Randomized Coloring & MIS

Dennis Olivetti

University of Freiburg, Germany

Objective: properly color the nodes with $\leq \Delta + 1$ colors

Objective: properly color the nodes with $\leq \Delta + 1$ colors \blacktriangleright maximum degree

- **Objective**: properly color the nodes with $\leq \Delta + 1$ colors
 - ► <u>A</u>: maximum degree
 - $\land \Delta + 1$: what a simple sequential

Objective: properly color the nodes with $\leq \Delta + 1$ colors

- \blacktriangleright maximum degree
- $\land \Delta + 1$: what a simple sequential greedy algorithm achieves

 $(\Delta + 1)$ -Vertex Coloring

Objective: compute a maximal independent set (MIS)

Objective: compute a maximal independent set (MIS)

Independent Set: set of pairwise non-adjacent nodes

- **Objective**: compute a maximal independent set (MIS)
 - Independent Set: set of pairwise non-adjacent nodes
 - Maximal: the set cannot be extended

- **Objective:** compute a maximal independent set (MIS)
 - Independent Set: set of pairwise non-adjacent nodes
 - Maximal: the set cannot be extended
 - Easily solvable with a greedy algorithm

- **Objective:** compute a maximal independent set (MIS)
 - Independent Set: set of pairwise non-adjacent nodes
 - Maximal: the set cannot be extended
 - Easily solvable with a greedy algorithm
 - The Maximum Independent Set is a

- **Objective:** compute a maximal independent set (MIS)
 - Independent Set: set of pairwise non-adjacent nodes
 - Maximal: the set cannot be extended
 - Easily solvable with a greedy algorithm
 - The Maximum Independent Set is a different (much harder) problem

- Coloring trees
 - 2-coloring is solvable in trees, but requires a lot of time $(\Omega(D))$

- 2-coloring is solvable in trees, but requires a lot of time $(\Omega(D))$
- 3-coloring in rooted trees can be solved in O(log* n) time

- 2-coloring is solvable in trees, but requires a lot of time $(\Omega(D))$
- 3-coloring in rooted trees can be solved in O(log* n) time
- 3-coloring in unrooted trees can be solved in O(log n) time

- 2-coloring is solvable in trees, but requires a lot of time $(\Omega(D))$
- 3-coloring in rooted trees can be solved in O(log* n) time
- 3-coloring in unrooted trees can be solved in O(log n) time
- Coloring general graphs

- 2-coloring is solvable in trees, but requires a lot of time $(\Omega(D))$
- 3-coloring in rooted trees can be solved in O(log* n) time
- 3-coloring in unrooted trees can be solved in O(log n) time
- Coloring general graphs
 - 3^{Δ} -coloring in graphs with max degree Δ can be solved in $O(\log^* n)$ time

- 2-coloring is solvable in trees, but requires a lot of time $(\Omega(D))$
- 3-coloring in rooted trees can be solved in O(log* n) time
- 3-coloring in unrooted trees can be solved in O(log n) time
- Coloring general graphs
 - 3^{Δ} -coloring in graphs with max degree Δ can be solved in $O(\log^* n)$ time
 - (Δ +1)-coloring or MIS in graphs with max degree Δ can be solved in O(3^{Δ} + log* n) time

Coloring trees

- 2-coloring is solvable in trees, but requires a lot of time $(\Omega(D))$
- 3-coloring in rooted trees can be solved in O(log* n) time
- 3-coloring in unrooted trees can be solved in O(log n) time
- Coloring general graphs
 - 3^{Δ} -coloring in graphs with max degree Δ can be solved in $O(\log^* n)$ time
 - (Δ +1)-coloring or MIS in graphs with max degree Δ can be solved in O(3^{Δ} + log* n) time

- Fast if **∆** = **O(1)**

- 2-coloring is solvable in trees, but requires a lot of time $(\Omega(D))$
- 3-coloring in rooted trees can be solved in O(log* n) time
- 3-coloring in unrooted trees can be solved in O(log n) time
- Coloring general graphs
 - 3^{Δ} -coloring in graphs with max degree Δ can be solved in $O(\log^* n)$ time
 - (Δ +1)-coloring or MIS in graphs with max degree Δ can be solved in O(3^{Δ} + log* n) time
 - Fast if **∆** = **O(1)**
 - It can be significantly improved

- 2-coloring is solvable in trees, but requires a lot of time $(\Omega(D))$
- 3-coloring in rooted trees can be solved in O(log* n) time
- 3-coloring in unrooted trees can be solved in O(log n) time
- Coloring general graphs
 - 3^{Δ} -coloring in graphs with max degree Δ can be solved in $O(\log^* n)$ time
 - (Δ +1)-coloring or MIS in graphs with max degree Δ can be solved in O(3^{Δ} + log* n) time
 - Fast if **∆** = **O(1)**
 - It can be significantly improved
- Today

- 2-coloring is solvable in trees, but requires a lot of time $(\Omega(D))$
- 3-coloring in rooted trees can be solved in O(log* n) time
- 3-coloring in unrooted trees can be solved in O(log n) time
- Coloring general graphs
 - 3^{Δ} -coloring in graphs with max degree Δ can be solved in $O(\log^* n)$ time
 - $(\Delta+1)$ -coloring or MIS in graphs with max degree Δ can be solved in $O(3^{\Delta} + \log^{*} n)$ time
 - Fast if $\Delta = O(1)$
 - It can be significantly improved
- Today
 - **Randomized algorithms** for $(\Delta + 1)$ -coloring and MIS: $O(\log n)$ time in general graphs!

Finding upper and lower bounds for (1-x)^y

- Finding upper and lower bounds for (1-x)^y
- ▶ $1 x \le e^{-x}$ for all $x \in \mathbb{R}$

- Finding upper and lower bounds for (1-x)^y
- ▶ $1 x \le e^{-x}$ for all $x \in \mathbb{R}$
- ▶ 1 x ≥ 4^{-x} for all x ∈ [0, 1/2]

- Finding upper and lower bounds for (1-x)^y
- ▶ $1 x \le e^{-x}$ for all $x \in \mathbb{R}$
- ▶ $1 x \ge 4^{-x}$ for all $x \in [0, 1/2]$
 - $4^{-x} \le 1 x \le e^{-x}$ for all $x \in [0, 1/2]$

- Finding upper and lower bounds for (1-x)^y
- ▶ $1 x \le e^{-x}$ for all $x \in \mathbb{R}$
- 1 x ≥ 4^{-x} for all x ∈ [0, 1/2]
 - $4^{-x} \le 1 x \le e^{-x}$ for all $x \in [0, 1/2]$
- ► $\lim_{x\to\infty} (1 1/x)^x = 1/e$
 - $(1 1/x)^{x} < 1/e$ for all $x \ge 1$
 - (1 1/(x+1)) × > 1/e for all x > 0

5

Problem:

- **Problem:**
 - assign to each node a color from $\{1, \dots, \Delta + 1\}$

6

Problem:

- assign to each node a color from $\{1, \dots, \Delta + 1\}$
- Simple idea:

6

Problem:

- assign to each node a color from $\{1, ..., \Delta + 1\}$
- Simple idea:
 - just pick a random color •
Randomized Coloring: Ideas

Problem:

- assign to each node a color from $\{1, \dots, \Delta + 1\}$ \bullet
- Simple idea:
 - just pick a random color •
 - if no neighbor picked the same color, keep the color ullet

Randomized Coloring: Ideas

Problem:

- assign to each node a color from $\{1, \dots, \Delta + 1\}$ \bullet
- Simple idea:
 - just pick a random color •
 - if no neighbor picked the same color, keep the color •
 - otherwise, repeat ullet

7

- $\blacktriangleright P(X_v = X_u)$

$$\blacktriangleright P(X_v = X_u)$$

= 1 / (Δ+1)

$$\blacktriangleright P(X_v = X_u)$$

= 1 / (Δ+1)

 $\blacktriangleright P(X_v \neq X_u)$

$$\blacktriangleright P(X_v = X_u)$$

= 1 / (Δ+1)

```
► P(X_v \neq X_u)
```

 $= 1 - 1 / (\Delta + 1)$

$$\blacktriangleright P(X_v = X_u)$$

 $= 1 / (\Delta + 1)$

```
\blacktriangleright P(X_v \neq X_u)
```

 $= 1 - 1 / (\Delta + 1)$

P(X_v has a color different from all neighbors)

 $= 1 / (\Delta + 1)$

$$\blacktriangleright P(X_v \neq X_u)$$

 $= 1 - 1 / (\Delta + 1)$

P(X_v has a color different from all neighbors)

 $\geq (1 - 1 / (\Delta + 1))^{\Delta}$

 $= 1 / (\Delta + 1)$

$$\blacktriangleright P(X_v \neq X_u)$$

 $= 1 - 1 / (\Delta + 1)$

P(X_v has a color different from all neighbors)

 $\geq (1 - 1 / (\Delta + 1))^{\Delta}$

(1 - 1/(x+1)) × > 1/e for all x > 0

 $= 1 / (\Delta + 1)$

$$\blacktriangleright P(X_v \neq X_u)$$

 $= 1 - 1 / (\Delta + 1)$

P(X_v has a color different from all neighbors) $\geq (1 - 1 / (\Delta + 1))^{\Delta}$ (1 - 1/(x+1)) × > 1/e for all x > 0 > 1/e

After the first round, some nodes already picked a color (they were lucky with probability > 1/e)

- After the first round, some nodes already picked a color (they were lucky with probability > 1/e)
- In the second round, each node picks a random color

- After the first round, some nodes already picked a color (they were lucky with probability > 1/e)
- In the second round, each node picks a random color
 - It does not make sense to try colors already picked by the neighbors

- After the first round, some nodes already picked a color (they were lucky with probability > 1/e)
- In the second round, each node picks a random color
 - It does not make sense to try colors already picked by the neighbors
- ► Is it still true that for every possible color X_v , the probability that $X_v \neq X_u$ for all neighbors u of v is at least 1/e?

