Randomized Coloring \& MIS

Dennis Olivetti

University of Freiburg, Germany

Distributed Coloring Problem

($\Delta+1$)-Vertex Coloring

Distributed Coloring Problem

Objective: properly color the nodes with $\leq \Delta+1$ colors
($\Delta+1$)-Vertex Coloring

Distributed Coloring Problem

Objective: properly color the nodes with $\leq \Delta+1$ colors

- Δ : maximum degree
($\Delta+1$)-Vertex Coloring

Distributed Coloring Problem

Objective: properly color the nodes with $\leq \Delta+1$ colors

- Δ : maximum degree
- $\Delta+1$: what a simple sequential
($\Delta+1$)-Vertex Coloring

Distributed Coloring Problem

Objective: properly color the nodes with $\leq \Delta+1$ colors

- Δ : maximum degree
- $\Delta+1$: what a simple sequential
greedy algorithm achieves
($\Delta+1$)-Vertex Coloring

Distributed MIS Problem

Maximal Independent Set

Distributed MIS Problem

Objective: compute a maximal independent set (MIS)

Maximal Independent Set

Distributed MIS Problem

Objective: compute a maximal independent set (MIS)

- Independent Set: set of pairwise non-adjacent nodes

Maximal Independent Set

Distributed MIS Problem

Objective: compute a maximal independent set (MIS)

- Independent Set: set of pairwise non-adjacent nodes
- Maximal: the set cannot be extended

Maximal Independent Set

Distributed MIS Problem

Objective: compute a maximal independent set (MIS)

- Independent Set: set of pairwise non-adjacent nodes
- Maximal: the set cannot be extended
- Easily solvable with a greedy algorithm Maximal Independent Set

Distributed MIS Problem

Objective: compute a maximal independent set (MIS)

- Independent Set: set of pairwise non-adjacent nodes
- Maximal: the set cannot be extended
- Easily solvable with a greedy algorithm Maximal Independent Set
- The Maximum Independent Set is a

Distributed MIS Problem

Objective: compute a maximal independent set (MIS)

- Independent Set: set of pairwise non-adjacent nodes
- Maximal: the set cannot be extended
- Easily solvable with a greedy algorithm Maximal Independent Set
- The Maximum Independent Set is a different (much harder) problem

Summary From Last Time

Summary From Last Time

- Coloring trees

Summary From Last Time

- Coloring trees

- 2-coloring is solvable in trees, but requires a lot of time ($\Omega(\mathrm{D})$)

Summary From Last Time

- Coloring trees

- 2-coloring is solvable in trees, but requires a lot of time ($\Omega(\mathrm{D})$)
- 3-coloring in rooted trees can be solved in O(log* n) time

Summary From Last Time

- Coloring trees

- 2-coloring is solvable in trees, but requires a lot of time ($\Omega(\mathrm{D})$)
- 3-coloring in rooted trees can be solved in O(log* n) time
- 3-coloring in unrooted trees can be solved in $\mathrm{O}(\log \mathrm{n})$ time

Summary From Last Time

- Coloring trees
- 2-coloring is solvable in trees, but requires a lot of time ($\Omega(\mathrm{D})$)
- 3-coloring in rooted trees can be solved in O(log* n) time
- 3-coloring in unrooted trees can be solved in $0(\log n)$ time
- Coloring general graphs

Summary From Last Time

- Coloring trees

- 2-coloring is solvable in trees, but requires a lot of time ($\Omega(\mathrm{D})$)
- 3-coloring in rooted trees can be solved in O(log* n) time
- 3-coloring in unrooted trees can be solved in $0(\log n)$ time
- Coloring general graphs
- 3^{Δ}-coloring in graphs with max degree Δ can be solved in $0(\log * \mathrm{n})$ time

Summary From Last Time

- Coloring trees

- 2-coloring is solvable in trees, but requires a lot of time ($\Omega(\mathrm{D})$)
- 3-coloring in rooted trees can be solved in O(log* n) time
- 3-coloring in unrooted trees can be solved in $0(\log n)$ time
- Coloring general graphs
- 3^{Δ}-coloring in graphs with max degree Δ can be solved in $0(\log * \mathrm{n})$ time
- ($\Delta+1$)-coloring or MIS in graphs with max degree Δ can be solved in $0\left(3 \Delta+\log ^{*} n\right)$ time

Summary From Last Time

- Coloring trees

- 2-coloring is solvable in trees, but requires a lot of time ($\Omega(\mathrm{D})$)
- 3-coloring in rooted trees can be solved in O(log* n) time
- 3-coloring in unrooted trees can be solved in $0(\log n)$ time
- Coloring general graphs
- 3^{Δ}-coloring in graphs with max degree Δ can be solved in $0(\log * \mathrm{n})$ time
- ($\Delta+1$)-coloring or MIS in graphs with max degree Δ can be solved in $0\left(3 \Delta+\log ^{*} n\right)$ time
- Fast if $\Delta=0$ (1)

Summary From Last Time

- Coloring trees

- 2-coloring is solvable in trees, but requires a lot of time ($\Omega(\mathrm{D})$)
- 3-coloring in rooted trees can be solved in O(log* n) time
- 3-coloring in unrooted trees can be solved in $0(\log n)$ time
- Coloring general graphs
- 3^{Δ}-coloring in graphs with max degree Δ can be solved in $0(\log * \mathrm{n})$ time
- ($\Delta+1$)-coloring or MIS in graphs with max degree Δ can be solved in $0\left(3 \Delta+\log ^{*} n\right)$ time
- Fast if $\Delta=0$ (1)
- It can be significantly improved

Summary From Last Time

- Coloring trees

- 2-coloring is solvable in trees, but requires a lot of time ($\Omega(\mathrm{D})$)
- 3-coloring in rooted trees can be solved in O(log* n) time
- 3-coloring in unrooted trees can be solved in $0(\log n)$ time
- Coloring general graphs
- 3^{Δ}-coloring in graphs with max degree Δ can be solved in $0(\log * \mathrm{n})$ time
- ($\Delta+1$)-coloring or MIS in graphs with max degree Δ can be solved in $0\left(3 \Delta+\log ^{*} n\right)$ time
- Fast if $\Delta=0$ (1)
- It can be significantly improved
- Today

Summary From Last Time

- Coloring trees

- 2-coloring is solvable in trees, but requires a lot of time ($\Omega(\mathrm{D})$)
- 3-coloring in rooted trees can be solved in O(log* n) time
- 3-coloring in unrooted trees can be solved in $0(\log n)$ time
- Coloring general graphs
- 3^{Δ}-coloring in graphs with max degree Δ can be solved in $0(\log * \mathrm{n})$ time
- ($\Delta+1$)-coloring or MIS in graphs with max degree Δ can be solved in $0\left(3 \Delta+\log ^{*} n\right)$ time
- Fast if $\Delta=0$ (1)
- It can be significantly improved

- Today

- Randomized algorithms for ($\Delta+1$)-coloring and MIS: $0(\log \mathrm{n})$ time in general graphs!

Some Useful Inequalities

Some Useful Inequalities

- Finding upper and lower bounds for (1-x)y

Some Useful Inequalities

- Finding upper and lower bounds for (1-x)y
- $1-x \leq e^{-x}$ for all $x \in \mathbb{R}$

Some Useful Inequalities

- Finding upper and lower bounds for (1-x)y
- $1-\mathrm{x} \leq \mathrm{e}^{-\mathrm{x}}$ for all $\mathrm{x} \in \mathbb{R}$
- $1-x \geq 4^{-x}$ for all $x \in[0,1 / 2]$

Some Useful Inequalities

- Finding upper and lower bounds for (1-x)y
- $1-x \leq e^{-x}$ for all $x \in \mathbb{R}$
- 1-x $\geq 4^{-x}$ for all $x \in[0,1 / 2]$
- $4^{-x} \leq 1-x \leq e^{-x}$ for all $x \in[0,1 / 2]$

Some Useful Inequalities

- Finding upper and lower bounds for (1-x)y
- $1-x \leq e^{-x}$ for all $x \in \mathbb{R}$
- $1-x \geq 4^{-x}$ for all $x \in[0,1 / 2]$
- $4^{-x} \leq 1-x \leq e^{-x}$ for all $x \in[0,1 / 2]$
- $\lim _{x \rightarrow \infty}(1-1 / x)^{x}=1 / e$
- $(1-1 / x)^{x}<1 / e$ for all $x \geq 1$
- $(1-1 /(x+1))^{x}>1 / e$ for all $x>0$

Randomized Coloring: Ideas

Randomized Coloring: Ideas

- Problem:

Randomized Coloring: Ideas

- Problem:
- assign to each node a color from $\{1, \ldots, \Delta+1\}$

Randomized Coloring: Ideas

- Problem:
- assign to each node a color from $\{1, \ldots, \Delta+1\}$
- Simple idea:

Randomized Coloring: Ideas

- Problem:
- assign to each node a color from $\{1, \ldots, \Delta+1\}$
- Simple idea:
- just pick a random color

Randomized Coloring: Ideas

- Problem:
- assign to each node a color from $\{1, \ldots, \Delta+1\}$
- Simple idea:
- just pick a random color
- if no neighbor picked the same color, keep the color

Randomized Coloring: Ideas

- Problem:
- assign to each node a color from $\{1, \ldots, \Delta+1\}$
- Simple idea:
- just pick a random color
- if no neighbor picked the same color, keep the color
- otherwise, repeat

Random Colors

Random Colors

- Lemma: If each node $\mathrm{v} \in \mathrm{V}$ of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ independently picks a uniformly random color X_{v} from $\{1, \ldots, \Delta+1\}$, for each node $v \in V$, the probability that $X_{v} \neq X_{u}$ for all neighbors u of v is at least $1 / e$.

Random Colors

- Lemma: If each node $v \in V$ of a graph $G=(V, E)$ independently picks a uniformly random color X_{v} from $\{1, \ldots, \Delta+1\}$, for each node $v \in V$, the probability that $X_{v} \neq X_{u}$ for all neighbors u of v is at least $1 / e$.
- $\mathbf{P}\left(X_{v}=X_{u}\right)$

Random Colors

- Lemma: If each node $\mathrm{v} \in \mathrm{V}$ of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ independently picks a uniformly random color X_{v} from $\{1, \ldots, \Delta+1\}$, for each node $v \in V$, the probability that $X_{v} \neq X_{u}$ for all neighbors u of v is at least $1 / e$.
- $\mathbf{P}\left(X_{v}=X_{u}\right)$

$$
=1 /(\Delta+1)
$$

Random Colors

- Lemma: If each node $\mathrm{v} \in \mathrm{V}$ of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ independently picks a uniformly random color X_{v} from $\{1, \ldots, \Delta+1\}$, for each node $v \in V$, the probability that $X_{v} \neq X_{u}$ for all neighbors u of v is at least $1 / e$.
- $\mathbf{P}\left(X_{v}=X_{u}\right)$

$$
=1 /(\Delta+1)
$$

- $\mathbf{P}\left(X_{v} \neq X_{u}\right)$

Random Colors

- Lemma: If each node $\mathrm{v} \in \mathrm{V}$ of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ independently picks a uniformly random color X_{v} from $\{1, \ldots, \Delta+1\}$, for each node $v \in V$, the probability that $X_{v} \neq X_{u}$ for all neighbors u of v is at least $1 / e$.
- $\mathbf{P}\left(X_{v}=X_{u}\right)$

$$
=1 /(\Delta+1)
$$

- $\mathbf{P}\left(X_{v} \neq X_{u}\right)$
$=1-1 /(\Delta+1)$

Random Colors

- Lemma: If each node $\mathrm{v} \in \mathrm{V}$ of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ independently picks a uniformly random color X_{v} from $\{1, \ldots, \Delta+1\}$, for each node $v \in V$, the probability that $X_{v} \neq X_{u}$ for all neighbors u of v is at least $1 / e$.
- $\mathbf{P}\left(X_{v}=X_{u}\right)$

$$
=1 /(\Delta+1)
$$

- $\mathbf{P}\left(X_{v} \neq X_{u}\right)$
$=1-1 /(\Delta+1)$
- $\mathbf{P}\left(X_{v}\right.$ has a color different from all neighbors)

