
Lower Bounds

Dennis Olivetti

University of Freiburg, Germany

Lower Bounds

Dennis Olivetti

University of Freiburg, Germany

"The 2-coloring problem requires Ω(n) rounds"

Lower bounds
‣ 2 coloring

2

Lower bounds
‣ 2 coloring

2

Lower bounds
‣ 2 coloring

• can be solved in O(n) rounds

2

Lower bounds
‣ 2 coloring

• can be solved in O(n) rounds
• requires Ω(n) rounds

2

Lower bounds
‣ 2 coloring

• can be solved in O(n) rounds
• requires Ω(n) rounds

2

Lower bounds
‣ 2 coloring

• can be solved in O(n) rounds
• requires Ω(n) rounds

‣Coloring trees

2

Lower bounds
‣ 2 coloring

• can be solved in O(n) rounds
• requires Ω(n) rounds

‣Coloring trees
• 3 coloring trees can be done in O(log n) rounds

2

Lower bounds
‣ 2 coloring

• can be solved in O(n) rounds
• requires Ω(n) rounds

‣Coloring trees
• 3 coloring trees can be done in O(log n) rounds
• 3 coloring rooted trees can be done in O(log* n) rounds

2

Lower bounds
‣ 2 coloring

• can be solved in O(n) rounds
• requires Ω(n) rounds

‣Coloring trees
• 3 coloring trees can be done in O(log n) rounds
• 3 coloring rooted trees can be done in O(log* n) rounds
• o(Δ / log Δ) coloring trees of maximum degree Δ requires Ω(logΔ n)

rounds

2

Lower bounds
‣ 2 coloring

• can be solved in O(n) rounds
• requires Ω(n) rounds

‣Coloring trees
• 3 coloring trees can be done in O(log n) rounds
• 3 coloring rooted trees can be done in O(log* n) rounds
• o(Δ / log Δ) coloring trees of maximum degree Δ requires Ω(logΔ n)

rounds

2

Lower bounds
‣ 2 coloring

• can be solved in O(n) rounds
• requires Ω(n) rounds

‣Coloring trees
• 3 coloring trees can be done in O(log n) rounds
• 3 coloring rooted trees can be done in O(log* n) rounds
• o(Δ / log Δ) coloring trees of maximum degree Δ requires Ω(logΔ n)

rounds

‣ 3 coloring paths or cycles

2

Lower bounds
‣ 2 coloring

• can be solved in O(n) rounds
• requires Ω(n) rounds

‣Coloring trees
• 3 coloring trees can be done in O(log n) rounds
• 3 coloring rooted trees can be done in O(log* n) rounds
• o(Δ / log Δ) coloring trees of maximum degree Δ requires Ω(logΔ n)

rounds

‣ 3 coloring paths or cycles
• can be solved in O(log* n) rounds

2

Lower bounds
‣ 2 coloring

• can be solved in O(n) rounds
• requires Ω(n) rounds

‣Coloring trees
• 3 coloring trees can be done in O(log n) rounds
• 3 coloring rooted trees can be done in O(log* n) rounds
• o(Δ / log Δ) coloring trees of maximum degree Δ requires Ω(logΔ n)

rounds

‣ 3 coloring paths or cycles
• can be solved in O(log* n) rounds
• requires Ω(log* n) rounds

2

Lower bounds
‣ 2 coloring

• can be solved in O(n) rounds
• requires Ω(n) rounds

‣Coloring trees
• 3 coloring trees can be done in O(log n) rounds
• 3 coloring rooted trees can be done in O(log* n) rounds
• o(Δ / log Δ) coloring trees of maximum degree Δ requires Ω(logΔ n)

rounds

‣ 3 coloring paths or cycles
• can be solved in O(log* n) rounds
• requires Ω(log* n) rounds

2

Locality

3

Locality

Concept that allows us to prove lower bounds even when:

3

Locality

Concept that allows us to prove lower bounds even when:

‣ messages can be arbitrarily large

3

Locality

Concept that allows us to prove lower bounds even when:

‣ messages can be arbitrarily large

‣ local computation is unbounded

3

Locality

Concept that allows us to prove lower bounds even when:

‣ messages can be arbitrarily large

‣ local computation is unbounded

3

"same view = same output"