- After the first round, some nodes already picked a color (they were lucky with probability > 1/e)
- In the second round, each node picks a random color
 - It does not make sense to try colors already picked by the neighbors
- ► Is it still true that for every possible color X_v , the probability that $X_v \neq X_u$ for all neighbors u of v is at least 1/e?
 - No! Some colors are better than others.

- After the first round, some nodes already picked a color (they were lucky with probability > 1/e)
- In the second round, each node picks a random color
 - It does not make sense to try colors already picked by the neighbors
- ► Is it still true that for every possible color X_v , the probability that $X_v \neq X_u$ for all neighbors u of v is at least 1/e?
 - No! Some colors are better than others.

- After the first round, some nodes already picked a color (they were lucky with probability > 1/e)
- In the second round, each node picks a random color
 - It does not make sense to try colors already picked by the neighbors
- Is it still true that for every possible color X_v, the probability that X_v ≠ X_u for all neighbors u of v is at least 1/e?
 - No! Some colors are better than others.

- After the first round, some nodes already picked a color (they were lucky with probability > 1/e)
- In the second round, each node picks a random color
 - It does not make sense to try colors already picked by the neighbors
- Is it still true that for every possible color X_v, the probability that X_v ≠ X_u for all neighbors u of v is at least 1/e?
 - No! Some colors are better than others.

Let's make the problem harder and more precise

- Let's make the problem harder and more precise
- **Problem:**

- Let's make the problem harder and more precise
- **Problem:**
 - each node $v \in V$ in G = (V, E) must get a color from $\{1, \dots, deg(v) + 1\}$ •

- Let's make the problem harder and more precise
- **Problem:**
 - each node $\mathbf{v} \in \mathbf{V}$ in $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ must get a color from $\{1, \dots, \text{deg}(\mathbf{v}) + 1\}$ \bullet
- V_c: nodes $v \in V_C \subset V$ already have a color x_v such that $G[V_C]$ is properly colored

- Let's make the problem harder and more precise
- **Problem:**
 - each node v ext{v} V in G = (V, E) must get a color from {1, ..., deg(v) + 1}
- V_c: nodes $v \in V_c \subset V$ already have a color x_v such that $G[V_c]$ is properly colored

Subgraph induced by nodes in $V_{\rm C}$

- Let's make the problem harder and more precise
- **Problem:**
 - each node $v \in V$ in G = (V, E) must get a color from $\{1, ..., deg(v) + 1\}$ •
- V_c: nodes $v \in V_c \subset V$ already have a color x_v such that $G[V_c]$ is properly colored
- $V_U = V \setminus V_C$: set of uncolored nodes

- Let's make the problem harder and more precise
- **Problem:**
 - each node $v \in V$ in G = (V, E) must get a color from $\{1, \dots, deg(v) + 1\}$ ullet
- V_C: nodes $v \in V_C \subset V$ already have a color x_v such that $G[V_C]$ is properly colored
- $V_U = V \setminus V_C$: set of uncolored nodes
- F_v: set of free colors of node v. $F_v = \{1, ..., deg(v)+1\} \setminus U_{u \in V_C \cap N(v)} \{x_u\}$

- Let's make the problem harder and more precise
- **Problem:**
 - each node $v \in V$ in G = (V, E) must get a color from $\{1, \dots, deg(v) + 1\}$ ullet
- V_C: nodes $v \in V_C \subset V$ already have a color x_v such that $G[V_C]$ is properly colored
- $V_U = V \setminus V_C$: set of uncolored nodes
- F_v: set of free colors of node v. $F_v = \{1, ..., deg(v)+1\} \setminus U_{u \in V_C \cap N(v)} \{x_u\}$ All colors

- Let's make the problem harder and more precise
- **Problem:**
 - each node $v \in V$ in G = (V, E) must get a color from $\{1, \dots, deg(v) + 1\}$ ullet
- V_c: nodes $v \in V_c \subset V$ already have a color x_v such that $G[V_c]$ is properly colored
- $V_U = V \setminus V_C$: set of uncolored nodes
- F_v: set of free colors of node v. $F_v = \{1, ..., deg(v)+1\} \setminus U_{u \in V_C \cap N(v)} \{x_u\}$ All colors

minus

- Let's make the problem harder and more precise
- **Problem:**
 - each node $v \in V$ in G = (V, E) must get a color from $\{1, ..., deg(v) + 1\}$ ullet
- V_c: nodes $v \in V_C \subset V$ already have a color x_v such that $G[V_C]$ is properly colored
- $V_U = V \setminus V_C$: set of uncolored nodes
- F_v: set of free colors of node v. $F_v = \{1, ..., deg(v)+1\} \setminus \bigcup_{u \in V_C \cap N(v)} \{x_u\}$ All colors

minus the colors used by the neighbors

- Let's make the problem harder and more precise
- **Problem:**
 - each node $v \in V$ in G = (V, E) must get a color from $\{1, \dots, deg(v) + 1\}$ ullet
- V_C: nodes $v \in V_C \subset V$ already have a color x_v such that $G[V_C]$ is properly colored
- $V_U = V \setminus V_C$: set of uncolored nodes
- F_v: set of free colors of node v. $F_v = \{1, ..., deg(v)+1\} \setminus U_{u \in V_C \cap N(v)} \{x_u\}$

- Let's make the problem harder and more precise
- **Problem:**
 - each node $v \in V$ in G = (V, E) must get a color from $\{1, ..., deg(v) + 1\}$ ullet
- V_c: nodes $v \in V_c \subset V$ already have a color x_v such that $G[V_c]$ is properly colored
- $V_U = V \setminus V_C$: set of uncolored nodes
- F_v: set of free colors of node v. $F_v = \{1, ..., deg(v)+1\} \setminus \bigcup_{u \in V_C \cap N(v)} \{x_u\}$
- **Algorithm:**

- Let's make the problem harder and more precise
- **Problem:**
 - each node $v \in V$ in G = (V, E) must get a color from $\{1, ..., deg(v) + 1\}$ \bullet
- V_c: nodes $v \in V_C \subset V$ already have a color x_v such that $G[V_C]$ is properly colored
- $V_U = V \setminus V_C$: set of uncolored nodes
- F_v: set of free colors of node v. $F_v = \{1, ..., deg(v)+1\} \setminus \bigcup_{u \in V_C \cap N(v)} \{x_u\}$
- **Algorithm:**
 - Each node v picks a color uniformly at random from F_v lacksquare

- Let's make the problem harder and more precise
- **Problem:**
 - each node $v \in V$ in G = (V, E) must get a color from $\{1, ..., deg(v) + 1\}$ \bullet
- V_c: nodes $v \in V_C \subset V$ already have a color x_v such that $G[V_C]$ is properly colored
- $V_U = V \setminus V_C$: set of uncolored nodes
- F_v: set of free colors of node v. $F_v = \{1, ..., deg(v)+1\} \setminus \bigcup_{u \in V_C \cap N(v)} \{x_u\}$
- **Algorithm:**
 - Each node v picks a color uniformly at random from F_v
 - Each node $\mathbf{v} \in \mathbf{V}_{\mathbf{U}}$ keeps the color if no neighbor in $\mathbf{V}_{\mathbf{U}}$ picked the same color

► $N_x(v)$: uncolored neighbors u of v for which $x \in F_u$

10

▶ $N_x(v)$: uncolored neighbors u of v for which $x \in F_u$ Neighbors of v that could pick color x

- ▶ $N_x(v)$: uncolored neighbors u of v for which $x \in F_u$ Neighbors of v that could pick color x ► weight $w_x(v)$ of a color $x \in F_v$ for $v \in V_U$: $w_x(v) = \sum \frac{1}{|F_u|}$ u∈N_x(v)

- ▶ $N_x(v)$: uncolored neighbors u of v for which $x \in F_u$
- weight $w_x(v)$ of a color $x \in F_v$ for $v \in V_U$: $w_x(v) = \sum 1/|F_u|$

- ▶ $N_x(v)$: uncolored neighbors u of v for which $x \in F_u$ Neighbors of v that could pick color x ► weight $w_x(v)$ of a color $x \in F_v$ for $v \in V_U$: $w_x(v) = \sum \frac{1}{|F_u|}$ u∈N_x(v) ✓ For each neighbor, sum the probability that it takes color x
- Intuition: $w_x(v)$ is not the probability that some neighbor of v picks color x, but intuitively it **corresponds** to that