Random Colors

- Lemma: If each node $\mathrm{v} \in \mathrm{V}$ of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ independently picks a uniformly random color X_{v} from $\{1, \ldots, \Delta+1\}$, for each node $v \in V$, the probability that $X_{v} \neq X_{u}$ for all neighbors u of v is at least $1 / e$.
- $\mathbf{P}\left(X_{v}=X_{u}\right)$

$$
=1 /(\Delta+1)
$$

- $\mathbf{P}\left(X_{v} \neq X_{u}\right)$

$$
=1-1 /(\Delta+1)
$$

- $\mathbf{P}\left(X_{v}\right.$ has a color different from all neighbors)

$$
\geq(1-1 /(\Delta+1))^{\Delta}
$$

Random Colors

- Lemma: If each node $\mathrm{v} \in \mathrm{V}$ of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ independently picks a uniformly random color X_{v} from $\{1, \ldots, \Delta+1\}$, for each node $v \in V$, the probability that $X_{v} \neq X_{u}$ for all neighbors u of v is at least $1 / e$.
- $\mathbf{P}\left(X_{v}=X_{u}\right)$

$$
=1 /(\Delta+1)
$$

- $\mathbf{P}\left(X_{v} \neq X_{u}\right)$

$$
=1-1 /(\Delta+1)
$$

- $\mathbf{P}\left(X_{v}\right.$ has a color different from all neighbors)

$$
\geq(1-1 /(\Delta+1))^{\Delta}
$$

$$
(1-1 /(x+1)) x>1 / e \text { for all } x>0
$$

Random Colors

- Lemma: If each node $\mathrm{v} \in \mathrm{V}$ of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ independently picks a uniformly random color X_{v} from $\{1, \ldots, \Delta+1\}$, for each node $v \in V$, the probability that $X_{v} \neq X_{u}$ for all neighbors u of v is at least $1 / e$.
- $\mathbf{P}\left(X_{v}=X_{u}\right)$

$$
=1 /(\Delta+1)
$$

- $\mathbf{P}\left(X_{v} \neq X_{u}\right)$

$$
=1-1 /(\Delta+1)
$$

- $\mathbf{P}\left(X_{v}\right.$ has a color different from all neighbors)
$\geq(1-1 /(\Delta+1))^{\Delta}$

> 1/e

$$
(1-1 /(x+1)) x>1 / e \text { for all } x>0
$$

Extending an Existing Coloring

Extending an Existing Coloring

- After the first round, some nodes already picked a color (they were lucky with probability > 1/e)

Extending an Existing Coloring

- After the first round, some nodes already picked a color (they were lucky with probability > 1/e)
- In the second round, each node picks a random color

Extending an Existing Coloring

- After the first round, some nodes already picked a color (they were lucky with probability > 1/e)
- In the second round, each node picks a random color
- It does not make sense to try colors already picked by the neighbors

Extending an Existing Coloring

- After the first round, some nodes already picked a color (they were lucky with probability > 1/e)
- In the second round, each node picks a random color
- It does not make sense to try colors already picked by the neighbors
- Is it still true that for every possible color X_{v}, the probability that $X_{v} \neq X_{u}$ for all neighbors u of v is at least $1 / e$?

Extending an Existing Coloring

- After the first round, some nodes already picked a color (they were lucky with probability > 1/e)
- In the second round, each node picks a random color
- It does not make sense to try colors already picked by the neighbors
- Is it still true that for every possible color X_{v}, the probability that $X_{v} \neq X_{u}$ for all neighbors u of v is at least $1 / e$?
- No! Some colors are better than others.

Extending an Existing Coloring

- After the first round, some nodes already picked a color (they were lucky with probability > 1/e)
- In the second round, each node picks a random color
- It does not make sense to try colors already picked by the neighbors
- Is it still true that for every possible color X_{v}, the probability that $X_{v} \neq X_{u}$ for all neighbors u of v is at least $1 / e$?
- No! Some colors are better than others.

Extending an Existing Coloring

- After the first round, some nodes already picked a color (they were lucky with probability > 1/e)
- In the second round, each node picks a random color
- It does not make sense to try colors already picked by the neighbors
- Is it still true that for every possible color X_{v}, the probability that $X_{v} \neq X_{u}$ for all neighbors u of v is at least $1 / e$?
- No! Some colors are better than others.

Extending an Existing Coloring

- After the first round, some nodes already picked a color (they were lucky with probability > 1/e)
- In the second round, each node picks a random color
- It does not make sense to try colors already picked by the neighbors
- Is it still true that for every possible color X_{v}, the probability that $X_{v} \neq X_{u}$ for all neighbors u of v is at least $1 / e$?
- No! Some colors are better than others.

Extending an Existing Coloring

Extending an Existing Coloring

- Let's make the problem harder and more precise

Extending an Existing Coloring

- Let's make the problem harder and more precise
- Problem:

Extending an Existing Coloring

- Let's make the problem harder and more precise
- Problem:
- each node $v \in \mathbb{V}$ in $G=(V, E)$ must get a color from $\{1, \ldots, \operatorname{deg}(v)+1\}$

Extending an Existing Coloring

- Let's make the problem harder and more precise
- Problem:
- each node $v \in \operatorname{V}$ in $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ must get a color from $\{1, \ldots, \mathrm{deg}(\mathrm{v})+1\}$
- V_{C} : nodes $\mathrm{V} \in \mathrm{V}_{\mathrm{C}} \subset \mathrm{V}$ already have a color X_{v} such that $\mathrm{G}\left[\mathrm{V}_{\mathrm{C}}\right]$ is properly colored

Extending an Existing Coloring

- Let's make the problem harder and more precise
- Problem:
- each node $v \in \operatorname{V}$ in $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ must get a color from $\{1, \ldots, \mathrm{deg}(\mathrm{v})+1\}$
- V_{c} : nodes $\mathrm{V} \in \mathrm{V}_{\mathrm{c}} \subset \mathrm{V}$ already have a color X_{v} such that $\mathrm{G}\left[\mathrm{V}_{\mathrm{c}}\right]$ is properly colored Subgraph induced by nodes in V_{C}

Extending an Existing Coloring

- Let's make the problem harder and more precise
- Problem:
- each node $v \in \operatorname{V}$ in $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ must get a color from $\{1, \ldots, \mathrm{deg}(\mathrm{v})+1\}$
- V_{C} : nodes $\mathrm{V} \in \mathrm{V}_{\mathrm{C}} \subset \mathrm{V}$ already have a color X_{v} such that $\mathrm{G}\left[\mathrm{V}_{\mathrm{C}}\right]$ is properly colored
- $\mathrm{V}_{\mathrm{u}}=\mathrm{V} \backslash \mathrm{V}_{\mathrm{c}}$: set of uncolored nodes

Extending an Existing Coloring

- Let's make the problem harder and more precise
- Problem:
- each node $v \in \operatorname{V}$ in $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ must get a color from $\{1, \ldots, \mathrm{deg}(\mathrm{v})+1\}$
- V_{C} : nodes $\mathrm{V} \in \mathrm{V}_{\mathrm{C}} \subset \mathrm{V}$ already have a color X_{v} such that $\mathrm{G}\left[\mathrm{V}_{\mathrm{C}}\right]$ is properly colored
- $\mathrm{V}_{\mathrm{U}}=\mathrm{V} \backslash \mathrm{V}_{\mathrm{c}}$: set of uncolored nodes
- F_{v} : set of free colors of node $v . F_{v}=\{1, \ldots, \operatorname{deg}(v)+1\} \backslash \bigcup_{u \in V_{c} \cap N(v)}\left\{X_{u}\right\}$

Extending an Existing Coloring

- Let's make the problem harder and more precise
- Problem:
- each node $v \in \operatorname{V}$ in $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ must get a color from $\{1, \ldots, \mathrm{deg}(\mathrm{v})+1\}$
- V_{C} : nodes $\mathrm{V} \in \mathrm{V}_{\mathrm{C}} \subset \mathrm{V}$ already have a color X_{v} such that $\mathrm{G}\left[\mathrm{V}_{\mathrm{C}}\right]$ is properly colored
- $\mathrm{V}_{\mathrm{u}}=\mathrm{V} \backslash \mathrm{V}_{\mathrm{c}}$: set of uncolored nodes
- F_{v} : set of free colors of node $v . F_{v}=\{1, \ldots, \operatorname{deg}(v)+1\} \backslash \bigcup_{u \in V_{C} \cap N(v)}\left\{X_{u}\right\}$ All colors

Extending an Existing Coloring

- Let's make the problem harder and more precise
- Problem:
- each node $v \in V$ in $G=(V, E)$ must get a color from $\{1, \ldots, \operatorname{deg}(v)+1\}$
- V_{C} : nodes $\mathrm{V} \in \mathrm{V}_{\mathrm{C}} \subset \mathrm{V}$ already have a color X_{v} such that $\mathrm{G}\left[\mathrm{V}_{\mathrm{C}}\right]$ is properly colored
- $\mathrm{V}_{\mathrm{u}}=\mathrm{V} \backslash \mathrm{V}_{\mathrm{c}}$: set of uncolored nodes
- F_{v} : set of free colors of node $v . F_{v}=\{1, \ldots, \operatorname{deg}(v)+1\} \backslash \bigcup_{u \in V_{C} \cap N(v)}\left\{X_{u}\right\}$ All colors minus

Extending an Existing Coloring

- Let's make the problem harder and more precise
- Problem:
- each node $v \in \operatorname{V}$ in $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ must get a color from $\{1, \ldots, \mathrm{deg}(\mathrm{v})+1\}$
- V_{C} : nodes $\mathrm{V} \in \mathrm{V}_{\mathrm{C}} \subset \mathrm{V}$ already have a color X_{v} such that $\mathrm{G}\left[\mathrm{V}_{\mathrm{C}}\right]$ is properly colored
- $\mathrm{V}_{\mathrm{u}}=\mathrm{V} \backslash \mathrm{V}_{\mathrm{c}}$: set of uncolored nodes
- F_{v} : set of free colors of node $v . F_{v}=\{1, \ldots, \operatorname{deg}(v)+1\} \backslash \bigcup_{u \in V_{C} \cap N(v)}\left\{X_{u}\right\}$ All colors minus the colors used by the neighbors

Extending an Existing Coloring

- Let's make the problem harder and more precise
- Problem:
- each node $v \in \operatorname{V}$ in $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ must get a color from $\{1, \ldots, \mathrm{deg}(\mathrm{v})+1\}$
- V_{C} : nodes $\mathrm{V} \in \mathrm{V}_{\mathrm{C}} \subset \mathrm{V}$ already have a color X_{v} such that $\mathrm{G}\left[\mathrm{V}_{\mathrm{C}}\right]$ is properly colored
- $\mathrm{V}_{\mathrm{U}}=\mathrm{V} \backslash \mathrm{V}_{\mathrm{c}}$: set of uncolored nodes
- F_{v} : set of free colors of node $v . F_{v}=\{1, \ldots, \operatorname{deg}(v)+1\} \backslash \bigcup_{u \in V_{c} \cap N(v)}\left\{X_{u}\right\}$

Extending an Existing Coloring

- Let's make the problem harder and more precise
- Problem:
- each node $v \in \mathbb{V}$ in $G=(V, E)$ must get a color from $\{1, \ldots, \operatorname{deg}(v)+1\}$
- V_{C} : nodes $\mathrm{V} \in \mathrm{V}_{\mathrm{C}} \subset \mathrm{V}$ already have a color X_{v} such that $\mathrm{G}\left[\mathrm{V}_{\mathrm{C}}\right]$ is properly colored
- $\mathrm{V}_{\mathrm{U}}=\mathrm{V} \backslash \mathrm{V}_{\mathrm{c}}$: set of uncolored nodes
- F_{v} : set of free colors of node $v . F_{v}=\{1, \ldots, \operatorname{deg}(v)+1\} \backslash \bigcup_{u \in V_{c} \cap N(v)}\left\{X_{u}\right\}$
- Algorithm:

Extending an Existing Coloring

- Let's make the problem harder and more precise
- Problem:
- each node $v \in V$ in $G=(V, E)$ must get a color from $\{1, \ldots, \operatorname{deg}(v)+1\}$
- V_{C} : nodes $\mathrm{V} \in \mathrm{V}_{\mathrm{C}} \subset \mathrm{V}$ already have a color X_{v} such that $\mathrm{G}\left[\mathrm{V}_{\mathrm{C}}\right]$ is properly colored
- $\mathrm{V}_{\mathrm{U}}=\mathrm{V} \backslash \mathrm{V}_{\mathrm{c}}$: set of uncolored nodes
- F_{v} : set of free colors of node $v . F_{v}=\{1, \ldots, \operatorname{deg}(v)+1\} \backslash \bigcup_{u \in V_{c} \cap N(v)}\left\{X_{u}\right\}$
- Algorithm:
- Each node v picks a color uniformly at random from F_{v}

