in $O\left(\log ^{*} n\right)$ rounds (where C is a constant)
- We saw that if a C-coloring is given, we can compute a $(\Delta+1)$-coloring and an MIS in C rounds

Theorem: For a graph with maximum degree $\Delta=O(1)$, there are distributed algorithms to compute a ($\Delta+1$)-coloring and an MIS in O (log* n) rounds

Coloring unrooted trees

How can we color a tree that is not rooted?

Coloring unrooted trees

How can we color a tree that is not rooted?

- Electing a root and orienting towards the root costs $\Theta(D)$ rounds!
- Rooted tree \rightarrow out-degree of each node is at most 1

Coloring unrooted trees

How can we color a tree that is not rooted?

- Electing a root and orienting towards the root costs $\Theta(D)$ rounds!
- Rooted tree \rightarrow out-degree of each node is at most 1
- Graphs of max degree $\Delta \rightarrow$ out-degree of each node is at most Δ (3^{Δ}-coloring)

Coloring unrooted trees

How can we color a tree that is not rooted?

- Electing a root and orienting towards the root costs $\Theta(D)$ rounds!
- Rooted tree \rightarrow out-degree of each node is at most 1
- Graphs of max degree $\Delta \rightarrow$ out-degree of each node is at most Δ (3^{Δ}-coloring)
- Goal \rightarrow out-degree of each node is at most c (for a constant c)
- We can use the algorithm from before to obtain $C=3^{c}$-coloring

Coloring unrooted trees

How can we color a tree that is not rooted?

- Electing a root and orienting towards the root costs $\Theta(D)$ rounds!
- Rooted tree \rightarrow out-degree of each node is at most 1
- Graphs of max degree $\Delta \rightarrow$ out-degree of each node is at most Δ (3^{Δ}-coloring)
- Goal \rightarrow out-degree of each node is at most c (for a constant c)
- We can use the algorithm from before to obtain $C=3^{c}$-coloring
- How can we compute such an orientation for a small c?
- Let's try c = 2 (this would give a 9-coloring)

Computing an orientation with out-degree 2

Observation 1: Computing an orientation with out-degree $\leq \mathbf{2}$ is trivial for of degree ≤ 2 (orient arbitrarily)

Computing an orientation with out-degree 2

Observation 1: Computing an orientation with out-degree $\leq \mathbf{2}$ is trivial for of degree ≤ 2 (orient arbitrarily)

Observation 2: In an n-node tree, at least $n / 3$ nodes have degree ≤ 2

Computing an orientation with out-degree 2

Observation 1: Computing an orientation with out-degree ≤ 2 is trivial for of degree ≤ 2 (orient arbitrarily)

Observation 2: In an n-node tree, at least $n / 3$ nodes have degree ≤ 2

$$
\begin{aligned}
& \text { number of edges }=n-1 \\
& \sum_{v \in V} \operatorname{deg}(v)=2 n-2<2 n
\end{aligned}
$$

- Assume that k nodes have degree ≥ 3

$$
\begin{aligned}
\sum_{v \in V} \operatorname{deg}(v) & \geq 3 k<2 n \\
k & <\frac{2}{3} n
\end{aligned}
$$

Computing an orientation with out-degree 2

Computing an orientation with out-degree 2

Computing an orientation with out-degree 2

Computing an orientation with out-degree 2

Computing an orientation with out-degree 2

Computing an orientation with out-degree 2

0

Computing an orientation with out-degree 2

0

Computing an orientation with out-degree 2

Computing an orientation with out-degree 2

Computing an orientation with out-degree 2

Computing an orientation with out-degree 2

How to orient edges?

Computing an orientation with out-degree 2

How to orient edges?
Edges inside each level: orient arbitrarily

Computing an orientation with out-degree 2

How to orient edges?
Edges inside each level: orient arbitrarily

Edges between levels: orient from smallest to largest

Computing an orientation with out-degree 2

How to orient edges?
Edges inside each level: orient arbitrarily

Edges between levels: orient from smallest to largest
Nodes in Level 0 have degree ≤ 2

Computing an orientation with out-degree 2

How to orient edges?
Edges inside each level: orient arbitrarilly

Edges between levels: orient from smallest to largest

Computing an orientation with out-degree 2

How to orient edges?
Edges inside each level: orient arbitrarily

Edges between levels: orient from smallest to largest

Nodes in Level i have degree ≤ 2 in the graph induced by nodes in
 Level $\mathrm{j} \geq$ i

Computing an orientation with out-degree 2

How to orient edges?
Edges inside each level: orient arbitrarily

Edges between levels: orient from smallest to largest

How many levels?

Computing an orientation with out-degree 2

How to orient edges?
Edges inside each level: orient arbitrarily

Edges between levels: orient from smallest to largest

How many levels?
$N r$. of nodes in Level $\geq i$:
 at most $n \cdot(2 / 3)^{i}$

Computing an orientation with out-degree 2

How to orient edges?
Edges inside each level: orient arbitrarily

Edges between levels: orient from smallest to largest

How many levels?
$N r$. of nodes in Level $\geq i$:
 at most $n \cdot(2 / 3)^{i}$

Each time we process a constant fraction of the nodes: $O(\log n)$ levels

9-coloring unrooted trees

1. Compute an orientation with out-degree ≤ 2 in $O(\log n)$ rounds

- This creates two directed forests (it's not a pseudoforest since in a tree there are no cycles)

2. Color each forest with 3 colors in $O\left(\log ^{*} n\right)$ rounds

- Every node \boldsymbol{v} then has two colors: $c_{v, 1}$ for forest 1 and $c_{v, 2}$ for forest 2
- The total number of colors used is $3^{\text {out-degree }} \leq 3^{2}=9$
- For every edge $\{u, v\}$, we have $\boldsymbol{c}_{u, 1} \neq \boldsymbol{c}_{v, 1}$ or $\boldsymbol{c}_{u, 2} \neq \boldsymbol{c}_{v, 2}$

Remark: The algorithm also works for (undirected) pseudoforests

Summary

Coloring trees

- Trees can be colored with 2 colors, this however requires time $\Omega(D)$
- Rooted trees can be 3-colored in time O(log* n)
- Unrooted trees can be 9 -colored in time $O(\log n)$ (it is possible to obtain 3 colors!)

Coloring general graphs with maximum degree Δ

- 3^{Δ}-coloring can be done in time $O\left(\right.$ log $^{*} n$)
- ($\Delta+1)$-coloring can be done in time $O\left(3^{\Delta}+\log * n\right)$
- If $\Delta=O(1)$, this is $O\left(\log ^{*} n\right)$
- This algorithm can be improved significantly: the current best runtime is roughly $O\left(\sqrt{ } \Delta+\log ^{*} n\right)$

Outlook

- Next lecture: randomized algorithms for ($\Delta+1$)-coloring and MIS in general graphs
- Later lecture: we will see that, for deterministic algorithms, some bounds from today's lecture are tight