- ▶ $N_x(v)$: uncolored neighbors u of v for which $x \in F_u$ Neighbors of v that could pick color x ► weight $w_x(v)$ of a color $x \in F_v$ for $v \in V_U$: $w_x(v) = \sum_{i=1}^{n} \frac{1}{|F_u|}$ $U \in N_x(v)$ For each neighbor, sum the probability that it takes color x
- Intuition: $w_x(v)$ is not the probability that some neighbor of v picks color x, but intuitively it **corresponds** to that
- ► Lemma: $\sum_{\mathbf{x} \in \mathbf{F}_{\mathbf{v}}} \mathbf{w}_{\mathbf{x}}(\mathbf{v}) \leq |\mathbf{N}(\mathbf{v}) \cap \mathbf{V}_{\mathbf{U}}|$

- ▶ $N_x(v)$: uncolored neighbors u of v for which $x \in F_u$ Neighbors of v that could pick color x ► weight $w_x(v)$ of a color $x \in F_v$ for $v \in V_U$: $w_x(v) = \sum \frac{1}{|F_u|}$ sum the probability that it takes color x
- Intuition: $w_x(v)$ is not the probability that some neighbor of v picks color x, but intuitively it **corresponds** to that
- ► Lemma: $\sum_{x \in F_v} w_x(v) \leq |N(v) \cap V_U|$

The sum of the weights is at most the number of uncolored neighbors

- ▶ $N_x(v)$: uncolored neighbors u of v for which $x \in F_u$ Neighbors of v that could pick color x ► weight $w_x(v)$ of a color $x \in F_v$ for $v \in V_U$: $w_x(v) = \sum \frac{1}{|F_u|}$ $U \in N_x(v)$ For each neighbor, sum the probability that it takes color x
- Intuition: $w_x(v)$ is not the probability that some neighbor of v picks color x, but intuitively it **corresponds** to that
- ► Lemma: $\sum_{\mathbf{x} \in \mathbf{F}_{\mathbf{v}}} \mathbf{w}_{\mathbf{x}}(\mathbf{v}) \leq |\mathbf{N}(\mathbf{v}) \cap \mathbf{V}_{\mathbf{U}}|$ $\sum_{\mathbf{x} \in \mathbf{F}_{\mathbf{v}}} \mathbf{w}_{\mathbf{x}}(\mathbf{v})$ The sum of the weights is at most

- ▶ $N_x(v)$: uncolored neighbors u of v for which $x \in F_u$
- ► weight $w_x(v)$ of a color $x \in F_v$ for $v \in V_U$: $w_x(v) = \sum \frac{1}{|F_u|}$

- Intuition: $w_x(v)$ is not the probability that some neighbor of v picks color x, but intuitively it **corresponds** to that
- ► Lemma: $\sum_{\mathbf{x} \in \mathbf{F}_{\mathbf{v}}} \mathbf{w}_{\mathbf{x}}(\mathbf{v}) \leq |\mathbf{N}(\mathbf{v}) \cap \mathbf{V}_{\mathbf{U}}|$ $\sum_{\mathbf{x} \in \mathbf{F}_{\mathbf{v}}} \mathbf{w}_{\mathbf{x}}(\mathbf{v}) \leq |\mathbf{N}(\mathbf{v}) \cap \mathbf{V}_{\mathbf{U}}|$ The sum of the weights is at most

$$\sum_{x \in F_v} W_x(v) = \sum_{x \in F_v} \sum_{u \in N_x(v)} \frac{1}{|F_u|}$$

- ▶ $N_x(v)$: uncolored neighbors u of v for which $x \in F_u$
- ► weight $w_x(v)$ of a color $x \in F_v$ for $v \in V_U$: $w_x(v) = \sum \frac{1}{|F_u|}$

- Intuition: $w_x(v)$ is not the probability that some neighbor of v picks color x, but intuitively it **corresponds** to that
- ► Lemma: $\sum_{\mathbf{x} \in \mathbf{F}_{\mathbf{v}}} \mathbf{w}_{\mathbf{x}}(\mathbf{v}) \leq |\mathbf{N}(\mathbf{v}) \cap \mathbf{V}_{\mathbf{U}}|$ $\sum_{\mathbf{x} \in \mathbf{F}_{\mathbf{v}}} \mathbf{w}_{\mathbf{x}}(\mathbf{v}) \leq |\mathbf{N}(\mathbf{v}) \cap \mathbf{V}_{\mathbf{U}}|$ The sum of the weights is at most

$$\sum_{x \in F_v} W_x(v) = \sum_{x \in F_v} \sum_{u \in N_x(v)} \frac{1 / |F_u|}{1 / |F_u|}$$
$$= \sum_{u \in N(v) \cap V_U} \sum_{x \in F_v \cap F_u} \frac{1 / |F_u|}{1 / |F_u|}$$

- ▶ $N_x(v)$: uncolored neighbors u of v for which $x \in F_u$ <---
- ► weight $w_x(v)$ of a color $x \in F_v$ for $v \in V_U$: $w_x(v) = \sum \frac{1}{|F_u|}$

- Intuition: $w_x(v)$ is not the probability that some neighbor of v picks color x, but intuitively it **corresponds** to that
- Lemma: $\sum_{x \in F_v} w_x(v) \leq |N(v) \cap V_u| \qquad \sum_{x \in F_v} w_x(v) = \sum_{x \in F_v} \sum_{u \in N_x(v)} 1/|F_u|$ The sum of the weights is at most

- ▶ $N_x(v)$: uncolored neighbors u of v for which $x \in F_u$ <---
- ► weight $w_x(v)$ of a color $x \in F_v$ for $v \in V_U$: $w_x(v) = \sum \frac{1}{|F_u|}$

- Intuition: $w_x(v)$ is not the probability that some neighbor of v picks color x, but intuitively it **corresponds** to that
- Lemma: $\sum_{x \in F_v} w_x(v) \leq |N(v) \cap V_u| \qquad \sum_{x \in F_v} w_x(v) = \sum_{x \in F_v} \sum_{u \in N_x(v)} 1/|F_u|$ The sum of the weights is at most

- ▶ $N_x(v)$: uncolored neighbors u of v for which $x \in F_u$
- ► weight $w_x(v)$ of a color $x \in F_v$ for $v \in V_U$: $w_x(v) = \sum \frac{1}{|F_u|}$

- Intuition: $w_x(v)$ is not the probability that some neighbor of v picks color x, but intuitively it **corresponds** to that
- Lemma: $\sum_{\mathbf{x} \in \mathbf{F}_{\mathbf{v}}} \mathbf{w}_{\mathbf{x}}(\mathbf{v}) \leq |\mathbf{N}(\mathbf{v}) \cap \mathbf{V}_{\mathbf{U}}| \qquad \sum_{\mathbf{x} \in \mathbf{F}_{\mathbf{v}}} \mathbf{w}_{\mathbf{x}}(\mathbf{v}) = \sum_{\mathbf{x} \in \mathbf{F}_{\mathbf{v}}} \sum_{\mathbf{u} \in \mathbf{N}_{\mathbf{x}}(\mathbf{v})} 1 / |\mathbf{F}_{\mathbf{u}}|$ The sum of the weights is at most

- ▶ $N_x(v)$: uncolored neighbors u of v for which $x \in F_u$
- ► weight $w_x(v)$ of a color $x \in F_v$ for $v \in V_U$: $w_x(v) = \sum \frac{1}{|F_u|}$

- Intuition: $w_x(v)$ is not the probability that some neighbor of v picks color x, but intuitively it **corresponds** to that
- Lemma: $\sum_{\mathbf{x} \in \mathbf{F}_{\mathbf{v}}} \mathbf{w}_{\mathbf{x}}(\mathbf{v}) \leq |\mathbf{N}(\mathbf{v}) \cap \mathbf{V}_{\mathbf{U}}| \qquad \sum_{\mathbf{x} \in \mathbf{F}_{\mathbf{v}}} \mathbf{w}_{\mathbf{x}}(\mathbf{v}) = \sum_{\mathbf{x} \in \mathbf{F}_{\mathbf{v}}} \sum_{\mathbf{u} \in \mathbf{N}_{\mathbf{x}}(\mathbf{v})} 1 / |\mathbf{F}_{\mathbf{u}}|$ The sum of the weights is at most

- ▶ $N_x(v)$: uncolored neighbors u of v for which $x \in F_u$
- ► weight $w_x(v)$ of a color $x \in F_v$ for $v \in V_U$: $w_x(v) = \sum \frac{1}{|F_u|}$

- Intuition: $w_x(v)$ is not the probability that some neighbor of v picks color x, but intuitively it **corresponds** to that
- Lemma: $\sum_{\mathbf{x} \in \mathbf{F}_{\mathbf{v}}} \mathbf{w}_{\mathbf{x}}(\mathbf{v}) \leq |\mathbf{N}(\mathbf{v}) \cap \mathbf{V}_{\mathbf{U}}| \qquad \sum_{\mathbf{x} \in \mathbf{F}_{\mathbf{v}}} \mathbf{w}_{\mathbf{x}}(\mathbf{v}) = \sum_{\mathbf{x} \in \mathbf{F}_{\mathbf{v}}} \sum_{\mathbf{u} \in \mathbf{N}_{\mathbf{x}}(\mathbf{v})} 1 / |\mathbf{F}_{\mathbf{u}}|$ The sum of the weights is at most