Extending an Existing Coloring

- Let's make the problem harder and more precise
- Problem:
- each node $v \in V$ in $G=(V, E)$ must get a color from $\{1, \ldots, \operatorname{deg}(v)+1\}$
- V_{C} : nodes $\mathrm{V} \in \mathrm{V}_{\mathrm{C}} \subset \mathrm{V}$ already have a color X_{v} such that $\mathrm{G}\left[\mathrm{V}_{\mathrm{C}}\right]$ is properly colored
- $\mathrm{V}_{\mathrm{U}}=\mathrm{V} \backslash \mathrm{V}_{\mathrm{c}}$: set of uncolored nodes
- F_{v} : set of free colors of node $v . F_{v}=\{1, \ldots, \operatorname{deg}(v)+1\} \backslash \bigcup_{u \in V_{c} \cap N(v)}\left\{X_{u}\right\}$
- Algorithm:
- Each node v picks a color uniformly at random from F_{v}
- Each node $v \in V_{u}$ keeps the color if no neighbor in V_{u} picked the same color

Extending an Existing Coloring

Extending an Existing Coloring

- $\mathbf{N}_{\mathrm{x}}(\mathbf{v})$: uncolored neighbors u of v for which $\mathrm{x} \in \mathrm{F}_{\mathrm{u}}$

Extending an Existing Coloring

- $\mathbf{N}_{\mathrm{x}}(\mathbf{v})$: uncolored neighbors u of v for which $\mathrm{x} \in \mathrm{F}_{\mathrm{u}}$

Extending an Existing Coloring

- $\mathbf{N}_{\mathrm{x}}(\mathbf{v})$: uncolored neighbors u of v for which $\mathrm{x} \in \mathrm{F}_{\mathrm{u}}$
, weight $\mathbf{w}_{\mathbf{x}}(\mathbf{v})$ of a color $\mathrm{x} \in \mathrm{F}_{\mathrm{v}}$ for $\mathrm{v} \in \mathrm{V}_{\mathrm{u}}: \quad \mathrm{w}_{\mathrm{x}}(\mathrm{v})=\sum_{\mathbf{u} \in \mathbf{N}_{\mathrm{x}}(\mathrm{v})} 1 /\left|F_{u}\right|$

Extending an Existing Coloring

- $\mathbf{N}_{\mathrm{x}}(\mathbf{v})$: uncolored neighbors u of v for which $\mathrm{x} \in \mathrm{F}_{\mathrm{u}}$
- weight $\mathbf{w}_{\mathbf{x}}(\mathrm{v})$ of a color $\mathrm{x} \in \mathrm{F}_{\mathrm{v}}$ for $\mathrm{v} \in \mathrm{V}_{\mathrm{u}}: \quad \mathrm{w}_{\mathrm{x}}(\mathrm{v})=\sum 1 /\left|\mathrm{F}_{\mathrm{u}}\right|$
$\mathbf{u}_{\in} \mathbf{N}_{\mathrm{x}}(\mathrm{v})$
For each neighbor, sum the probability that it takes color x

Extending an Existing Coloring

- $\mathbf{N}_{\mathrm{x}}(\mathbf{v})$: uncolored neighbors u of v for which $\mathrm{x} \in \mathrm{F}_{\mathrm{u}}$
- weight $\mathbf{w}_{\mathbf{x}}(\mathbf{v})$ of a color $\mathrm{x} \in \mathrm{F}_{\mathrm{v}}$ for $\mathrm{v} \in \mathrm{V}_{\mathrm{u}}: \quad \mathrm{w}_{\mathrm{x}}(\mathrm{v})=\sum 1 /\left|\mathrm{F}_{\mathrm{u}}\right|$
$\mathrm{u} \in \mathrm{N}_{\mathrm{x}}(\mathrm{v}) \quad$ For each neighbor, sum the probability that it takes color x
- Intuition: $w_{x}(v)$ is not the probability that some neighbor of v picks color x, but intuitively it corresponds to that

Extending an Existing Coloring

- $\mathbf{N}_{\mathrm{x}}(\mathbf{v})$: uncolored neighbors u of v for which $\mathrm{x} \in \mathrm{F}_{\mathrm{u}}$ Neighbors of v that could pick color x
- weight $\mathbf{w}_{\mathbf{x}}(\mathbf{v})$ of a color $\mathrm{X} \in \mathrm{F}_{\mathrm{v}}$ for $\mathrm{v} \in \mathrm{V}_{\mathrm{u}}: \quad \mathrm{w}_{\mathrm{x}}(\mathrm{v})=\sum 1 /\left|\mathrm{F}_{\mathrm{u}}\right|$
$\mathrm{u} \in \mathrm{N}_{\mathrm{x}}(\mathrm{v}) \quad$ For each neighbor, sum the probability that it takes color x
- Intuition: $w_{x}(v)$ is not the probability that some neighbor of v picks color x, but intuitively it corresponds to that
- Lemma: $\sum_{x \in F_{v}} W_{x}(v) \leq\left|N(v) \cap V_{U}\right|$

Extending an Existing Coloring

- $\mathbf{N}_{\mathbf{x}}(\mathbf{v})$: uncolored neighbors u of v for which $\mathrm{x} \in \mathrm{F}_{\mathrm{u}}$

Neighbors of v that could pick color x
weight $\mathbf{w}_{\mathbf{x}}(\mathbf{v})$ of a color $x \in F_{v}$ for $v \in V_{u}: \quad w_{x}(v)=\sum 1 /\left|F_{u}\right|$
$\mathrm{U} \in \mathbb{N}_{\mathrm{x}}(\mathrm{v})$ sum the probability that it takes color x

- Intuition: $w_{x}(v)$ is not the probability that some neighbor of v picks color x , but intuitively it corresponds to that
- Lemma: $\sum_{x \in F_{v}} W_{x}(v) \leq\left|N(v) \cap V_{U}\right|$

The sum of the weights is at most the number of uncolored neighbors

Extending an Existing Coloring

- $\mathbf{N}_{\mathbf{x}}(\mathbf{v})$: uncolored neighbors u of v for which $\mathrm{x} \in \mathrm{F}_{\mathrm{u}}$ Neighbors of v that could pick color x
weight $\mathbf{w}_{\mathbf{x}}(\mathbf{v})$ of a color $x \in F_{v}$ for $v \in V_{u}: \quad w_{x}(v)=\sum 1 /\left|F_{u}\right|$
$\mathrm{U} \in \mathbb{N}_{\mathrm{x}}(\mathrm{v})$ sum the probability that it takes color x
- Intuition: $w_{x}(v)$ is not the probability that some neighbor of v picks color x , but intuitively it corresponds to that
- Lemma: $\sum_{x \in F_{v}} W_{x}(v) \leq\left|N(v) \cap V_{u}\right| \quad \sum_{x \in F_{v}} W_{x}(v)$

The sum of the weights is at most the number of uncolored neighbors

Extending an Existing Coloring

- $\mathbf{N}_{\mathrm{x}}(\mathbf{v})$: uncolored neighbors u of v for which $\mathrm{x} \in \mathrm{F}_{\mathrm{u}}$ - Neighbors of v that could pick color x
- weight $\mathbf{w}_{\mathbf{x}}(\mathbf{v})$ of a color $\mathrm{X} \in \mathrm{F}_{\mathrm{v}}$ for $\mathrm{v} \in \mathrm{V}_{\mathrm{u}}: \quad \mathrm{w}_{\mathrm{x}}(\mathrm{v})=\sum 1 /\left|\mathrm{F}_{\mathrm{u}}\right|$
$\mathbf{u} \in \mathbf{N}_{\mathrm{x}}(\mathrm{v})$
For each neighbor, sum the probability that it takes color x
- Intuition: $w_{x}(v)$ is not the probability that some neighbor of v picks color x , but intuitively it corresponds to that
- Lemma: $\sum_{x \in F_{v}} W_{x}(v) \leqq\left|N(v) \cap V_{u}\right|$

$$
\begin{equation*}
\sum_{x \in F_{v}} W_{x}(v)=\sum_{x \in F_{v}} \sum_{u \in \mathbb{N}_{x}(v)} \tag{u}
\end{equation*}
$$

The sum of the weights is at most the number of uncolored neighbors

Extending an Existing Coloring

- $\mathbf{N}_{\mathrm{x}}(\mathbf{v})$: uncolored neighbors u of v for which $\mathrm{x} \in \mathrm{F}_{\mathrm{u}}$ \square Neighbors of v that could pick color x
- weight $\mathbf{w}_{\mathbf{x}}(\mathbf{v})$ of a color $\mathrm{X} \in \mathrm{F}_{\mathrm{v}}$ for $\mathrm{v} \in \mathrm{V}_{\mathrm{u}}: \quad \mathrm{w}_{\mathrm{x}}(\mathrm{v})=\sum 1 /\left|\mathrm{F}_{\mathrm{u}}\right|$
$\mathbf{u}_{\in} \mathbf{N}_{\mathrm{x}}(\mathrm{v})$
For each neighbor, sum the probability that it takes color x
- Intuition: $w_{x}(v)$ is not the probability that some neighbor of v picks color x , but intuitively it corresponds to that
- Lemma: $\sum_{x \in F_{v}} W_{x}(v) \leqq\left|N(v) \cap V_{u}\right|$

$$
\begin{aligned}
\sum_{x \in F_{v}} w_{x}(v) & =\sum_{x \in F_{v}} \sum_{u \in \mathbb{N}_{x}(v)} 1 /\left|F_{u}\right| \\
& =\sum_{u \in \mathbb{N}(v) \cap V_{u}} \sum_{x \in F_{v} \cap F_{u}} 1 /\left|F_{u}\right|
\end{aligned}
$$

Extending an Existing Coloring

- $\mathbf{N}_{\mathrm{x}}(\mathbf{v})$: uncolored neighbors u of v for which $\mathrm{x} \in \mathrm{F}_{\mathrm{u}}$ \square Neighbors of v that could pick color x
- weight $\mathbf{w}_{\mathbf{x}}(\mathbf{v})$ of a color $\mathrm{x} \in \mathrm{F}_{\mathrm{v}}$ for $\mathrm{v} \in \mathrm{V}_{\mathrm{u}}: \quad \mathrm{w}_{\mathrm{x}}(\mathrm{v})=\sum 1 /\left|\mathrm{F}_{\mathrm{u}}\right|$
$\mathbf{u} \in \mathbf{N}_{\mathrm{x}}(\mathrm{v})$
For each neighbor, sum the probability that it takes color x
- Intuition: $w_{x}(v)$ is not the probability that some neighbor of v picks color x , but intuitively it corresponds to that
- Lemma: $\sum_{x \in F_{v}} W_{x}(v) \leqq\left|N(v) \cap V_{u}\right|$

Extending an Existing Coloring

- $\mathbf{N}_{\mathrm{x}}(\mathbf{v})$: uncolored neighbors u of v for which $\mathrm{x} \in \mathrm{F}_{\mathrm{u}}$ \square Neighbors of v that could pick color x
- weight $\mathbf{w}_{\mathbf{x}}(\mathbf{v})$ of a color $\mathrm{X} \in \mathrm{F}_{\mathrm{v}}$ for $\mathrm{v} \in \mathrm{V}_{\mathrm{u}}: \quad \mathrm{w}_{\mathrm{x}}(\mathrm{v})=\sum 1 /\left|\mathrm{F}_{\mathrm{u}}\right|$
$\mathbf{u} \in \mathbf{N}_{\mathbf{x}}(\mathbf{v})$
For each neighbor, sum the probability that it takes color x
- Intuition: $w_{x}(v)$ is not the probability that some neighbor of v picks color x, but intuitively it corresponds to that
- Lemma: $\sum_{x \in F_{v}} W_{x}(v) \leqq\left|N(v) \cap V_{U}\right|$

Extending an Existing Coloring

- $\mathbf{N}_{\mathrm{x}}(\mathbf{v})$: uncolored neighbors u of v for which $\mathrm{x} \in \mathrm{F}_{\mathrm{u}}$ \square Neighbors of v that could pick color x
- weight $\mathbf{w}_{\mathbf{x}}(\mathbf{v})$ of a color $\mathrm{X} \in \mathrm{F}_{\mathrm{v}}$ for $\mathrm{v} \in \mathrm{V}_{\mathrm{u}}: \quad \mathrm{w}_{\mathrm{x}}(\mathrm{v})=\sum 1 /\left|\mathrm{F}_{\mathrm{u}}\right|$
$\mathbf{u} \in \mathbf{N}_{\mathrm{x}}(\mathrm{v})$
For each neighbor, sum the probability that it takes color x
- Intuition: $w_{x}(v)$ is not the probability that some neighbor of v picks color x , but intuitively it corresponds to that
- Lemma: $\sum_{x \in F_{v}} W_{x}(v) \leqq\left|N(v) \cap V_{u}\right|$