Locality

Concept that allows us to prove lower bounds even when:

‣ messages can be arbitrarily large

‣ local computation is unbounded

3

1210

1

5

9

7

6

3

11
4

2

8

127

11

5

9

10

6

3

1
4

8

2

same view,
same output

"same view = same output"

Locality

4

Locality

If the size of the messages and the local computation is
unbounded, all synchronous T-round algorithms have a normal
form:

4

3

Locality

If the size of the messages and the local computation is
unbounded, all synchronous T-round algorithms have a normal
form:

4

3

Locality

If the size of the messages and the local computation is
unbounded, all synchronous T-round algorithms have a normal
form:

1. Gather the radius-T neighborhood

4

3

12

5

9 6

3

4

Locality

If the size of the messages and the local computation is
unbounded, all synchronous T-round algorithms have a normal
form:

1. Gather the radius-T neighborhood

4

3

12

5

9 6

3

4

Locality

If the size of the messages and the local computation is
unbounded, all synchronous T-round algorithms have a normal
form:

1. Gather the radius-T neighborhood

2. Perform some local computation

4

3

12

5

9 6

3

4

f()
Locality

If the size of the messages and the local computation is
unbounded, all synchronous T-round algorithms have a normal
form:

1. Gather the radius-T neighborhood

2. Perform some local computation

4

3

12

5

9 6

3

4

f()f()=x

Locality

If the size of the messages and the local computation is
unbounded, all synchronous T-round algorithms have a normal
form:

1. Gather the radius-T neighborhood

2. Perform some local computation

4

3

12

5

9 6

3

4

f()f()=x

Locality

If the size of the messages and the local computation is
unbounded, all synchronous T-round algorithms have a normal
form:

1. Gather the radius-T neighborhood

2. Perform some local computation

3. Output a result

4

Locality (Example)

A 0-round algorithm is just a mapping from input to output

5

1210

1

5

9

7

6

3

11
4

2

8

Locality (Example)

A 0-round algorithm is just a mapping from input to output

6

1210

1

5

9

7

6

3

11
4

2

8

I’m node 3
I’m red

I have 1 neighbor
n=12

Locality (Example)

A 0-round algorithm is just a mapping from input to output

6

1210

1

5

9

7

6

3

11
4

2

8

I’m node 3
I’m red

I have 1 neighbor
n=12f() = output

Locality (Example)

7

1210

1

5

9

7

6

3

11
4

2

8

I’m node 3
I’m red

I have 1 neighbor
n=12

510

1

12

9

7

1

3

11
4

2

8

I’m node 3
I’m red

I have 1 neighbor
n=12

Locality (Example)

7

1210

1

5

9

7

6

3

11
4

2

8

I’m node 3
I’m red

I have 1 neighbor
n=12

510

1

12

9

7

1

3

11
4

2

8

I’m node 3
I’m red

I have 1 neighbor
n=12

Locality (Example)

7

1210

1

5

9

7

6

3

11
4

2

8

I’m node 3
I’m red

I have 1 neighbor
n=12

510

1

12

9

7

1

3

11
4

2

8

I’m node 3
I’m red

I have 1 neighbor
n=12

Locality (Example)

7

1210

1

5

9

7

6

3

11
4

2

8

I’m node 3
I’m red

I have 1 neighbor
n=12

510

1

12

9

7

1

3

11
4

2

8

I’m node 3
I’m red

I have 1 neighbor
n=12

Locality (Example)

7

1210

1

5

9

7

6

3

11
4

2

8

I’m node 3
I’m red

I have 1 neighbor
n=12

510

1

12

9

7

1

3

11
4

2

8

I’m node 3
I’m red

I have 1 neighbor
n=12

Locality (Example)

7

1210

1

5

9

7

6

3

11
4

2

8

I’m node 3
I’m red

I have 1 neighbor
n=12

510

1

12

9

7

1

3

11
4

2

8

I’m node 3
I’m red

I have 1 neighbor
n=12

Locality (Example)

7

1210

1

5

9

7

6

3

11
4

2

8

I’m node 3
I’m red

I have 1 neighbor
n=12

510

1

12

9

7

1

3

11
4

2

8

I’m node 3
I’m red

I have 1 neighbor
n=12

f() = x

f() = x

Locality (Example)