► Lemma: $\sum_{v \in V} w_x(v) \leq |N(v) \cap V_u|$ X ∈ F_v • Corollary: $\sum w_x(v) \leq |N(v) \cap V_U| \leq |F_v| - 1$ X ∈ F_v

► Lemma: $\sum_{v \in V} w_x(v) \leq |N(v) \cap V_u|$ X ∈ F_v • Corollary: $\sum w_x(v) \leq |N(v) \cap V_U| \leq |F_v| - 1$ X ∈ F_v

is at least 4-w_x(v)

- is at least 4-w_x(v)
- P(v can keep its color x)

- is at least 4-w_x(v)
- P(v can keep its color x)

= $(1 - 1 / |F_u|)$ $\mathbf{u} \in \mathbf{N}_{\mathbf{X}}(\mathbf{v})$

- is at least 4-w_x(v)
- P(v can keep its color x)

Neighbors that could also pick **x**

pick x

- is at least 4-w_x(v)
- P(v can keep its color x)

$$= \left[\begin{array}{c} (1 - 1 / |F_u|) \\ u \in N_x(v) \end{array} \right]$$

Probability that u does not

Neighbors that could also pick x

- is at least 4-w_x(v)
- P(v can keep its color x)

$$= \left[\begin{array}{c} (1 - 1 / |F_u|) \\ u \in N_x(v) \end{array} \right]$$

Probability that u does not pick x

Neighbors that could also pick x

 $(1 - x) \ge 4^{-x}$ for all $x \in [0, 1/2]$

- is at least $4^{-w_{x}(v)}$
- P(v can keep its color x)

$$= \left[\begin{array}{c} (1 - 1 / |F_u|) \\ u \in N_x(v) \end{array} \right]$$

Probability that u does not pick x

Neighbors that could also pick x

 $(1 - x) \ge 4^{-x}$ for all $x \in [0, 1/2]$ $|F_u| \ge 2$, otherwise u has no uncolored neighbors

- is at least $4^{-w_{x}(v)}$
- P(v can keep its color x)

$$= \prod_{u \in N_{x}(v)} (1 - 1 / |F_{u}|) \ge \prod_{u \in N_{x}(v)} 4^{-1 / |F_{u}|}$$

u \end{tilder} N_{x}(v) u \end{tilder} N_{x}(v)
Probability that u does not pick x

Neighbors that could also pick X

 $(1 - x) \ge 4^{-x}$ for all $x \in [0, 1/2]$ $|F_u| \ge 2$, otherwise u has no uncolored neighbors

- is at least $4^{-w_{x}(v)}$
- P(v can keep its color x)

$$= \prod_{u \in N_{x}(v)} (1 - 1 / |F_{u}|) \ge \prod_{u \in N_{x}(v)} 4^{-1 / |F_{u}|}$$

u \end{tilder} N_{x}(v) u \end{tilder} N_{x}(v)
Probability that u does not pick x

Neighbors that could also pick X

 $(1 - x) \ge 4^{-x}$ for all $x \in [0, 1/2]$ $|F_u| \ge 2$, otherwise u has no uncolored neighbors

- is at least $4^{-w_{x}(v)}$
- P(v can keep its color x)

$$= \prod_{u \in N_{x}(v)} (1 - 1 / |F_{u}|) \ge \prod_{u \in N_{x}(v)} 4^{-1 / |F_{u}|}$$

u \end{tilder} N_{x}(v) u \end{tilder} N_{x}(v)
Probability that u does not pick x

Neighbors that could also pick **x**

 $(1 - x) \ge 4^{-x}$ for all $x \in [0, 1/2]$ $|F_u| \ge 2$, otherwise u has no uncolored neighbors

$$\frac{-\sum 1}{|v| + N_x(v)|} = 4^{|v| + N_x(v)|} = 4^{|v| + N_x(v)|} = 4^{|v| + N_x(v)|}$$

- \blacktriangleright P(v can keep its color X_v)

- $\mathbf{P}(\mathbf{v} \operatorname{can} \operatorname{keep} \operatorname{its} \operatorname{color} \mathbf{X}_{\mathbf{v}})$

 $= \sum \frac{1}{|F_v|} \cdot P(v \text{ can keep color } x | X_v = x)$ $\mathbf{X} \in \mathbf{F}_{\mathbf{V}}$

- \blacktriangleright P(v can keep its color X_v)

 $= \sum \frac{1}{|F_v|} \cdot P(v \text{ can keep color } x | X_v = x)$ X ∈ F_v $\geq \sum \frac{1}{|F_v| \cdot 4} - \frac{w_x(v)}{4}$ X ∈ F_v
- \blacktriangleright P(v can keep its color X_v)

 $= \sum \frac{1}{|F_v|} \cdot P(v \text{ can keep color } x | X_v = x)$ $\mathbf{X} \in \mathbf{F}_{\mathbf{V}}$ $\geq \sum \frac{1}{|F_v| \cdot 4} - \frac{w_x(v)}{4}$ X ∈ F_v $-1/|F_v|\cdot \sum_{x\in F_v} w_x(v)$

- \blacktriangleright P(v can keep its color X_v)

 $= \sum 1 / |F_v| \cdot P(v \text{ can keep color } x | X_v = x)$ $\mathbf{X} \in \mathbf{F}_{\mathbf{V}}$ $-1/|F_v|\cdot \sum_{x\in F_v} w_x(v)$

- **Theorem:** The probability that a node $v \in V_U$ can keep its random color is at least 1/4
- \blacktriangleright P(v can keep its color X_v)

= $\sum 1 / |F_v| \cdot P(v \text{ can keep color } x | X_v = x)$ $\mathbf{X} \in \mathbf{F}_{\mathbf{V}}$

- **Theorem:** The probability that a node $v \in V_U$ can keep its random color is at least 1/4
- \blacktriangleright P(v can keep its color X_v)

= $\sum 1 / |F_v| \cdot P(v \text{ can keep color } x | X_v = x)$ $\mathbf{X} \in \mathbf{F}_{\mathbf{V}}$

 $average(f(x)) \ge f(average(x))$ if f is convex

- **Theorem:** The probability that a node $v \in V_U$ can keep its random color is at least 1/4
- $\mathbf{P}(\mathbf{v} \operatorname{can} \operatorname{keep} \operatorname{its} \operatorname{color} \mathbf{X}_{\mathbf{v}})$

 $= \sum \frac{1}{|F_v|} \cdot P(v \text{ can keep color } x | X_v = x)$ $\mathbf{X} \in \mathbf{F}_{\mathbf{V}}$ $\geq \sum_{x \in F_v} \frac{-w_x(v)}{|F_v| \cdot 4}$ $-1/|F_v|\cdot\sum_{x\in F_v}w_x(v)$ **≥**4 This is **f(average(wx))**

 $average(f(x)) \ge f(average(x))$ if f is convex

- **Theorem:** The probability that a node $v \in V_U$ can keep its random color is at least 1/4
- $\mathbf{P}(\mathbf{v} \operatorname{can} \operatorname{keep} \operatorname{its} \operatorname{color} \mathbf{X}_{\mathbf{v}})$

 $= \sum \frac{1}{|F_v|} \cdot P(v \text{ can keep color } x | X_v = x)$ $\mathbf{X} \in \mathbf{F}_{\mathbf{V}}$ $\geq \sum_{x \in F_v} \frac{-w_x(v)}{|F_v| \cdot 4}$ $-1/|F_v|\cdot\sum_{x\in F_v}w_x(v)$ **≥**4 This is **f(average(wx))**

 $average(f(x)) \ge f(average(x))$ if f is convex

- **Theorem:** The probability that a node $v \in V_U$ can keep its random color is at least 1/4
- $\mathbf{P}(\mathbf{v} \operatorname{can} \operatorname{keep} \operatorname{its} \operatorname{color} \mathbf{X}_{\mathbf{v}})$

 $= \sum \frac{1}{|F_v|} \cdot P(v \text{ can keep color } x | X_v = x)$ $\mathbf{X} \in \mathbf{F}_{\mathbf{V}}$ $\geq \sum_{\mathbf{X} \in \mathbf{F}_{\mathbf{V}}} \mathbf{1} / |\mathbf{F}_{\mathbf{V}}| \cdot \mathbf{4}^{-\mathbf{W}_{\mathbf{X}}(\mathbf{V})}$ $-1/|F_v|\cdot\sum_{x\in F_v}w_x(v)$ ≥4 This is **f(average(wx))**

 $average(f(x)) \ge f(average(x))$ if f is convex

- **Theorem:** The probability that a node $v \in V_U$ can keep its random color is at least 1/4
- $\mathbf{P}(\mathbf{v} \operatorname{can} \operatorname{keep} \operatorname{its} \operatorname{color} \mathbf{X}_{\mathbf{v}})$

 $= \sum \frac{1}{|F_v|} \cdot P(v \text{ can keep color } x | X_v = x)$ $\mathbf{X} \in \mathbf{F}_{\mathbf{V}}$ $\geq \sum_{\mathbf{X} \in \mathbf{F}_{\mathbf{V}}} \mathbf{1} / |\mathbf{F}_{\mathbf{V}}| \cdot \mathbf{4}^{-\mathbf{W}_{\mathbf{X}}(\mathbf{V})}$ $-1/|F_v|\cdot\sum_{x\in F_v}w_x(v)$ ≥4 This is **f(average(wx))**