Extending an Existing Coloring

- $\mathbf{N}_{\mathrm{x}}(\mathbf{v})$: uncolored neighbors u of v for which $\mathrm{x} \in \mathrm{F}_{\mathrm{u}}$ \square Neighbors of v that could pick color x
- weight $\mathbf{w}_{\mathbf{x}}(\mathbf{v})$ of a color $\mathrm{X} \in \mathrm{F}_{\mathrm{v}}$ for $\mathrm{v} \in \mathrm{V}_{\mathrm{u}}: \quad \mathrm{w}_{\mathrm{x}}(\mathrm{v})=\sum 1 /\left|\mathrm{F}_{\mathrm{u}}\right|$
$\mathbf{u} \in \mathbf{N}_{\mathrm{x}}(\mathrm{v})$
For each neighbor, sum the probability that it takes color x
- Intuition: $w_{x}(v)$ is not the probability that some neighbor of v picks color x , but intuitively it corresponds to that
- Lemma: $\sum_{x \in F_{v}} W_{x}(v) \leqq\left|N(v) \cap V_{u}\right|$

The sum of the weights is at most the number of uncolored neighbors

Extending an Existing Coloring

- $\mathbf{N}_{\mathrm{x}}(\mathbf{v})$: uncolored neighbors u of v for which $\mathrm{x} \in \mathrm{F}_{\mathrm{u}}$
- weight $\mathbf{w}_{\mathbf{x}}(\mathbf{v})$ of a color $\mathrm{X} \in \mathrm{F}_{\mathrm{v}}$ for $\mathrm{v} \in \mathrm{V}_{\mathrm{u}}: \quad \mathrm{w}_{\mathrm{x}}(\mathrm{v})=\sum 1 /\left|\mathrm{F}_{\mathrm{u}}\right|$
$\mathrm{u} \in \mathbf{N}_{\mathrm{x}}(\mathrm{v}) \vee \quad$ For each neighbor, sum the probability that it takes color x
- Intuition: $w_{x}(v)$ is not the probability that some neighbor of v picks color x , but intuitively it corresponds to that
- Lemma: $\sum_{x \in F_{v}} W_{x}(v) \leqq\left|N(v) \cap V_{u}\right|$

$$
\begin{aligned}
& \sum_{x \in F_{v}} W_{x}(v)=\sum_{x \in F_{v}} \sum_{u \in \mathbb{N}_{x}(v)} 1 /\left|F_{u}\right| \\
&=\sum_{u \in \mathbb{N}(v) \cap V_{u}} \sum_{x \in F_{v} \cap F_{u}} 1 /\left|F_{u}\right| \\
&=\sum_{u \in \mathbb{N}(v) \cap V_{u}}\left|F_{v} \cap F_{u}\right| /\left|F_{u}\right| \\
& \text { Uncolored neighbors } \text { Common colors } \quad \leq \sum_{u \in \mathbb{N}(v) \cap V_{u}}^{1}=\left|\mathbb{N}(v) \cap V_{u}\right|
\end{aligned}
$$

The sum of the weights is at most the number of uncolored neighbors

Extending an Existing Coloring

Extending an Existing Coloring

- Lemma: $\quad \sum_{x \in F_{v}} w_{x}(v) \leq\left|\mathbb{N}(v) \cap V_{u}\right|$

Extending an Existing Coloring

- Lemma: $\quad \sum_{x \in F_{v}} w_{x}(v) \leq\left|N(v) \cap V_{u}\right|$
- Corollary: $\sum w_{x}(v) \leq\left|\mathbb{N}(v) \cap V_{U}\right| \leq\left|F_{V}\right|-1$ $x \in F_{v}$

Extending an Existing Coloring

Lemma: $\quad \sum_{x \in F_{v}} W_{x}(v) \leq\left|N(v) \cap V_{U}\right|$

- Corollary: $\quad \sum w_{x}(v) \leq\left|N(v) \cap V_{u}\right| \leq\left|F_{v}\right|-1$

$$
x \in F_{v}
$$

Extending an Existing Coloring

Extending an Existing Coloring

- Lemma: If node $v \in V_{u}$ picks the random color $X \in F_{v}$, the probability that v can keep its colors is at least $4-w_{x}(v)$

Extending an Existing Coloring

- Lemma: If node $v \in V_{u}$ picks the random color $X \in F_{v}$, the probability that v can keep its colors is at least $4-w_{x}(v)$
- $\mathbf{P}($ v can keep its color $x)$

Extending an Existing Coloring

- Lemma: If node $v \in V_{u}$ picks the random color $X \in F_{v}$, the probability that v can keep its colors is at least $4-w_{x}(v)$
- $\mathbf{P}(\mathrm{v}$ can keep its color x$)$

$$
=\prod_{u \in \mathbb{N}_{x}(v)}\left(1-1 /\left|F_{u}\right|\right)
$$

Extending an Existing Coloring

- Lemma: If node $v \in V_{u}$ picks the random color $X \in F_{v}$, the probability that v can keep its colors is at least $4-w_{x}(v)$
- $\mathbf{P}(\mathrm{v}$ can keep its color x$)$

$$
\begin{aligned}
& \left.\prod_{u \in \mathbb{N}_{x}(v)}\left(1-1 /\left|F_{u}\right|\right)\right) \\
& >
\end{aligned}
$$

Neighbors that could also pick x

Extending an Existing Coloring

- Lemma: If node $v \in V_{u}$ picks the random color $X \in F_{v}$, the probability that v can keep its colors is at least $4-w_{x}(v)$
- $\mathbf{P}(\mathrm{v}$ can keep its color x$)$

Neighbors that could also pick x

Extending an Existing Coloring

- Lemma: If node $v \in V_{u}$ picks the random color $X \in F_{v}$, the probability that v can keep its colors is at least $4-w_{x}(v)$
- $\mathbf{P}(\mathrm{v}$ can keep its color x$)$

```
=\Pi\quad(1-1/|Fu|)
\(\mathrm{u} \in \mathbf{N}_{\mathrm{x}}(\mathrm{v})\)
Probability that u does not pick \(x\)
```

Neighbors that could also pick x

$$
(1-x) \geq 4^{-x} \text { for all } x \in[0,1 / 2]
$$

Extending an Existing Coloring

- Lemma: If node $v \in V_{u}$ picks the random color $x \in F_{v}$, the probability that v can keep its colors is at least $4-w_{x}(v)$
- $\mathbf{P}(\mathrm{v}$ can keep its color x$)$

```
=\Pi\quad(1-1/|Fu|)
\(\mathrm{u} \in \mathbf{N}_{\mathrm{x}}(\mathrm{v})\)
Probability that u does not pick \(x\)
```

Neighbors that could also pick x

$$
\begin{aligned}
& (1-x) \geq 4^{-x} \text { for all } x \in[0,1 / 2] \\
& \left|F_{u}\right| \geq 2, \text { otherwise u has no uncolored neighbors }
\end{aligned}
$$

Extending an Existing Coloring

- Lemma: If node $v \in V_{u}$ picks the random color $x \in F_{v}$, the probability that v can keep its colors is at least $4-w_{x}(v)$
- $\mathbf{P}(\mathrm{v}$ can keep its color x$)$

$$
\begin{aligned}
& =\prod_{\mathrm{u} \in \mathbb{N}_{\mathrm{x}}(\mathrm{v})}^{\left(1-1 /\left|\mathrm{F}_{\mathrm{u}}\right|\right)} \geq \prod_{\mathrm{u} \in \mathbb{N}_{\mathrm{x}}(\mathrm{v})}\left(1 /\left|\mathrm{F}_{\mathrm{u}}\right|\right. \\
& \quad \text { Probability that u does not pick } \mathrm{x}
\end{aligned}
$$

Neighbors that could also pick x

$$
\begin{aligned}
& (1-x) \geq 4^{-x} \text { for all } x \in[0,1 / 2] \\
& \left|F_{u}\right| \geq 2, \text { otherwise u has no uncolored neighbors }
\end{aligned}
$$

Extending an Existing Coloring

- Lemma: If node $v \in V_{u}$ picks the random color $x \in F_{v}$, the probability that v can keep its colors is at least $4-w_{x}(v)$
- $\mathbf{P}(\mathrm{v}$ can keep its color x$)$

Neighbors that could also pick x

$$
\begin{aligned}
& (1-x) \geq 4^{-x} \text { for all } x \in[0,1 / 2] \\
& \left|F_{u}\right| \geq 2, \text { otherwise u has no uncolored neighbors }
\end{aligned}
$$

Extending an Existing Coloring

- Lemma: If node $v \in V_{u}$ picks the random color $x \in F_{v}$, the probability that v can keep its colors is at least $4-w_{x}(v)$
- $\mathbf{P}(\mathrm{v}$ can keep its color x$)$

Neighbors that could also pick x

$$
\begin{aligned}
& (1-x) \geq 4^{-x} \text { for all } x \in[0,1 / 2] \\
& \left|F_{u}\right| \geq 2, \text { otherwise u has no uncolored neighbors }
\end{aligned}
$$

Extending an Existing Coloring

Extending an Existing Coloring

- Theorem: The probability that a node $v \in V_{u}$ can keep its random color is at least $1 / 4$

Extending an Existing Coloring

- Theorem: The probability that a node $v \in V_{u}$ can keep its random color is at least 1/4
- $\mathbf{P}\left(\mathrm{v}\right.$ can keep its color $\left.\mathrm{X}_{\mathrm{v}}\right)$

Extending an Existing Coloring

- Theorem: The probability that a node $v \in V_{u}$ can keep its random color is at least 1/4
- $\mathbf{P}\left(\mathrm{v}\right.$ can keep its color $\left.\mathrm{X}_{\mathrm{v}}\right)$

$$
=\sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot \mathbf{P}\left(v \text { can keep color } x \mid X_{v}=x\right)
$$

Extending an Existing Coloring

- Theorem: The probability that a node $v \in V_{u}$ can keep its random color is at least 1/4
- $\mathbf{P}\left(\mathrm{v}\right.$ can keep its color $\left.\mathrm{X}_{\mathrm{v}}\right)$

$$
\begin{aligned}
& =\sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot P\left(v \text { can keep color } x \mid X_{v}=x\right) \\
& \geq \sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot 4^{-W_{x}(v)}
\end{aligned}
$$

Extending an Existing Coloring

- Theorem: The probability that a node $v \in V_{u}$ can keep its random color is at least 1/4
- $\mathbf{P}\left(\mathrm{v}\right.$ can keep its color $\left.\mathrm{X}_{\mathrm{v}}\right)$

$$
\begin{aligned}
& =\sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot P\left(v \text { can keep color } x \mid X_{v}=x\right) \\
& \geq \sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot 4^{-w_{x}(v)} \\
& \geq 4^{-1 /\left|F_{v}\right| \cdot \sum_{x \in F_{v}} w_{x}(v)}
\end{aligned}
$$

Extending an Existing Coloring

- Theorem: The probability that a node $v \in V_{u}$ can keep its random color is at least 1/4
- $\mathbf{P}\left(\mathrm{v}\right.$ can keep its color $\left.\mathrm{X}_{\mathrm{v}}\right)$

```
\(=\sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot \mathbf{P}\left(v\right.\) can keep color \(\left.x \mid X_{v}=x\right)\)
    \(\geq \sum 1 /\left|F_{v}\right| \cdot 4^{-W_{x}(v)}\)
    \(x \in F_{v}\) Let \(f\left(w_{x}\right)=4-w_{x}(v)\). This is average \(\left(f\left(w_{x}\right)\right)\)
    \(\geq 4^{-1 /\left|F_{v}\right| \cdot \sum_{x \in F_{v}} w_{x}(v)}\)
```


Extending an Existing Coloring

- Theorem: The probability that a node $v \in V_{u}$ can keep its random color is at least 1/4
- $\mathbf{P}\left(\mathrm{v}\right.$ can keep its color $\left.\mathrm{X}_{\mathrm{v}}\right)$

```
\(=\sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot \mathbf{P}\left(v\right.\) can keep color \(\left.x \mid X_{v}=x\right)\)
    \(\geq \sum 1 /\left|F_{v}\right| \cdot 4^{-W_{x}(v)}\)
    \(x \in F_{v} \quad\) Let \(f\left(w_{x}\right)=4-w_{x}(v)\). This is average \(\left(f\left(w_{x}\right)\right)\)
    \(\geq 4^{-1 /\left|F_{v}\right| \cdot \sum_{x \in F_{v}} W_{x}(v)}\)
        This is \(f\left(\right.\) average \(\left(w_{x}\right)\) )
```


Extending an Existing Coloring

- Theorem: The probability that a node $v \in V_{u}$ can keep its random color is at least $1 / 4$
- $\mathbf{P}\left(\mathrm{v}\right.$ can keep its color $\left.\mathrm{X}_{\mathrm{v}}\right)$

```
\(=\sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot \mathbf{P}\left(v\right.\) can keep color \(\left.x \mid X_{v}=x\right)\)
    \(\geq \sum 1 /\left|F_{v}\right| \cdot 4^{-W_{x}(v)}\)
    \(x \in \mathrm{~F}_{\mathrm{v}} \quad\) Let \(f\left(\mathrm{w}_{\mathrm{x}}\right)=4-\mathrm{w}_{\mathrm{x}}\left(\mathrm{v}\right.\). This is average \(\left(\mathrm{f}\left(\mathrm{w}_{\mathrm{x}}\right)\right)\)
    \(\geq 4^{-1 /\left|F_{v}\right| \cdot \sum_{x \in F_{v}} w_{x}(v)}\)
        This is \(f\left(\right.\) average \(\left(w_{x}\right)\) )
```

 average \((f(x)) \geq f(\) average \((x))\) if \(f\) is convex

Extending an Existing Coloring

- Theorem: The probability that a node $v \in V_{u}$ can keep its random color is at least 1/4
- $\mathbf{P}\left(\mathrm{v}\right.$ can keep its color $\left.\mathrm{X}_{\mathrm{v}}\right)$

$$
\begin{aligned}
& =\sum_{x \in F_{v}} 1 / \| F_{v} \mid \cdot P\left(v \text { can keep color } x \mid X_{v}=x\right) \\
& \geq \sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot 4^{-w_{x}(v)} \text { Let } f\left(w_{x}\right)=4-w_{x}(v) \text {. This is average }\left(f\left(w_{x}\right)\right) \\
& \geq 4
\end{aligned}
$$

average $(f(x)) \geq f($ average $(x))$ if f is convex

Extending an Existing Coloring

- Theorem: The probability that a node $v \in V_{u}$ can keep its random color is at least 1/4
- $\mathbf{P}\left(\mathrm{v}\right.$ can keep its color $\left.\mathrm{X}_{\mathrm{v}}\right)$

$$
\begin{aligned}
& =\sum_{x \in F_{v}} 1 / \| F_{v} \mid \cdot \mathbf{P}\left(v \text { can keep color } x \mid X_{v}=x\right) \\
& \geq \sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot 4^{-w_{x}(v)} \text { Let } f\left(w_{x}\right)=4-w_{x}(v) \text {. This is average }\left(f\left(w_{x}\right)\right) \\
& \geq 4
\end{aligned}
$$

average $(f(x)) \geq f($ average $(x))$ if f is convex

Extending an Existing Coloring

- Theorem: The probability that a node $v \in V_{u}$ can keep its random color is at least $1 / 4$
- $\mathbf{P}\left(\mathrm{v}\right.$ can keep its color $\left.\mathrm{X}_{\mathrm{v}}\right)$

$$
\begin{aligned}
& =\sum_{x \in F_{v}} 1 / \| F_{v} \mid \cdot P\left(v \text { can keep color } x \mid X_{v}=x\right) \\
& \geq \sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot 4^{-w_{x}(v)} \text { Let } f\left(w_{x}\right)=4-w_{x}(v) \text {. This is average }\left(f\left(w_{x}\right)\right) \\
& \geq 4^{-1 /\left|F_{v}\right| \cdot \sum_{x \in F_{v}} w_{x}(v)} \text { This is } f\left(\text { average }\left(w_{x}\right)\right)
\end{aligned}
$$

average $(f(x)) \geq f($ average $(x))$ if f is convex

Extending an Existing Coloring

- Theorem: The probability that a node $v \in V_{u}$ can keep its random color is at least $1 / 4$
- $\mathbf{P}\left(\mathrm{v}\right.$ can keep its color $\left.\mathrm{X}_{\mathrm{v}}\right)$

$$
\begin{aligned}
& =\sum_{x \in F_{v}} 1 / \| F_{v} \mid \cdot P\left(v \text { can keep color } x \mid X_{v}=x\right) \\
& \geq \sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot 4^{-w_{x}(v)} \text { Let } f\left(w_{x}\right)=4-w_{x}(v) \text {. This is average }\left(f\left(w_{x}\right)\right) \\
& \geq 4^{-1 /\left|F_{v}\right| \cdot \sum_{x \in F_{v}} w_{x}(v)} \text { This is } f\left(\text { average }\left(w_{x}\right)\right)
\end{aligned}
$$

average $(f(x)) \geq f($ average $(x))$ if f is convex

Extending an Existing Coloring

- Theorem: The probability that a node $v \in V_{u}$ can keep its random color is at least $1 / 4$
- $\mathbf{P}\left(\mathrm{v}\right.$ can keep its color $\left.\mathrm{X}_{\mathrm{v}}\right)$

$$
\begin{aligned}
& =\sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot P\left(v \text { can keep color } x \mid X_{v}=x\right) \\
& \geq \sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot 4^{-W_{x}(v)} \text { Let } f\left(w_{x}\right)=4-w_{x}(v) \text {. This is average }\left(f\left(w_{x}\right)\right) \\
& \geq 4 \quad 1 / \| F_{v} \mid \cdot \sum_{x \in F_{v}} w_{x}(v)
\end{aligned}
$$

average $(f(x)) \geq f($ average $(x))$ if f is convex

Extending an Existing Coloring

- Theorem: The probability that a node $v \in V_{u}$ can keep its random color is at least $1 / 4$
- $\mathbf{P}\left(\mathrm{v}\right.$ can keep its color $\left.\mathrm{X}_{\mathrm{v}}\right)$

$$
\begin{aligned}
& =\sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot P\left(v \text { can keep color } x \mid X_{v}=x\right) \\
& \geq \sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot 4^{-W_{x}(v)} \text { Let } f\left(w_{x}\right)=4^{-w_{x}(v) . \text { This is average }(f(w x))} \\
& \geq-1 /\left|F_{v}\right| \cdot \sum_{x \in F_{v}} w_{x}(v)
\end{aligned}
$$

average $(f(x)) \geq f($ average $(x))$ if f is convex

Extending an Existing Coloring

- Theorem: The probability that a node $v \in V_{u}$ can keep its random color is at least 1/4
- $\mathbf{P}\left(\mathrm{v}\right.$ can keep its color $\left.\mathrm{X}_{\mathrm{v}}\right)$

$$
\begin{aligned}
& =\sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot P\left(v \text { can keep color } x \mid X_{v}=x\right) \\
& \geq \sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot 4^{-w_{x}(v)} \\
& \geq 4^{-1 /\left|F_{v}\right| \cdot \sum_{x \in F_{v}} w_{x}(v)}
\end{aligned}
$$

Extending an Existing Coloring

- Theorem: The probability that a node $v \in V_{u}$ can keep its random color is at least 1/4
- $\mathbf{P}\left(\mathrm{v}\right.$ can keep its color $\left.\mathrm{X}_{\mathrm{v}}\right)$

$$
\begin{aligned}
& =\sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot P\left(v \text { can keep color } x \mid X_{v}=x\right) \\
& \geq \sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot 4^{-w_{x}(v)} \\
& \geq 4^{-1 /\left|F_{v}\right| \cdot \sum_{x \in F_{v}} w_{x}(v)} \\
& \geq 4^{-\left(1 /\left|F_{v}\right|\right) \cdot\left(\left|F_{v}\right|-1\right)}
\end{aligned}
$$

Extending an Existing Coloring

- Theorem: The probability that a node $v \in V_{u}$ can keep its random color is at least 1/4
- $\mathbf{P}\left(\mathrm{v}\right.$ can keep its color $\left.\mathrm{X}_{\mathrm{v}}\right)$

$$
\begin{aligned}
& =\sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot P\left(v \text { can keep color } x \mid X_{v}=x\right) \\
& \geq \sum_{x \in F_{v}} 1 /\left|F_{v}\right| \cdot 4^{-W_{x}(v)} \\
& \geq 4^{-1 /\left|F_{v}\right| \cdot \sum_{x \in F_{v}} w_{x}(v)} \\
& \geq 4^{-\left(1 /\left|F_{v}\right|\right) \cdot\left(\left|F_{v}\right|-1\right)} \\
& \geq 4^{-1}
\end{aligned}
$$

Randomized Coloring

Randomized Coloring

- Theorem: the discussed randomized coloring algorithm computes a valid coloring of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ in $O(\log n)$ rounds in expectation and with high probability. Every node $\mathrm{V} \in \mathrm{V}$ gets a color in $\{1, \ldots, \operatorname{deg}(v)+1\}$

Randomized Coloring

- Theorem: the discussed randomized coloring algorithm computes a valid coloring of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ in $O(\log n)$ rounds in expectation and with high probability. Every node $\mathrm{V} \in \mathrm{V}$ gets a color in $\{1, \ldots, \operatorname{deg}(v)+1\}$
- $\mathbf{P}($ v uncolored after \mathbf{T} phases $) \leq(3 / 4)^{\top}$

Randomized Coloring

- Theorem: the discussed randomized coloring algorithm computes a valid coloring of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ in $O(\log n)$ rounds in expectation and with high probability. Every node $\mathrm{V} \in \mathrm{V}$ gets a color in $\{1, \ldots, \operatorname{deg}(v)+1\}$
- $\mathbf{P}($ v uncolored after \mathbf{T} phases $) \leq(3 / 4)^{\top}$
- Choose $T=(c+1) \log _{4 / 3} n=0(\log n)$

Randomized Coloring

- Theorem: the discussed randomized coloring algorithm computes a valid coloring of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ in $O(\log \mathrm{n})$ rounds in expectation and with high probability. Every node $\mathrm{V} \in \mathrm{V}$ gets a color in $\{1, \ldots, \operatorname{deg}(v)+1\}$
- $\mathbf{P}($ v uncolored after \mathbf{T} phases $) \leq(3 / 4)^{\top}$
- Choose $T=(c+1) \log _{4 / 3} n=0(\log n)$
- $\mathbf{P}($ v uncolored after \mathbf{T} phases $) \leq 1 / \mathrm{n}^{\mathrm{c}+1}$

Randomized Coloring

- Theorem: the discussed randomized coloring algorithm computes a valid coloring of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ in $O(\log \mathrm{n})$ rounds in expectation and with high probability. Every node $\mathrm{v} \in \mathrm{V}$ gets a color in $\{1, \ldots, \operatorname{deg}(v)+1\}$
- $\mathbf{P}($ v uncolored after \mathbf{T} phases $) \leq(3 / 4)^{\top}$
- Choose $T=(c+1) \log _{4 / 3} n=0(\log n)$
- $\mathbf{P}(\mathrm{v}$ uncolored after \mathbf{T} phases $) \leq 1 / \mathrm{n}^{\mathrm{c}+1}$
- $\mathbf{P}($ some node uncolored after \mathbf{T} phases $) \leq n \cdot 1 / n^{c+1}=1 / n^{c}$

Randomized Coloring

- Theorem: the discussed randomized coloring algorithm computes a valid coloring of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ in $\mathrm{O}(\log \mathrm{n})$ rounds in expectation and with high probability. Every node $\mathrm{V} \in \mathrm{V}$ gets a color in $\{1, \ldots, \operatorname{deg}(v)+1\}$
- $\mathbf{P}(\mathrm{v}$ uncolored after \mathbf{T} phases $) \leq(3 / 4)^{\top}$
- Choose $T=(c+1) \log _{4 / 3} n=0(\log n)$
- $\mathbf{P}(\mathrm{v}$ uncolored after \mathbf{T} phases $) \leq 1 / \mathrm{n}^{\mathrm{c}+1}$
- $\mathbf{P}($ some node uncolored after \mathbf{T} phases $) \leq n \cdot 1 / n^{c+1}=1 / n^{c}$

Union Bound: $P(A \cup B)=P(A)+P(B)-P(A \cap B) \leq P(A)+P(B)$

Randomized MIS: Ideas

Randomized MIS: Ideas

- Compute a $(\Delta+1)$-coloring, then convert it into an MIS as seen in the last lecture:

Randomized MIS: Ideas

- Compute a $(\Delta+1)$-coloring, then convert it into an MIS as seen in the last lecture:
- requires $O(\Delta+\log n)$

Randomized MIS: Ideas

- Compute a ($\Delta+1$)-coloring, then convert it into an MIS as seen in the last lecture:
- requires $0(\Delta+\log n)$
- Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:

Randomized MIS: Ideas

- Compute a ($\Delta+1$)-coloring, then convert it into an MIS as seen in the last lecture:
- requires $O(\Delta+\log n)$
- Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:
- requires $\mathrm{O}(\log \mathrm{n})$, but its analysis is highly non-trivial

Randomized MIS: Ideas

- Compute a ($\Delta+1$)-coloring, then convert it into an MIS as seen in the last lecture:
- requires $O(\Delta+\log n)$
- Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:
- requires $\mathrm{O}(\log \mathrm{n})$, but its analysis is highly non-trivial
- We are going to follow a similar approach. At each round:

Randomized MIS: Ideas

- Compute a ($\Delta+1$)-coloring, then convert it into an MIS as seen in the last lecture:
- requires $0(\Delta+\log n)$
- Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:
- requires $\mathrm{O}(\log \mathrm{n})$, but its analysis is highly non-trivial
- We are going to follow a similar approach. At each round:
- Each node v picks a random number $\mathrm{R}_{\mathrm{v}} \in[0,1]$

Randomized MIS: Ideas

- Compute a ($\Delta+1$)-coloring, then convert it into an MIS as seen in the last lecture:
- requires $O(\Delta+\log n)$
- Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:
- requires $O(\log n)$, but its analysis is highly non-trivial
- We are going to follow a similar approach. At each round:
- Each node v picks a random number $\mathrm{R}_{\mathrm{v}} \in[0,1]$
- Node v joins the MIS if $R_{v}<R_{u}$ for all $u \in \mathbb{N}(v)$

Randomized MIS: Ideas

- Compute a ($\Delta+1$)-coloring, then convert it into an MIS as seen in the last lecture:
- requires $O(\Delta+\log n)$
- Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:
- requires $O(\log \mathrm{n})$, but its analysis is highly non-trivial
- We are going to follow a similar approach. At each round:
- Each node v picks a random number $\mathbb{R}_{\mathrm{v}} \in[0,1]$
- Node v joins the MIS if $R_{v}<R_{u}$ for all $u \in \mathbb{N}(v)$

Randomized MIS: Ideas

- Compute a ($\Delta+1$)-coloring, then convert it into an MIS as seen in the last lecture:
- requires $O(\Delta+\log n)$
- Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:
- requires $0(\log n)$, but its analysis is highly non-trivial
- We are going to follow a similar approach. At each round:
- Each node v picks a random number $\mathbb{R}_{\mathrm{v}} \in[0,1]$
- Node v joins the MIS if $R_{v}<R_{u}$ for all $u \in \mathbb{N}(v)$

Randomized MIS: Luby's Algorithm

Randomized MIS: Luby's Algorithm

- At each round:

Randomized MIS: Luby's Algorithm

- At each round:
- Each node v picks a random number $R_{v} \in[0,1]$

Randomized MIS: Luby's Algorithm

- At each round:
- Each node v picks a random number $R_{v} \in[0,1]$
- Node v joins the MIS if $R_{v}<R_{u}$ for all $u \in \mathbb{N}(v)$

Randomized MIS: Luby's Algorithm

- At each round:
- Each node v picks a random number $R_{v} \in[0,1]$
- Node v joins the MIS if $R_{v}<R_{u}$ for all $u \in \mathbb{N}(v)$
- Remove MIS nodes and its neighbors

Randomized MIS: Luby's Algorithm

- At each round:
- Each node v picks a random number $R_{v} \in[0,1]$
- Node v joins the MIS if $R_{v}<R_{u}$ for all $u \in \mathbb{N}(v)$
- Remove MIS nodes and its neighbors

Randomized MIS: Luby's Algorithm

- At each round:
- Each node v picks a random number $R_{v} \in[0,1]$
- Node v joins the MIS if $R_{v}<R_{u}$ for all $u \in \mathbb{N}(v)$
- Remove MIS nodes and its neighbors

Randomized MIS: Luby's Algorithm

- At each round:
- Each node v picks a random number $R_{v} \in[0,1]$
- Node v joins the MIS if $R_{v}<R_{u}$ for all $u \in \mathbb{N}(v)$
- Remove MIS nodes and its neighbors

Randomized MIS: Luby's Algorithm

- At each round:
- Each node v picks a random number $R_{v} \in[0,1]$
- Node v joins the MIS if $R_{v}<R_{u}$ for all $u \in \mathbb{N}(v)$
- Remove MIS nodes and its neighbors

Randomized MIS: Luby's Algorithm

- At each round:
- Each node v picks a random number $R_{v} \in[0,1]$
- Node v joins the MIS if $R_{v}<R_{u}$ for all $u \in \mathbb{N}(v)$
- Remove MIS nodes and its neighbors

Randomized MIS: Luby's Algorithm

- At each round:
- Each node v picks a random number $R_{v} \in[0,1]$
- Node v joins the MIS if $R_{v}<R_{u}$ for all $u \in \mathbb{N}(v)$
- Remove MIS nodes and its neighbors

Randomized MIS: Luby's Algorithm

- At each round:
- Each node v picks a random number $R_{v} \in[0,1]$
- Node v joins the MIS if $R_{v}<R_{u}$ for all $u \in \mathbb{N}(v)$
- Remove MIS nodes and its neighbors

Randomized MIS: Luby's Algorithm

- At each round:
- Each node vicks a random number $R_{v} \in[0,1]$
- Node v joins the MIS if $R_{v}<R_{u}$ for all $u \in \mathbb{N}(v)$
- Remove MIS nodes and its neighbors
- $P(v$ joins $M I S)=1 /(\operatorname{deg}(v)+1)$

Randomized MIS: Luby's Algorithm

- At each round:
- Each node v picks a random number $R_{v} \in[0,1]$
- Node v joins the MIS if $R_{v}<R_{u}$ for all $u \in \mathbb{N}(v)$
- Remove MIS nodes and its neighbors
- $P(v$ joins $M I S)=1 /(\operatorname{deg}(v)+1)$

Randomized MIS: Luby's Algorithm

- At each round:
- Each node v picks a random number $R_{v} \in[0,1]$
- Node v joins the MIS if $R_{v}<R_{u}$ for all $u \in \mathbb{N}(v)$
- Remove MIS nodes and its neighbors
- $P($ v joins $M I S)=1 /(\operatorname{deg}(v)+1)$
- Can we prove that a constant fraction of nodes gets removed?

Randomized MIS: Luby's Algorithm

- At each round:
- Each node v picks a random number $R_{v} \in[0,1]$
- Node v joins the MIS if $R_{v}<R_{u}$ for all $u \in \mathbb{N}(v)$
- Remove MIS nodes and its neighbors
- $P($ v joins $M I S)=1 /(\operatorname{deg}(v)+1)$
- Can we prove that a constant fraction of nodes gets removed?

- No!

Randomized MIS: Luby's Algorithm

Randomized MIS: Luby's Algorithm

- Can we prove that a constant fraction of nodes gets removed?

Randomized MIS: Luby's Algorithm

- Can we prove that a constant fraction of nodes gets removed?
- No!

Randomized MIS: Luby's Algorithm

- Can we prove that a constant fraction of nodes gets removed?
- No!

Randomized MIS: Luby's Algorithm

- Can we prove that a constant fraction of nodes gets removed?
- No!

Randomized MIS: Luby's Algorithm

- Can we prove that a constant fraction of nodes gets removed?
- No!

Randomized MIS: Luby's Algorithm

- Can we prove that a constant fraction of nodes gets removed?
- No!

Randomized MIS: Luby's Algorithm

- Can we prove that a constant fraction of nodes gets removed?
- No!

$$
P(\text { u joins MIS }) \approx 1 / n
$$

$$
n-\sqrt{n}
$$

Randomized MIS: Luby's Algorithm

- Can we prove that a constant fraction of nodes gets removed?
- No!


```
P(u joins MIIS ) = 1/n
P( some node of the right side joins MIS ) = 1/\sqrt{}{n}
```


Randomized MIS: Luby's Algorithm

- Can we prove that a constant fraction of nodes gets removed?
- No!

$$
P(\text { u joins MIS }) \approx 1 / n
$$

$P($ some node of the right side joins MIS $) \approx 1 / \sqrt{ }$ n
with high probability, no node of the right side joins the MIS

Randomized MIS: Luby's Algorithm

- Can we prove that a constant fraction of nodes gets removed?
- No!

$P($ u joins MIS $) \approx 1 / n$
$\mathbf{P}($ some node of the right side joins MIIS $) \approx 1 / \sqrt{ } \mathrm{n}$
with high probability, no node of the right side joins the MIS nodes of the left side only get removed if they join MIS

Randomized MIS: Luby's Algorithm

- Can we prove that a constant fraction of nodes gets removed?
- No!


```
P(u joins MIS ) \approx 1/n
P( some nodle of the right side joins MIIS ) \approx 1/ / N
with high probability, no node of the right side joins the MIS
nodes of the left side only get removed if they join MIS
```


Randomized MIS: Luby's Algorithm

- Can we prove that a constant fraction of nodes gets removed?
- No!

$P($ u joins MIS $) \approx 1 / n$
$\mathbf{P}($ some node of the right side joins MIIS $) \approx 1 / \sqrt{ } \mathrm{n}$
with high probability, no node of the right side joins the MIS
nodes of the left side only get removed if they join MIS
$\mathbf{P}(\mathrm{v}$ joins MIIS$) \approx 1 / \sqrt{ } \mathrm{n}$

Randomized MIS: Luby's Algorithm

- Can we prove that a constant fraction of nodes gets removed?
- No!

$P($ u joins MIS $) \approx 1 / n$
$\mathbf{P}($ some node of the right side joins MIIS $) \approx 1 / \sqrt{ } \mathrm{n}$ with high probability, no node of the right side joins the MIS nodes of the left side only get removed if they join MIS
$\mathbf{P}(\mathrm{v}$ joins MIIS$) \approx 1 / \sqrt{ } \mathrm{n}$
only a $1 / \sqrt{ }$ n fraction of nodes join the MIS

Randomized MIS: Luby's Algorithm

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge $\{u, v\}$ gets removed if either u or v gets removed

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge $\{u, v\}$ gets removed if either u or v gets removed

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge $\{u, v\}$ gets removed if either u or v gets removed

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge $\{u, v\}$ gets removed if either u or v gets removed

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge $\{u, v\}$ gets removed if either u or v gets removed
- For each edge $\{u, v\}$, we define events $\varepsilon_{u, v}$ and $\varepsilon_{v, u}$

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge $\{u, v\}$ gets removed if either u or v gets removed
- For each edge $\{u, v\}$, we define events $\varepsilon_{u, v}$ and $\varepsilon_{v, u}$
- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge $\{u, v\}$ gets removed if either u or v gets removed
- For each edge $\{u, v\}$, we define events $\varepsilon_{u, v}$ and $\varepsilon_{v, u}$
- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge $\{u, v\}$ gets removed if either u or v gets removed
- For each edge $\{u, v\}$, we define events $\varepsilon_{u, v}$ and $\varepsilon_{v, u}$
- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$

$\varepsilon_{u, v}$ is true

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge $\{u, v\}$ gets removed if either u or v gets removed
- For each edge $\{u, v\}$, we define events $\varepsilon_{u, v}$ and $\varepsilon_{v, u}$
- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$

$\varepsilon_{u, v}$ is true
$\varepsilon_{w, v}$ is false

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- An edge $\{u, v\}$ gets removed if either u or v gets removed
- For each edge $\{u, v\}$, we define events $\varepsilon_{u, v}$ and $\varepsilon_{v, u}$
- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$

$\varepsilon_{u, v}$ is true \Rightarrow all edges of v get removed "because of u" $\varepsilon_{w, v}$ is false

Randomized MIS: Luby's Algorithm

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall w \in \mathbb{N}(u) \cup \mathbb{N}(v) \backslash\{u\}: X_{u}<X_{w}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- Claim: $\mathrm{X} \leq 2$. \# deleted edges

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- Claim: $X \leq 2 \cdot \#$ deleted edges

- For each node v, at most one incident edges satisfies $\varepsilon_{u, v}$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- Claim: $\mathrm{X} \leq 2 \cdot$ \# deleted edges

- For each node v, at most one incident edges satisfies $\varepsilon_{u, v}$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- Claim: $X \leq 2 \cdot \#$ deleted edges

$\varepsilon_{u, v}$ is true
$X_{u, v}$ is $\operatorname{deg}(v)$
- For each node v, at most one incident edges satisfies $\varepsilon_{u, v}$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- Claim: $\mathrm{X} \leq 2 \cdot$ \# deleted edges

$\varepsilon_{u, v}$ is true
$X_{u, v}$ is $\operatorname{deg}(v)$
$\varepsilon_{w, v}$ is false
- For each node v, at most one incident edges satisfies $\varepsilon_{u, v}$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- Claim: $\mathrm{X} \leq 2 \cdot$ \# deleted edges

$\varepsilon_{u, v}$ is true $X_{u, v}$ is $\operatorname{deg}(v)$
$\varepsilon_{w, v}$ is false
$X_{w, v}$ is 0
- For each node v, at most one incident edges satisfies $\varepsilon_{u, v}$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall w \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{u\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- Claim: $\mathrm{X} \leq 2 \cdot \#$ deleted edges