 $average(f(x)) \ge f(average(x))$ if f is convex

- **Theorem:** The probability that a node $v \in V_U$ can keep its random color is at least 1/4
- P(v can keep its color X_v)

 $= \sum \frac{1}{|F_v|} \cdot P(v \text{ can keep color } x | X_v = x)$ $\mathbf{X} \in \mathbf{F}_{\mathbf{V}}$ $\geq \sum_{\mathbf{X} \in \mathbf{F}_{\mathbf{V}}} \mathbf{1} / |\mathbf{F}_{\mathbf{V}}| \cdot \mathbf{4}^{-\mathbf{W}_{\mathbf{X}}(\mathbf{V})}$ $-1/|F_v|\cdot\sum_{x\in F_v}w_x(v)$ **≥**4 This is **f(average(wx))**

 $average(f(x)) \ge f(average(x))$ if f is convex

- **Theorem:** The probability that a node $v \in V_U$ can keep its random color is at least 1/4
- $\mathbf{P}(\mathbf{v} \operatorname{can} \operatorname{keep} \operatorname{its} \operatorname{color} \mathbf{X}_{\mathbf{v}})$

 $= \sum \frac{1}{|F_v|} \cdot P(v \text{ can keep color } x | X_v = x)$ $\mathbf{X} \in \mathbf{F}_{\mathbf{V}}$ $\geq \sum_{\mathbf{X} \in \mathbf{F}_{\mathbf{V}}} \mathbf{1} / |\mathbf{F}_{\mathbf{V}}| \cdot \mathbf{4}^{-\mathbf{W}_{\mathbf{X}}(\mathbf{V})}$ $-1/|F_v|\cdot\sum_{x\in F_v}w_x(v)$ **≥**4 This is **f(average(wx))**

 $average(f(x)) \ge f(average(x))$ if f is convex

- \blacktriangleright P(v can keep its color X_v)

 $= \sum \frac{1}{|F_v|} \cdot P(v \text{ can keep color } x | X_v = x)$ $\mathbf{X} \in \mathbf{F}_{\mathbf{V}}$ $\geq \sum \frac{1}{|F_v| \cdot 4} - \frac{w_x(v)}{4}$ X ∈ F_v $-1/|F_v|\cdot \sum_{x\in F_v} w_x(v)$

- \blacktriangleright P(v can keep its color X_v)

 $= \sum \frac{1}{|F_v|} \cdot P(v \text{ can keep color } x | X_v = x)$ $\mathbf{X} \in \mathbf{F}_{\mathbf{V}}$ $\geq \sum \frac{1}{|F_v| \cdot 4} - \frac{w_x(v)}{4}$ $\mathbf{X} \in \mathbf{F}_{\mathbf{V}}$ $-1/|F_v|\cdot \sum_{x\in F_v} w_x(v)$ - (1 / |F_v|) · (|F_v| -1) ≥ 4

- \blacktriangleright P(v can keep its color X_v)

 $= \sum \frac{1}{|F_v|} \cdot P(v \text{ can keep color } x | X_v = x)$ $\mathbf{X} \in \mathbf{F}_{\mathbf{V}}$ $\geq \sum \frac{1}{|F_v| \cdot 4} - \frac{w_x(v)}{4}$ $\mathbf{X} \in \mathbf{F}_{\mathbf{V}}$ $-1/|F_v|\cdot \sum_{x\in F_v} w_x(v)$ - (1 / |F_v|) · (|F_v| -1) ≥ 4 ≥4

{1, ..., deg(v) + 1}

- {1, ..., deg(v) + 1}
- ▶ P(v uncolored after T phases) $\leq (3/4)^{T}$

- {1, ..., deg(v) + 1}
- ▶ P(v uncolored after T phases) $\leq (3/4)^{T}$
- Choose $T = (c+1) \log_{4/3} n = O(\log n)$

- {1, ..., deg(v) + 1}
- ▶ P(v uncolored after T phases) $\leq (3/4)^{T}$
- Choose $T = (c+1) \log_{4/3} n = O(\log n)$
- ▶ P(vuncolored after T phases) $\leq 1 / n^{c+1}$

- {1, ..., deg(v) + 1}
- ▶ P(v uncolored after T phases) $\leq (3/4)^{T}$
- Choose **T** = (c+1) log_{4/3} n = O(log n)
- ▶ P(vuncolored after T phases) $\leq 1 / n^{c+1}$
- ▶ P(some node uncolored after T phases) $\leq n \cdot 1 / n^{c+1} = 1 / n^{c}$

- {1, ..., deg(v) + 1}
- ▶ P(v uncolored after T phases) $\leq (3/4)^{T}$
- Choose $T = (c+1) \log_{4/3} n = O(\log n)$
- ▶ P(vuncolored after T phases) $\leq 1 / n^{c+1}$
- ▶ P(some node uncolored after T phases) $\leq n \cdot 1 / n^{c+1} = 1 / n^{c}$

Theorem: the discussed randomized coloring algorithm computes a valid coloring of G=(V, E)in O(log n) rounds in expectation and with high probability. Every node veV gets a color in

Union Bound: $P(A \cup B) = P(A) + P(B) - P(A \cap B) \le P(A) + P(B)$

• Compute a $(\Delta + 1)$ -coloring, then **convert** it into an **MIS** as seen in the last lecture:

- Compute a $(\Delta + 1)$ -coloring, then **convert** it into an **MIS** as seen in the last lecture:
 - requires $O(\Delta + \log n)$

- Compute a $(\Delta+1)$ -coloring, then **convert** it into an MIS as seen in the last lecture:
 - requires $O(\Delta + \log n)$ \bullet

Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:

- Compute a $(\Delta+1)$ -coloring, then **convert** it into an MIS as seen in the last lecture:
 - requires $O(\Delta + \log n)$ \bullet
- Compute a random ID assignment, then run the greedy algorithm seen in the last lecture: ullet
- requires O(log n), but its analysis is highly non-trivial

- Compute a $(\Delta+1)$ -coloring, then **convert** it into an MIS as seen in the last lecture:
 - requires $O(\Delta + \log n)$
- Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:
 - requires O(log n), but its analysis is highly non-trivial
- We are going to follow a similar approach. At each round:

- Compute a $(\Delta+1)$ -coloring, then **convert** it into an MIS as seen in the last lecture:
 - requires $O(\Delta + \log n)$
- Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:
 - requires O(log n), but its analysis is highly non-trivial
- We are going to follow a similar approach. At each round:
 - Each node v picks a random number $R_v \in [0,1]$

- Compute a $(\Delta + 1)$ -coloring, then **convert** it into an MIS as seen in the last lecture:
 - requires $O(\Delta + \log n)$
- Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:
 - requires O(log n), but its analysis is highly non-trivial
- We are going to follow a similar approach. At each round:
 - Each node v picks a random number $R_v \in [0,1]$
 - Node v joins the MIS if $R_v < R_u$ for all $u \in N(v)$

- Compute a $(\Delta + 1)$ -coloring, then **convert** it into an **MIS** as seen in the last lecture:
 - requires $O(\Delta + \log n)$
- Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:
 - requires O(log n), but its analysis is highly non-trivial
- We are going to follow a similar approach. At each round:
 - Each node v picks a random number $R_v \in [0,1]$
 - Node v joins the MIS if $R_v < R_u$ for all $u \in N(v)$

- Compute a $(\Delta + 1)$ -coloring, then **convert** it into an **MIS** as seen in the last lecture:
 - requires $O(\Delta + \log n)$
- Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:
 - requires O(log n), but its analysis is highly non-trivial
- We are going to follow a similar approach. At each round:
 - Each node v picks a random number $R_v \in [0,1]$
 - Node v joins the MIS if $R_v < R_u$ for all $u \in N(v)$

At each round:

- At each round:
 - Each node v picks a random number $R_v \in [0,1]$ •

- At each round:
 - Each node v picks a random number $R_v \in [0,1]$ •
 - Node v joins the MIS if $R_v < R_u$ for all $u \in N(v)$ ullet

- At each round:
 - Each node v picks a random number $R_v \in [0,1]$ •
 - Node v joins the MIS if $R_v < R_u$ for all $u \in N(v)$
 - Remove MIS nodes and its neighbors •

- At each round:
 - Each node v picks a random number $R_v \in [0,1]$ \bullet
 - Node v joins the MIS if $R_v < R_u$ for all $u \in N(v)$
 - Remove MIS nodes and its neighbors lacksquare

- At each round:
 - Each node v picks a random number $R_v \in [0,1]$ \bullet
 - Node v joins the MIS if $R_v < R_u$ for all $u \in N(v)$
 - Remove MIS nodes and its neighbors

- At each round:
 - Each node v picks a random number $R_v \in [0,1]$ \bullet
 - Node v joins the MIS if $R_v < R_u$ for all $u \in N(v)$
 - Remove MIS nodes and its neighbors

- At each round:
 - Each node v picks a random number $R_v \in [0,1]$ \bullet
 - Node v joins the MIS if $R_v < R_u$ for all $u \in N(v)$
 - Remove MIS nodes and its neighbors

- At each round:
 - Each node v picks a random number $R_v \in [0,1]$ \bullet
 - Node v joins the MIS if $R_v < R_u$ for all $u \in N(v)$
 - Remove MIS nodes and its neighbors lacksquare

- At each round:
 - Each node v picks a random number $R_v \in [0,1]$ \bullet
 - Node v joins the MIS if $R_v < R_u$ for all $u \in N(v)$
 - Remove MIS nodes and its neighbors lacksquare

- At each round:
 - Each node v picks a random number $R_v \in [0,1]$ \bullet
 - Node v joins the MIS if $R_v < R_u$ for all $u \in N(v)$
 - Remove MIS nodes and its neighbors lacksquare

- At each round:
 - Each node v picks a random number $R_v \in [0,1]$ •
 - Node v joins the MIS if $R_v < R_u$ for all $u \in N(v)$ •
 - Remove MIS nodes and its neighbors •
- P(v joins MIS) = 1 / (deg(v) +1)

- At each round:
 - Each node v picks a random number $R_v \in [0,1]$ •
 - Node v joins the MIS if $R_v < R_u$ for all $u \in N(v)$
 - Remove MIS nodes and its neighbors lacksquare
- P(v joins MIS) = 1 / (deg(v) +1)

- At each round:
 - Each node v picks a random number $R_v \in [0,1]$
 - Node v joins the MIS if $R_v < R_u$ for all $u \in N(v)$
 - Remove MIS nodes and its neighbors
- P(v joins MIS) = 1 / (deg(v) +1)
- Can we prove that a constant fraction of nodes gets removed?

- At each round:
 - Each node v picks a random number $R_v \in [0,1]$
 - Node v joins the MIS if $R_v < R_u$ for all $u \in N(v)$
 - Remove MIS nodes and its neighbors
- P(v joins MIS) = 1 / (deg(v) +1)
- Can we prove that a constant fraction of nodes gets removed?
 - No!

Can we prove that a constant fraction of nodes gets removed?

- Can we prove that a constant fraction of nodes gets removed?
 - No!

- Can we prove that a constant fraction of nodes gets removed?
 - No!

- Can we prove that a constant fraction of nodes gets removed?
 - No!

- Can we prove that a constant fraction of nodes gets removed?
 - No!

- Can we prove that a constant fraction of nodes gets removed?
 - No!

- Can we prove that a constant fraction of nodes gets removed?
 - No!

P(u joins **MIS)** ≈ 1 / n

- Can we prove that a constant fraction of nodes gets removed?
 - No!

- **P(u** joins **MIS)** ≈ 1 / n
- P(some node of the right side joins MIS) $\approx 1 / \sqrt{n}$

- Can we prove that a constant fraction of nodes gets removed?
 - **No**!

n - √n

- **P(u** joins **MIS)** ≈ 1 / n
- P(some node of the right side joins MIS) $\approx 1 / \sqrt{n}$
- with high probability, no node of the right side joins the MIS

- Can we prove that a constant fraction of nodes gets removed?
 - **No**!

- **P(u** joins **MIS)** ≈ 1 / n
- P(some node of the right side joins MIS) $\approx 1 / \sqrt{n}$
- with high probability, no node of the right side joins the MIS
- nodes of the left side only get removed if they join MIS

- Can we prove that a constant fraction of nodes gets removed?
 - **No**!

- **P(u** joins **MIS)** ≈ 1 / n
- P(some node of the right side joins MIS) $\approx 1 / \sqrt{n}$
- with high probability, no node of the right side joins the MIS
- nodes of the left side only get removed if they join MIS

- Can we prove that a constant fraction of nodes gets removed?
 - **No**!

- **P(u** joins **MIS)** ≈ 1 / n
- P(some node of the right side joins MIS) $\approx 1 / \sqrt{n}$
- with high probability, no node of the right side joins the MIS
- nodes of the left side only get removed if they join MIS
- **P(v** joins **MIS**) ≈ 1 / √n

- Can we prove that a constant fraction of nodes gets removed?
 - **No**!

- **P(u** joins **MIS)** ≈ 1 / n
- P(some node of the right side joins MIS) $\approx 1 / \sqrt{n}$
- with high probability, no node of the right side joins the MIS
- nodes of the left side only get removed if they join MIS
- **P(v** joins **MIS**) ≈ 1 / √n
- only a 1/vn fraction of nodes join the MIS

Lemma: in expectation, at least half of the remaining edges are removed.

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge {u, v} gets removed if either u or v gets removed

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge {u, v} gets removed if either u or v gets removed

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge {u, v} gets removed if either u or v gets removed

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge {u, v} gets removed if either u or v gets removed

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge {u, v} gets removed if either u or v gets removed
- For each edge $\{u, v\}$, we define events $\mathcal{E}_{u,v}$ and $\mathcal{E}_{v,u}$

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge {u, v} gets removed if either u or v gets removed
- For each edge $\{u, v\}$, we define events $\mathcal{E}_{u,v}$ and $\mathcal{E}_{v,u}$
 - $\mathcal{E}_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge {u, v} gets removed if either u or v gets removed
- For each edge $\{u, v\}$, we define events $\mathcal{E}_{u,v}$ and $\mathcal{E}_{v,u}$
 - $\mathcal{E}_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge {u, v} gets removed if either u or v gets removed
- For each edge $\{u, v\}$, we define events $\mathcal{E}_{u,v}$ and $\mathcal{E}_{v,u}$
 - $\mathcal{E}_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$

Eu,v is true

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge {u, v} gets removed if either u or v gets removed
- For each edge $\{u, v\}$, we define events $\mathcal{E}_{u,v}$ and $\mathcal{E}_{v,u}$
 - $\mathcal{E}_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$

- E_{u,v} is true
- Ew,v is false

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge {u, v} gets removed if either u or v gets removed
- For each edge $\{u, v\}$, we define events $\mathcal{E}_{u,v}$ and $\mathcal{E}_{v,u}$
 - $\mathcal{E}_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$

$E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

$$X := \sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

$$X := \sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

• Claim: $X \le 2 \cdot \#$ deleted edges

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise
- $\mathbf{X} := \sum (\mathbf{X}_{u,v} + \mathbf{X}_{v,u})$ **{u, v}** ∈ **E**
- Claim: $X \le 2 \cdot \#$ deleted edges
 - For each node v, at most one incident edges satisfies $\mathcal{E}_{u,v}$ •

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise
- $\blacktriangleright \mathbf{X} := \sum (\mathbf{X}_{u,v} + \mathbf{X}_{v,u})$ **{u, v}** ∈ **E**
- Claim: $X \le 2 \cdot \#$ deleted edges
 - For each node v, at most one incident edges satisfies $\mathcal{E}_{u,v}$ •

E_{u,v} is true

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise
- $\mathbf{X} := \sum (\mathbf{X}_{u,v} + \mathbf{X}_{v,u})$ **{u, v}** ∈ **E**
- Claim: $X \le 2 \cdot \#$ deleted edges
 - For each node v, at most one incident edges satisfies $\mathcal{E}_{u,v}$ •

E_{u,v} is true X_{u,v} is deg(v)

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise
- $\mathbf{X} := \sum (\mathbf{X}_{u,v} + \mathbf{X}_{v,u})$ **{u, v}** ∈ **E**
- Claim: $X \le 2 \cdot \#$ deleted edges
 - For each node v, at most one incident edges satisfies $\mathcal{E}_{u,v}$ •

E_{u,v} is true X_{u,v} is deg(v)

E_{w,v} is false

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise
- $\mathbf{X} := \sum (\mathbf{X}_{u,v} + \mathbf{X}_{v,u})$ **{u, v}** ∈ **E**
- Claim: $X \le 2 \cdot \#$ deleted edges
 - For each node v, at most one incident edges satisfies $\mathcal{E}_{u,v}$ •

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

$$X := \sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

- Claim: $X \le 2 \cdot \#$ deleted edges
 - For each node v, at most one incident edges satisfies $\mathcal{E}_{u,v}$
 - so every edge incident to v is counted once, for v ullet

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

$$X := \sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

- Claim: $X \le 2 \cdot \#$ deleted edges
 - For each node v, at most one incident edges satisfies $\overline{\mathcal{E}_{u,v}}$
 - so every edge incident to v is counted once, for v

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

$$X := \sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

- Claim: $X \le 2 \cdot \#$ deleted edges
 - For each node v, at most one incident edges satisfies $\overline{\mathcal{E}_{u,v}}$
 - so every edge incident to v is counted once, for v

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

$$X := \sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

- Claim: $X \le 2 \cdot \#$ deleted edges
 - For each node v, at most one incident edges satisfies $\overline{\mathcal{E}_{u,v}}$
 - so every edge incident to v is counted once, for v
 - every edge can be counted once, for each endpoint

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

$$X := \sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

 $X \le 2 \cdot \# \text{ deleted edges}$

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

• X :=
$$\sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

- $X \le 2 \cdot \# \text{ deleted edges}$
- Claim: $\mathbb{E}[X] \ge |E|$

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

• X :=
$$\sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

- $X \le 2 \cdot \# \text{ deleted edges}$
- Claim: $\mathbb{E}[X] \ge |E|$
 - **E**[X_{u,v}] =

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

• X :=
$$\sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

- $X \le 2 \cdot \# \text{ deleted edges}$
- Claim: $\mathbb{E}[X] \ge |E|$
 - $\mathbb{E}[X_{u,v}] = deg(v) \cdot P(\mathcal{E}_{u,v})$