$\varepsilon_{u, v}$ is true $X_{u, v}$ is $\operatorname{deg}(v)$
$\varepsilon_{w, v}$ is false
$X_{w, v}$ is 0
- For each node v , at most one incident edges satisfies $\varepsilon_{\mathrm{u}, \mathrm{v}}$
- so every edge incident to v is counted once, for \mathbf{v}

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall w \in \mathbb{N}(u) \cup \mathbb{N}(v) \backslash\{u\}: X_{u}<X_{w}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- Claim: $\mathrm{X} \leq 2$. \# deleted edges
- For each node v, at most one incident edges satisfies $\varepsilon_{u, v}$
- so every edge incident to v is counted once, for \mathbf{v}

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall w \in \mathbb{N}(u) \cup \mathbb{N}(v) \backslash\{u\}: X_{u}<X_{w}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- Claim: $\mathrm{X} \leq 2$. \# deleted edges
- For each node v, at most one incident edges satisfies $\varepsilon_{u, v}$
- so every edge incident to v is counted once, for \mathbf{v}

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- Claim: $\mathrm{X} \leq 2 \cdot$ \# deleted edges
- For each node v, at most one incident edges satisfies $\varepsilon_{u, v}$
- so every edge incident to v is counted once, for \mathbf{v}

- every edge can be counted once, for each endpoint

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- $X \leq 2 \cdot \#$ deleted edges

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- $X \leq 2 \cdot \#$ deleted edges

- Claim: $\mathbb{E}[X] \geq|E|$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall w \in \mathbb{N}(u) \cup \mathbb{N}(v) \backslash\{u\}: X_{u}<X_{w}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- $X \leq 2 \cdot \#$ deleted edges

- Claim: $\mathbb{E}[X] \geq|E|$
- $\mathbb{E}\left[X_{u, v}\right]=$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall w \in \mathbb{N}(u) \cup \mathbb{N}(v) \backslash\{u\}: X_{u}<X_{w}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- $X \leq 2 \cdot \#$ deleted edges

- Claim: $\mathbb{E}[X] \geq|E|$
- $\mathbb{E}\left[X_{u, v}\right]=\operatorname{deg}(v) \cdot \mathbf{P}\left(\varepsilon_{u, v}\right)$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- $X \leq 2 \cdot \#$ deleted edges
- Claim: $\mathbb{E}[X] \geq|E|$
- $\mathbb{E}\left[X_{u, v}\right]=\operatorname{deg}(v) \cdot \mathbf{P}\left(\varepsilon_{u, v}\right)$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- $X \leq 2 \cdot \#$ deleted edges
- Claim: $\mathbb{E}[X] \geq|E|$

- $\mathbb{E}\left[X_{u, v}\right]=\operatorname{deg}(v) \cdot \mathbf{P}\left(\mathcal{E}_{u, v}\right) \geq \operatorname{deg}(v) \cdot 1 /(\operatorname{deg}(u)+\operatorname{deg}(v))$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- $X \leq 2 \cdot \#$ deleted edges
- Claim: $\mathbb{E}[X] \geq|E|$

- $\mathbb{E}\left[X_{u, v}\right]=\operatorname{deg}(v) \cdot \mathbf{P}\left(\mathcal{E}_{u, v}\right) \geq \operatorname{deg}(v) \cdot 1 /(\operatorname{deg}(u)+\operatorname{deg}(v))=\operatorname{deg}(v) /(\operatorname{deg}(u)+\operatorname{deg}(v))$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- $X \leq 2 \cdot \#$ deleted edges
- Claim: $\mathbb{E}[X] \geq|E|$

- $\mathbb{E}\left[X_{u, v}\right]=\operatorname{deg}(v) \cdot \mathbf{P}\left(\varepsilon_{u, v}\right) \geq \operatorname{deg}(v) \cdot 1 /(\operatorname{deg}(u)+\operatorname{deg}(v))=\operatorname{deg}(v) /(\operatorname{deg}(u)+\operatorname{deg}(v))$
- $\mathbb{E}[X]=$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- $X \leq 2 \cdot \#$ deleted edges
- Claim: $\mathbb{E}[X] \geq|E|$

- $\mathbb{E}\left[X_{u, v}\right]=\operatorname{deg}(v) \cdot \mathbf{P}\left(\varepsilon_{u, v}\right) \geq \operatorname{deg}(v) \cdot 1 /(\operatorname{deg}(u)+\operatorname{deg}(v))=\operatorname{deg}(v) /(\operatorname{deg}(u)+\operatorname{deg}(v))$
- $\mathbb{E}[X]=\mathbb{E}\left[\sum_{\{u, v\} \in \mathbb{E}}\left(X_{u, v}+X_{v, u}\right)\right]$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall \mathrm{w} \in \mathbb{N}(\mathrm{u}) \cup \mathbb{N}(\mathrm{v}) \backslash\{\mathrm{u}\}: \mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{w}}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- $X \leq 2 \cdot$ \# deleted edges
- Claim: $\mathbb{E}[X] \geq|E|$

- $\mathbb{E}\left[X_{u, v}\right]=\operatorname{deg}(v) \cdot \mathbf{P}\left(\varepsilon_{u, v}\right) \geq \operatorname{deg}(v) \cdot 1 /(\operatorname{deg}(u)+\operatorname{deg}(v))=\operatorname{deg}(v) /(\operatorname{deg}(u)+\operatorname{deg}(v))$
- $\mathbb{E}[X]=\mathbb{E}\left[\sum_{\{u, v\} \in \mathbb{E}}\left(X_{u, v}+X_{v, u}\right)\right]$

Linearity of expectation: $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall w \in \mathbb{N}(u) \cup \mathbb{N}(v) \backslash\{u\}: X_{u}<X_{w}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- $\mathrm{X} \leq 2 \cdot$ \# deleted edges
- Claim: $\mathbb{E}[X] \geq|E|$

- $\mathbb{E}\left[X_{u, v}\right]=\operatorname{deg}(v) \cdot \mathbf{P}\left(\varepsilon_{u, v}\right) \geq \operatorname{deg}(v) \cdot 1 /(\operatorname{deg}(u)+\operatorname{deg}(v))=\operatorname{deg}(v) /(\operatorname{deg}(u)+\operatorname{deg}(v))$
- $\mathbb{E}[X]=\mathbb{E}\left[\sum_{\{u, v\} \in \mathbb{E}}\left(X_{u, v}+X_{v, u}\right)\right]=\sum_{\{u, v\} \in \mathbb{E}}\left(\mathbb{E}\left[X_{u, v}\right]+\mathbb{E}\left[X_{v, u}\right]\right)$

Linearity of expectation: $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall w \in \mathbb{N}(u) \cup \mathbb{N}(v) \backslash\{u\}: X_{u}<X_{w}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- $\mathrm{X} \leq 2 \cdot$ \# deleted edges
- Claim: $\mathbb{E}[X] \geq|E|$

- $\mathbb{E}\left[X_{u, v}\right]=\operatorname{deg}(v) \cdot \mathbf{P}\left(\varepsilon_{u, v}\right) \geq \operatorname{deg}(v) \cdot 1 /(\operatorname{deg}(u)+\operatorname{deg}(v))=\operatorname{deg}(v) /(\operatorname{deg}(u)+\operatorname{deg}(v))$
- $\mathbb{E}[X]=\mathbb{E}\left[\sum_{\{u, v\} \in \mathbb{E}}\left(X_{u, v}+X_{v, u}\right)\right]=\sum_{\{u, v\} \in \mathbb{E}}\left(\mathbb{E}\left[X_{u, v}\right]+\mathbb{E}\left[X_{v, u}\right]\right) \geq \sum_{\{u, v\} \in \mathbb{E}} 1$

Linearity of expectation: $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$

Randomized MIS: Luby's Algorithm

- $\varepsilon_{u, v} \Leftrightarrow \forall w \in \mathbb{N}(u) \cup \mathbb{N}(v) \backslash\{u\}: X_{u}<X_{w}$
- $X_{u, v}:=\operatorname{deg}(v)$ if $\varepsilon_{u, v}$ holds, 0 otherwise
- $X:=\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)$
- $\mathrm{X} \leq 2 \cdot$ \# deleted edges
- Claim: $\mathbb{E}[X] \geq|E|$

- $\mathbb{E}\left[X_{u, v}\right]=\operatorname{deg}(v) \cdot \mathbf{P}\left(\varepsilon_{u, v}\right) \geq \operatorname{deg}(v) \cdot 1 /(\operatorname{deg}(u)+\operatorname{deg}(v))=\operatorname{deg}(v) /(\operatorname{deg}(u)+\operatorname{deg}(v))$
- $\mathbb{E}[X]=\mathbb{E}\left[\sum_{\{u, v\} \in E}\left(X_{u, v}+X_{v, u}\right)\right]=\sum_{\{u, v\} \in \mathbb{E}}\left(\mathbb{E}\left[X_{u, v}\right]+\mathbb{E}\left[X_{v, u}\right]\right) \geq \sum_{\{u, v\} \in E} 1=|E|$

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- $\mathrm{X} \leq 2 \cdot$ \# deleted edges

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- $\mathrm{X} \leq 2 \cdot$ \# deleted edges
- $\mathbb{E}[X] \geqq|E|$

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- $\mathrm{X} \leq 2 \cdot$ \# deleted edges
- $\mathbb{E}[X] \geq|E|$
- \# deleted edges $\geq X / 2$

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- $\mathrm{X} \leq 2 \cdot$ \# deleted edges
- $\mathbb{E}[X] \geq|E|$
- \# deleted edges $\geq X / 2$
- $\mathbb{E}[$ \# deleted edges $] \geq \mathbb{E}[X / 2] \geq|E| / 2$

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- Theorem: Luby's randomized MIS algorithm computes an MIS in time $O(\log n)$ in expectation and with high probability.

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- Theorem: Luby's randomized MIS algorithm computes an MIS in time $O(\log n)$ in expectation and with high probability.

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- Theorem: Luby's randomized MIS algorithm computes an MIS in time $O(\log n)$ in expectation and with high probability.
- Markov's inequality: $P(X \geq a) \leq \mathbb{E}[X] / a$

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- Theorem: Luby's randomized MIS algorithm computes an MIS in time $O(\log n)$ in expectation and with high probability.
- Markov's inequality: $P(X \geq a) \leq \mathbb{E}[X] / a$
- What is the probability that the number of remaining edges is at least a fraction $3 / 4$?

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- Theorem: Luby's randomized MIS algorithm computes an MIS in time $O(\log n)$ in expectation and with high probability.
- Markov's inequality: $P(X \geq a) \leq \mathbb{E}[X] / a$
- What is the probability that the number of remaining edges is at least a fraction $3 / 4$?
- By Markov: at most $2 / 3$

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- Theorem: Luby's randomized MIS algorithm computes an MIS in time $O(\log n)$ in expectation and with high probability.
- Markov's inequality: $P(X \geq a) \leq \mathbb{E}[X] / a$
- What is the probability that the number of remaining edges is at least a fraction $3 / 4$?
- By Markov: at most $2 / 3$
- Hence, with probability at least $1 / 3$ we remove of at least a fraction $1 / 4$ of edges.

Randomized MIS: Luby's Algorithm

- Lemma: in expectation, at least half of the remaining edges are removed.
- Theorem: Luby's randomized MIS algorithm computes an MIS in time $O(\log n)$ in expectation and with high probability.
- Markov's inequality: $P(X \geq a) \leq \mathbb{E}[X] / a$
- What is the probability that the number of remaining edges is at least a fraction $3 / 4$?
- By Markov: at most $2 / 3$
- Hence, with probability at least $1 / 3$ we remove of at least a fraction $1 / 4$ of edges.

From MIS to ($\Delta+1$)-coloring

From MIS to ($\Delta+1$)-coloring

- Assume we want to compute a coloring on graph G

From MIS to ($\Delta+1$)-coloring

- Assume we want to compute a coloring on graph G

- We transform G into a new virtual graph H

From MIS to ($\Delta+1$)-coloring

- Assume we want to compute a coloring on
 graph G
- We transform G into a new virtual graph H
- that can be simulated on G

From MIS to ($\Delta+1$)-coloring

- Assume we want to compute a coloring on graph G

- We transform G into a new virtual graph H
- that can be simulated on G

1. Create $\Delta+1$ copies of G

From MIS to ($\Delta+1$)-coloring

- Assume we want to compute a coloring on graph G

- We transform G into a new virtual graph H
- that can be simulated on G

1. Create $\Delta+1$ copies of G
2. Connect corresponding nodes in the copies to a clique

From MIS to ($\Delta+1$)-coloring

- Assume we want to compute a coloring on graph G
- We transform G into a new virtual graph H
- that can be simulated on G

1. Create $\Delta+1$ copies of G
2. Connect corresponding nodes in the copies to a clique

From MIS to ($\Delta+1$)-coloring

- Assume we want to compute a coloring on graph G

- We transform G into a new virtual graph H
- that can be simulated on G

1. Create $\Delta+1$ copies of G
2. Connect corresponding nodes in the copies to a clique
3. Compute MIS on H

From MIS to ($\Delta+1$)-coloring

From MIS to ($\Delta+1$)-coloring

- Claim: the MIS contains exactly one node from each column

From MIS to ($\Delta+1$)-coloring

- Claim: the MIS contains exactly one node from each column

- At most 1: each column forms a clique

From MIS to ($\Delta+1$)-coloring

- Claim: the MIS contains exactly one node from each column

- At most 1: each column forms a clique
- At least 1: each neighbor in G can cover at most 1 copy. But there are at most Δ neighbors in G , and $\Delta+1$ copies. So at least one node for each column cannot be a neighbor of MIS nodes of other columns.