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

• X :=
$$\sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

- $X \le 2 \cdot \# \text{ deleted edges}$
- Claim: $\mathbb{E}[X] \ge |E|$
 - $\mathbb{E}[X_{u,v}] = deg(v) \cdot P(\mathcal{E}_{u,v})$

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

• X :=
$$\sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

- $X \le 2 \cdot \# \text{ deleted edges}$
- $\bullet \quad \text{Claim: } \mathbb{E}[X] \geq |E|$
 - $\mathbb{E}[X_{u,v}] = \deg(v) \cdot P(\mathcal{E}_{u,v}) \geq \deg(v) \cdot 1 / (\deg(u) + \deg(v))$

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

• X :=
$$\sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

- $X \le 2 \cdot \# \text{ deleted edges}$
- $\bullet \quad \text{Claim: } \mathbb{E}[X] \geq |E|$

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

$$X := \sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

- $X \le 2 \cdot \# \text{ deleted edges}$
- $\bullet \quad \text{Claim: } \mathbb{E}[X] \geq |E|$

 - **E**[X] =

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

• X :=
$$\sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

- $X \le 2 \cdot \# \text{ deleted edges}$
- $\bullet \quad \text{Claim: } \mathbb{E}[X] \geq |E|$

•
$$\mathbb{E}[\mathbf{X}] = \mathbb{E}\left[\sum_{\{\mathbf{u},\mathbf{v}\}\in \mathbf{E}} (\mathbf{X}_{\mathbf{u},\mathbf{v}} + \mathbf{X}_{\mathbf{v},\mathbf{u}})\right]$$

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

• X :=
$$\sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

- $X \le 2 \cdot \# \text{ deleted edges}$
- $\bullet \quad \text{Claim: } \mathbb{E}[X] \geq |E|$

•
$$\mathbb{E}[\mathbf{X}] = \mathbb{E}\left[\sum_{\{u,v\}\in E} (\mathbf{X}_{u,v} + \mathbf{X}_{v,u})\right]$$

Linearity of expectation: $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

$$X := \sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

- $X \le 2 \cdot \# \text{ deleted edges}$
- $\bullet \quad \text{Claim: } \mathbb{E}[X] \geq |E|$

•
$$\mathbb{E}[\mathbf{X}] = \mathbb{E}\left[\sum_{\{\mathbf{u},\mathbf{v}\}\in\mathsf{E}} (\mathbf{X}_{\mathbf{u},\mathbf{v}} + \mathbf{X}_{\mathbf{v},\mathbf{u}})\right] = \sum_{\{\mathbf{u},\mathbf{v}\}\in\mathsf{E}} (\mathbb{E}[\mathbf{X}_{\mathbf{u},\mathbf{v}}] + \mathbb{E})$$

Linearity of expectation: $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

$$X := \sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

- $X \le 2 \cdot \# \text{ deleted edges}$
- $\bullet \quad \text{Claim: } \mathbb{E}[X] \geq |E|$

•
$$\mathbb{E}[\mathbf{X}] = \mathbb{E}\left[\sum_{\{u,v\}\in \mathsf{E}} (\mathbf{X}_{u,v} + \mathbf{X}_{v,u})\right] = \sum_{\{u,v\}\in \mathsf{E}} \mathbb{E}[\mathbf{X}_{u,v}] + \mathbb{E}[\mathbf{X}_{v,u}]\right) \ge \sum_{\{u,v\}\in \mathsf{E}} 1$$

Linearity of expectation: $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$

At most deg(u) + deg(v) nodes

- $E_{u,v} \Leftrightarrow \forall w \in N(u) \cup N(v) \setminus \{u\} : X_u < X_w$
- $X_{u,v} := deg(v)$ if $E_{u,v}$ holds, 0 otherwise

$$X := \sum_{\{u, v\} \in E} (X_{u,v} + X_{v,u})$$

- $X \le 2 \cdot \# \text{ deleted edges}$
- $\bullet \quad \text{Claim: } \mathbb{E}[X] \geq |E|$

•
$$\mathbb{E}[\mathbf{X}] = \mathbb{E}\left[\sum_{\{u,v\}\in \mathsf{E}} (\mathbf{X}_{u,v} + \mathbf{X}_{v,u})\right] = \sum_{\{u,v\}\in \mathsf{E}} (\mathbb{E}[\mathbf{X}_{u,v}] + \mathbb{E}[\mathbf{X}_{v,u}]) \ge \sum_{\{u,v\}\in \mathsf{E}} 1 = |\mathbf{E}|$$

Linearity of expectation: $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$

Lemma: in expectation, at least half of the remaining edges are removed.

- Lemma: in expectation, at least half of the remaining edges are removed.
- $X \le 2 \cdot \# \text{ deleted edges}$

- Lemma: in expectation, at least half of the remaining edges are removed.
- $X \le 2 \cdot \# \text{ deleted edges}$
- $\mathbf{E}[\mathbf{X}] \geq |\mathbf{E}|$

- Lemma: in expectation, at least half of the remaining edges are removed.
- $X \le 2 \cdot \# \text{ deleted edges}$
- $\mathbf{E}[\mathbf{X}] \geq |\mathbf{E}|$
- $\Rightarrow # deleted edges \geq X/2$

- Lemma: in expectation, at least half of the remaining edges are removed.
- $X \le 2 \cdot \# \text{ deleted edges}$
- $\mathbf{E}[\mathbf{X}] \geq |\mathbf{E}|$
- $\Rightarrow # deleted edges \geq X/2$
- $\mathbb{E}[\# \text{deleted edges}] \geq \mathbb{E}[X/2] \geq |E|/2$

Lemma: in expectation, at least half of the remaining edges are removed.

- Lemma: in expectation, at least half of the remaining edges are removed.
- and with high probability.

Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation

- Lemma: in expectation, at least half of the remaining edges are removed.
- and with high probability.

Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation

- Lemma: in expectation, at least half of the remaining edges are removed.
- and with high probability.

Markov's inequality: $P(X \ge a) \le \mathbb{E}[X] / a$ \bullet

Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation
- Lemma: in expectation, at least half of the remaining edges are removed.
- Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation and with high probability.

- Markov's inequality: $P(X \ge a) \le \mathbb{E}[X] / a$
- What is the **probability** that the number of **remaining edges** is at least a fraction 3/4?

- Lemma: in expectation, at least half of the remaining edges are removed.
- Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation and with high probability.

- Markov's inequality: $P(X \ge a) \le \mathbb{E}[X] / a$
- What is the **probability** that the number of **remaining edges** is at least a fraction 3/4?
- By Markov: at most 2/3

- Lemma: in expectation, at least half of the remaining edges are removed.
- Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation and with high probability.

- Markov's inequality: $P(X \ge a) \le \mathbb{E}[X] / a$
- What is the **probability** that the number of **remaining edges** is at least a fraction 3/4?
- By Markov: at most 2/3
- Hence, with probability at least 1/3 we remove of at least a fraction 1/4 of edges.

- Lemma: in expectation, at least half of the remaining edges are removed.
- and with high probability.

- Markov's inequality: $P(X \ge a) \le \mathbb{E}[X] / a$ lacksquare
- By Markov: at most 2/3 \bullet

Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation

What is the **probability** that the number of **remaining edges** is at least a fraction 3/4?

Hence, with probability at least 1/3 we remove of at least a fraction 1/4 of edges.

Assume we want to compute a coloring on graph G

- Assume we want to compute a coloring on graph G
- We transform G into a new virtual graph H

24

- Assume we want to compute a coloring on graph G
- We transform G into a new virtual graph H
 - that can be simulated on G

24

- Assume we want to compute a coloring on graph G
- We transform G into a new virtual graph H
 - that can be **simulated** on **G**
- 1. Create Δ +1 copies of G

a С db $(a_1$ C_1 (d1

- Assume we want to compute a coloring on graph G
- We transform G into a new virtual graph H
 - that can be **simulated** on **G**
- 1. Create Δ +1 copies of G
- 2. **Connect** corresponding nodes in the copies to a **clique**

a С d b

- Assume we want to compute a coloring on graph G
- We transform G into a new virtual graph H
 - that can be simulated on G
- 1. Create Δ +1 copies of G
- 2. **Connect** corresponding nodes in the copies to a **clique**

- Assume we want to compute a coloring on graph G
- We transform G into a new virtual graph H
 - that can be **simulated** on **G**
- 1. Create Δ +1 copies of G
- 2. **Connect** corresponding nodes in the copies to a **clique**
- 3. Compute MIS on H

a С d b

Claim: the MIS contains exactly one node from each column

- **Claim**: the MIS contains exactly one node from each column
 - At most 1: each column forms a clique \bullet

- **Claim:** the MIS contains exactly one node from each column
 - **At most 1**: each column forms a clique
 - At least 1: each neighbor in G can cover at most 1 copy. But there are at most Δ neighbors in G, and Δ +1 copies. So at least one node for each column cannot be a neighbor of MIS nodes of other columns.

а С d D

- **Claim**: the MIS contains exactly one node from each column
 - At most 1: each column forms a clique
 - At least 1: each neighbor in G can cover at most 1 copy. But there are at most Δ neighbors in G, and Δ +1 copies. So at least one node for each column cannot be a neighbor of MIS nodes of other columns.
- **Algorithm**: if a **column node v**_i is in the **MIS**, node v picks color i

а С d D a (**a**3) **a**4 **C**4

alternative way to compute a Δ +1 coloring in O(log n) rounds.

Theorem: together with the O(log n) randomized MIS algorithm, this reduction gives an

- **Theorem**: together with the O(log n) randomized MIS algorithm, this reduction gives an alternative way to compute a $\Delta + 1$ coloring in O(log n) rounds.
- **Remark:** this construction can be modified to assign colors in {1, ..., deg(v)+1}:

- **Theorem**: together with the O(log n) randomized MIS algorithm, this reduction gives an alternative way to compute a Δ +1 coloring in O(log n) rounds.
- **Remark:** this construction can be modified to assign colors in {1, ..., deg(v)+1}:
 - Put deg(v)+1 copies of v instead of Δ +1 ullet

• MIS and Δ +1 coloring (randomized): O(log n) [Luby '86]

- MIS and Δ+1 coloring (randomized): O(log n) [Luby '86]
- Best deterministic algorithms:

- MIS and Δ+1 coloring (randomized): O(log n) [Luby '86]
- Best deterministic algorithms:
 - O(log^c n) rounds [Rozhoň, Ghaffari, 2019] MIS: •

- MIS and Δ +1 coloring (randomized): O(log n) [Luby '86]
- Best deterministic algorithms:
 - O(log^c n) rounds [Rozhoň, Ghaffari, 2019] • MIS:
 - **O(log² n log \Delta) rounds** [Kuhn, Ghaffari, 2020] Δ+1 coloring:

- MIS and Δ +1 coloring (randomized): O(log n) [Luby '86]
- Best deterministic algorithms:
 - MIS: O(log^c n) rounds [Rozhoň, Ghaffari, 2019]
 - Δ+1 coloring: **O(log² n log \Delta) rounds** [Kuhn, Ghaffari, 2020]
- Best randomized algorithms:

- MIS and Δ +1 coloring (randomized): O(log n) [Luby '86]
- Best deterministic algorithms:
 - MIS: O(log^c n) rounds [Rozhoň, Ghaffari, 2019] •
 - **O(log² n log \Delta) rounds** [Kuhn, Ghaffari, 2020] Δ+1 coloring:
- Best randomized algorithms:
 - $O(\log \Delta + \log^{c} \log n)$ MIS: [Ghaffari '16] •

- MIS and Δ +1 coloring (randomized): O(log n) [Luby '86]
- Best deterministic algorithms:
 - [Rozhoň, Ghaffari, 2019] MIS: O(log^c n) rounds •
 - Δ+1 coloring: **O(log² n log \Delta) rounds** [Kuhn, Ghaffari, 2020]
- Best randomized algorithms:
 - $O(\log \Delta + \log^{c} \log n)$ MIS: [Ghaffari '16] • [Chang, Li, Pettie '18] **Δ+1** coloring: O(log^c log n) •

- MIS and Δ +1 coloring (randomized): O(log n) [Luby '86]
- Best deterministic algorithms:
 - MIS: O(log^c n) rounds [Rozhoň, Ghaffari, 2019]
 - Δ+1 coloring: **O(log² n log \Delta) rounds** [Kuhn, Ghaffari, 2020]
- Best randomized algorithms:

•	MIS:	O(log Δ + log ^c log n)	[Ghaffari '16]
•	Δ+1 coloring:	O(logº log n)	[Chang, Li, Pettie

Best lower bounds:

e '18]

- MIS and Δ +1 coloring (randomized): O(log n) [Luby '86]
- Best deterministic algorithms:
 - [Rozhoň, Ghaffari, 2019] • MIS: O(log^c n) rounds
 - Δ+1 coloring: **O(log² n log \Delta) rounds** [Kuhn, Ghaffari, 2020]
- Best randomized algorithms:

• MIS :	O(log Δ + log ^c log n)	[Ghaffari '16]
 Δ+1 colori 	ng: O(logº log n)	[Chang, Li, Pettie
Best lower bou	nds:	

[Linial '87] **Δ+1 coloring**: **Ω(log* n)** •

e '18]

- MIS and Δ +1 coloring (randomized): O(log n) [Luby '86]
- **Best deterministic algorithms:**
 - MIS: O(log^c n) rounds [Rozhoň, Ghaffari, 2019] •
 - **O(log² n log \Delta) rounds** [Kuhn, Ghaffari, 2020] Δ+1 coloring:
- Best randomized algorithms:

•	MIS:	O(log Δ + log ^c log n)	[Ghaffari '16]
•	Δ+1 coloring:	O(logº log n)	[Chang, Li, Pettie
	. I laurar harmalar		

- Best lower bounds:
 - Δ+1 coloring: **Ω(log* n)** [Linial '87]
 - MIS (randomized): $\Omega(\sqrt{\log n} / \log \log n))$ [Kuhn, Moscibroda, Wattenhofer '04] •

'18]

- MIS and Δ +1 coloring (randomized): **O(log n)** [Luby '86]
- **Best deterministic algorithms:**
 - MIS: O(log^c n) rounds [Rozhoň, Ghaffari, 2019] •
 - **Δ+1 coloring**: **O(log² n log \Delta) rounds** [Kuhn, Ghaffari, 2020] •
- Best randomized algorithms:

•	MIS:	O(log Δ + log ^c log n)	[Ghaffari '16]
•	Δ+1 coloring:	O(logº log n)	[Chang, Li, Pettie

- **Best lower bounds:**
 - **Δ+1 coloring**: **Ω(log* n)** [Linial '87] •
 - Ω(√(log n / log log n)) MIS (randomized): •
 - MIS (deterministic): $\Omega(\log n / \log \log n)$ ۲

'18]

[Kuhn, Moscibroda, Wattenhofer '04]

[Balliu, Brandt, Hirvonen, Olivetti, Rabie, Suomela '19]

- MIS and Δ +1 coloring (randomized): **O(log n)** [Luby '86]
- **Best deterministic algorithms:**
 - O(log^c n) rounds [Rozhoň, Ghaffari, 2019] MIS: •
 - **Δ+1 coloring**: **O(log² n log \Delta) rounds** [Kuhn, Ghaffari, 2020] •
- Best randomized algorithms:

•	MIS:	O(log Δ + log ^c log n)	[Ghaffari '16]
•	Δ+1 coloring:	O(logº log n)	[Chang, Li, Pettie '18]

- **Best lower bounds:**
 - [Linial '87] **Δ+1 coloring**: **Ω(log* n)** •
 - Ω(√(log n / log log n)) MIS (randomized): \bullet
 - MIS (deterministic): $\Omega(\log n / \log \log n)$ ۲
 - MIS (deterministic, on trees): \bullet

[Kuhn, Moscibroda, Wattenhofer '04]

[Balliu, Brandt, Hirvonen, Olivetti, Rabie, Suomela '19]

- MIS and Δ +1 coloring (randomized): **O(log n)** [Luby '86]
- **Best deterministic algorithms:**
 - O(log^c n) rounds [Rozhoň, Ghaffari, 2019] MIS: •
 - **O(log² n log \Delta) rounds** [Kuhn, Ghaffari, 2020] **Δ+1 coloring**: •
- Best randomized algorithms:

•	MIS:	O(log ∆ + logc log n)	[Ghaffari '16]
•	Δ+1 coloring:	O(log ^c log n)	[Chang, Li, Pettie '18]

- **Best lower bounds:**
 - [Linial '87] **Δ+1 coloring**: **Ω(log* n)** •
 - $\Omega(\sqrt{\log n} / \log \log n))$ MIS (randomized): \bullet
 - MIS (deterministic): $\Omega(\log n / \log \log n)$ ۲
 - MIS (deterministic, on trees):

[Barenboim, Elkin '08] O(log n / log log n)

[Kuhn, Moscibroda, Wattenhofer '04]

[Balliu, Brandt, Hirvonen, Olivetti, Rabie, Suomela '19]

- MIS and Δ +1 coloring (randomized): **O(log n)** [Luby '86]
- **Best deterministic algorithms:**
 - MIS: O(log^c n) rounds [Rozhoň, Ghaffari, 2019] •
 - **O(log² n log \Delta) rounds** [Kuhn, Ghaffari, 2020] **Δ+1 coloring**: •
- **Best randomized algorithms:**

•	MIS:	O(log Δ + log ^c log n)	[Ghaffari '16]
•	Δ+1 coloring:	O(logº log n)	[Chang, Li, Pettie '18]

- **Best lower bounds:**
 - [Linial '87] Δ +1 coloring: **Ω(log* n)** •
 - MIS (randomized): $\Omega(\sqrt{\log n} / \log \log n))$ \bullet
 - MIS (deterministic): $\Omega(\log n / \log \log n)$ ۲
 - MIS (deterministic, on trees): \bullet
 - O(log n / log log n)
 - Ω(log n / log log n) •

- [Barenboim, Elkin '08]

[Kuhn, Moscibroda, Wattenhofer '04]

[Balliu, Brandt, Hirvonen, Olivetti, Rabie, Suomela '19]

[Balliu, Brandt, Kuhn, Olivetti '21] <- result from 3 weeks ago!