From MIS to ($\Delta+1$)-coloring

- Claim: the MIS contains exactly one node from each column

- At most 1: each column forms a clique
- At least 1: each neighbor in G can cover at most 1 copy. But there are at most Δ neighbors in G, and $\Delta+1$ copies. So at least one node for each column cannot be a neighbor of MIS nodes of other columns.
- Algorithm: if a column node v_{i} is in the MIS, node v picks color i

From MIS to ($\Delta+1$)-coloring

From MIS to ($\Delta+1$)-coloring

- Theorem: together with the $0(\log \mathrm{n})$ randomized MIS algorithm, this reduction gives an alternative way to compute a $\Delta+1$ coloring in $O(\log n)$ rounds.

From MIS to ($\Delta+1$)-coloring

- Theorem: together with the $\mathrm{O}(\log \mathrm{n})$ randomized MIS algorithm, this reduction gives an alternative way to compute a $\Delta+1$ coloring in $O(\log \mathrm{n})$ rounds.
- Remark: this construction can be modified to assign colors in $\{1, \ldots, \operatorname{deg}(\mathrm{v})+1\}$:

From MIS to ($\Delta+1$)-coloring

- Theorem: together with the $\mathrm{O}(\log \mathrm{n})$ randomized MIS algorithm, this reduction gives an alternative way to compute a $\Delta+1$ coloring in $O(\log \mathrm{n})$ rounds.
- Remark: this construction can be modified to assign colors in $\{1, \ldots, \operatorname{deg}(\mathrm{v})+1\}$:
- Put deg(v)+1 copies of v instead of $\Delta+1$

Summary

Summary

- MIS and $\boldsymbol{\Delta + 1}$ coloring (randomized): $\mathrm{O}(\log \mathrm{n})$ [Luby '86]

Summary

- MIS and $\boldsymbol{\Delta + 1}$ coloring (randomized): $\mathrm{O}(\log \mathrm{n})$ [Luby '86]
- Best deterministic algorithms:

Summary

- MIS and $\boldsymbol{\Delta + 1}$ coloring (randomized): $\mathrm{O}(\log \mathrm{n})$ [Luby '86]
- Best deterministic algorithms:
- MIS:
$0\left(\log ^{c} n\right)$ rounds
[Rozhoň, Ghaffari, 2019]

Summary

- MIS and $\boldsymbol{\Delta + 1}$ coloring (randomized): $\mathrm{O}(\log \mathrm{n})$ [Luby '86]
- Best deterministic algorithms:
- MIS:

O($\log ^{c} n$) rounds
[Rozhoň, Ghaffari, 2019]

- $\Delta+\mathbf{1}$ coloring: $\quad \mathrm{O}\left(\log ^{2} \mathrm{n} \log \Delta\right)$ rounds [Kuhn, Ghaffari, 2020]

Summary

- MIS and $\boldsymbol{\Delta + 1}$ coloring (randomized): $\mathrm{O}(\log \mathrm{n})$ [Luby '86]
- Best deterministic algorithms:
- MIS:

O($\log ^{c} n$) rounds
[Rozhoň, Ghaffari, 2019]

- $\quad \Delta+1$ coloring: $\quad \mathrm{O}\left(\log ^{2} \mathrm{n} \log \Delta\right)$ rounds [Kuhn, Ghaffari, 2020]
- Best randomized algorithms:

Summary

- MIS and $\boldsymbol{\Delta + 1}$ coloring (randomized): $\mathrm{O}(\log \mathrm{n})$ [Luby '86]
- Best deterministic algorithms:
- MIS:

O($\log ^{c} n$) rounds
[Rozhoň, Ghaffari, 2019]

- $\quad \Delta+1$ coloring: $\quad \mathrm{O}\left(\log ^{2} \mathrm{n} \log \Delta\right)$ rounds [Kuhn, Ghaffari, 2020]
- Best randomized algorithms:
- MIS:
$\mathrm{O}\left(\log \Delta+\log ^{c} \log \mathrm{n}\right)$
[Ghaffari '16]

Summary

- MIS and $\boldsymbol{\Delta + 1}$ coloring (randomized): $\mathrm{O}(\log \mathrm{n})$ [Luby '86]
- Best deterministic algorithms:
- MIS:

O($\log ^{c} n$) rounds
[Rozhoň, Ghaffari, 2019]

- $\quad \Delta+1$ coloring: $\quad \mathrm{O}\left(\log ^{2} \mathrm{n} \log \Delta\right)$ rounds [Kuhn, Ghaffari, 2020]
- Best randomized algorithms:
- MIS:
$\mathrm{O}\left(\log \Delta+\log ^{c} \log \mathrm{n}\right)$
[Ghaffari '16]
- $\Delta+1$ coloring:
$O\left(\log ^{c} \log n\right)$
[Chang, Li, Pettie '18]

Summary

- MIS and $\boldsymbol{\Delta}+\mathbf{1}$ coloring (randomized): $\quad \mathrm{O}(\log \mathrm{n})$ [Luby '86]
- Best deterministic algorithms:
- MIS:

O($\log ^{c} n$) rounds
[Rozhoň, Ghaffari, 2019]

- $\boldsymbol{\Delta}+1$ coloring: $\quad \mathrm{O}\left(\log ^{2} \mathrm{n} \log \Delta\right)$ rounds [Kuhn, Ghaffari, 2020]
- Best randomized algorithms:
- MIS:
- $\Delta+1$ coloring:
$O\left(\log \Delta+\log ^{c} \log \mathrm{n}\right)$
[Ghaffari '16]
- $\Delta+1$ coloring:

O($\left.\log ^{c} \log n\right)$
[Chang, Li, Pettie '18]

- Best lower bounds:

Summary

- MIS and $\boldsymbol{\Delta}+\mathbf{1}$ coloring (randomized): $\quad \mathrm{O}(\log \mathrm{n})$ [Luby '86]
- Best deterministic algorithms:
- MIS:

O($\log ^{c} n$) rounds
[Rozhoň, Ghaffari, 2019]

- $\boldsymbol{\Delta}+1$ coloring: $\quad \mathrm{O}\left(\log ^{2} \mathrm{n} \log \Delta\right)$ rounds [Kuhn, Ghaffari, 2020]
- Best randomized algorithms:
- MIS:
- $\Delta+1$ coloring:

Best lower bounds:

- $\Delta+1$ coloring:
$\Omega\left(\log ^{*} \mathrm{n}\right)$

Summary

- MIS and $\boldsymbol{\Delta}+\mathbf{1}$ coloring (randomized): $\quad \mathrm{O}(\log \mathrm{n})$ [Luby '86]
- Best deterministic algorithms:
- MIS:

O($\log ^{c} n$) rounds
[Rozhoň, Ghaffari, 2019]

- $\boldsymbol{\Delta}+1$ coloring: $\quad \mathrm{O}\left(\log ^{2} \mathrm{n} \log \Delta\right)$ rounds [Kuhn, Ghaffari, 2020]
- Best randomized algorithms:
- MIS
- $\Delta+1$ coloring:

Best lower bounds:

- $\Delta+1$ coloring:
(log * n)
[Linial '87]
- MIS (randomized): $\quad \Omega(\sqrt{ }(\log \mathrm{n} / \log \log \mathrm{n})) \quad$ [Kuhn, Moscibroda, Wattenhofer '04]

Summary

- MIS and $\boldsymbol{\Delta}+\mathbf{1}$ coloring (randomized): $\quad \mathrm{O}(\log \mathrm{n})$ [Luby '86]
- Best deterministic algorithms:
- MIS:

O($\log ^{c} n$) rounds
[Rozhoň, Ghaffari, 2019]

- $\boldsymbol{\Delta}+1$ coloring: $\quad \mathrm{O}\left(\log ^{2} \mathrm{n} \log \Delta\right)$ rounds [Kuhn, Ghaffari, 2020]
- Best randomized algorithms:
- MIS:
- $\Delta+1$ coloring:
- Best lower bounds:
- $\Delta+1$ coloring:
(log * n)
[Linial '87]
- MIS (randomized): $\Omega(\sqrt{ }(\log \mathrm{n} / \log \log \mathrm{n})) \quad$ [Kuhn, Moscibroda, Wattenhofer '04]
- MIS (deterministic): Ω ($\log \mathrm{n} / \log \log \mathrm{n}) \quad$ [Balliu, Brandt, Hirvonen, Olivetti, Rabie, Suomela '19]

Summary

- MIS and $\boldsymbol{\Delta + 1}$ coloring (randomized): $\quad \mathrm{O}(\log \mathrm{n})$ [Luby '86]
- Best deterministic algorithms:
- MIS:

O($\log ^{c} n$) rounds
[Rozhoň, Ghaffari, 2019]

- $\boldsymbol{\Delta}+1$ coloring: $\quad \mathrm{O}\left(\log ^{2} \mathrm{n} \log \Delta\right)$ rounds [Kuhn, Ghaffari, 2020]
- Best randomized algorithms:
- MIS
- $\Delta+1$ coloring:

Best lower bounds:

- $\Delta+1$ coloring:
$\Omega\left(\log ^{*} \mathrm{n}\right)$
[Linial '87]
- MIS (randomized): $\Omega(\sqrt{ }(\log \mathrm{n} / \log \log \mathrm{n}))$
- MIS (deterministic): $\Omega(\log \mathrm{n} / \log \log \mathrm{n})$
- MIS (deterministic, on trees):

Summary

- MIS and $\boldsymbol{\Delta + 1}$ coloring (randomized): $\quad \mathrm{O}(\log \mathrm{n})$ [Luby '86]
- Best deterministic algorithms:
- MIS:
$0\left(\log ^{c} n\right)$ rounds
[Rozhoň, Ghaffari, 2019]
- $\boldsymbol{\Delta}+1$ coloring: $\quad \mathrm{O}\left(\log ^{2} \mathrm{n} \log \Delta\right)$ rounds [Kuhn, Ghaffari, 2020]
- Best randomized algorithms:
- MIS:
- $\Delta+1$ coloring:
- Best lower bounds:
- $\Delta+1$ coloring:
(log * n)
- MIS (randomized): $\Omega(\sqrt{ }(\log \mathrm{n} / \log \log \mathrm{n}))$
- MIS (deterministic): $\Omega(\log \mathrm{n} / \log \log \mathrm{n})$
- MIS (deterministic, on trees):
- $\mathrm{O}(\log \mathrm{n} / \log \log \mathrm{n}) \quad$ [Barenboim, Elkin '08]

Summary

- MIS and $\boldsymbol{\Delta + 1}$ coloring (randomized): $\quad \mathrm{O}(\log \mathrm{n})$ [Luby '86]
- Best deterministic algorithms:
- MIS:
$0\left(\log ^{c} n\right)$ rounds
[Rozhoň, Ghaffari, 2019]
- $\boldsymbol{\Delta}+1$ coloring: $\quad \mathrm{O}\left(\log ^{2} \mathrm{n} \log \Delta\right)$ rounds [Kuhn, Ghaffari, 2020]
- Best randomized algorithms:
- MIS
- $\Delta+1$ coloring:
- Best lower bounds:
- $\Delta+1$ coloring:
(log * n)
- MIS (randomized): $\quad \Omega(\sqrt{ }(\log \mathrm{n} / \log \log \mathrm{n}))$
- MIS (deterministic): $\Omega(\log \mathrm{n} / \log \log \mathrm{n})$
- MIS (deterministic, on trees):
- $\mathrm{O}(\log \mathrm{n} / \log \log \mathrm{n}) \quad$ [Barenboim, Elkin '08]
- $\Omega(\log \mathrm{n} / \log \log \mathrm{n}) \quad[$ Balliu, Brandt, Kuhn, Olivetti ' 21$]$ <- result from 3 weeks ago!