8

1210

1

5

9

7

6

3

11
4

2

8

510

1

12

9

7

1

3

11
4

2

8

same output

1210

1

5

9

7

6

3

11
4

2

8

I’m node 3,
I’m red, n=12

I have 1 green neighbor
with id 6 and degree 3

Locality (Example)

A 1-round algorithm is just a mapping from radius-1 balls to outputs

9

1210

1

5

9

7

6

3

11
4

2

8

I’m node 3,
I’m red, n=12

I have 1 green neighbor
with id 6 and degree 3

Locality (Example)

A 1-round algorithm is just a mapping from radius-1 balls to outputs

9

1210

1

5

9

7

6

3

11
4

2

8

I’m node 3,
I’m red, n=12

I have 1 green neighbor
with id 6 and degree 3

Locality (Example)

A 1-round algorithm is just a mapping from radius-1 balls to outputs

9

f() = output

Locality (Example)

A T-round algorithm is just a mapping from radius-T balls to outputs

10

1210

1

5

9

7

6

3

11
4

2

8

Locality (Example)

A T-round algorithm is just a mapping from radius-T balls to outputs

11

1210

1

5

9

7

6

3

11
4

2

8

Locality
A T-round algorithm is just a mapping from radius-T balls to outputs.

12

Locality
A T-round algorithm is just a mapping from radius-T balls to outputs.

Proof by induction.

12

Locality
A T-round algorithm is just a mapping from radius-T balls to outputs.

Proof by induction.

‣ T = 0. trivial

12

Locality
A T-round algorithm is just a mapping from radius-T balls to outputs.

Proof by induction.

‣ T = 0. trivial

‣ T > 0.

12

Locality
A T-round algorithm is just a mapping from radius-T balls to outputs.

Proof by induction.

‣ T = 0. trivial

‣ T > 0.

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

12

Locality
A T-round algorithm is just a mapping from radius-T balls to outputs.

Proof by induction.

‣ T = 0. trivial

‣ T > 0.

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

• prove: after T rounds, the state of a node only depends on its T-radius neighborhood.

12

Locality
A T-round algorithm is just a mapping from radius-T balls to outputs.

Proof by induction.

‣ T = 0. trivial

‣ T > 0.

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

• prove: after T rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v at time T, depends on:

12

Locality
A T-round algorithm is just a mapping from radius-T balls to outputs.

Proof by induction.

‣ T = 0. trivial

‣ T > 0.

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

• prove: after T rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v at time T, depends on:

‣The state of node v at time T-1, and

12

Locality
A T-round algorithm is just a mapping from radius-T balls to outputs.

Proof by induction.

‣ T = 0. trivial

‣ T > 0.

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

• prove: after T rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v at time T, depends on:

‣The state of node v at time T-1, and

‣The messages received by v at time T, that only depend on:

12

Locality
A T-round algorithm is just a mapping from radius-T balls to outputs.

Proof by induction.

‣ T = 0. trivial

‣ T > 0.

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

• prove: after T rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v at time T, depends on:

‣The state of node v at time T-1, and

‣The messages received by v at time T, that only depend on:

• the state of the neighbors of v at time T-1

12

Locality
A T-round algorithm is just a mapping from radius-T balls to outputs.

Proof by induction.

‣ T = 0. trivial

‣ T > 0.

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

• prove: after T rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v at time T, depends on:

‣The state of node v at time T-1, and

‣The messages received by v at time T, that only depend on:

• the state of the neighbors of v at time T-1

12

Locality
A T-round algorithm is just a mapping from radius-T balls to outputs.

Proof by induction.

‣ T = 0. trivial

‣ T > 0.

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

• prove: after T rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v at time T, depends on:

‣The state of node v at time T-1, and

‣The messages received by v at time T, that only depend on:

• the state of the neighbors of v at time T-1

12

Locality
A T-round algorithm is just a mapping from radius-T balls to outputs.

Proof by induction.

‣ T = 0. trivial

‣ T > 0.

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

• prove: after T rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v at time T, depends on:

‣The state of node v at time T-1, and

‣The messages received by v at time T, that only depend on:

• the state of the neighbors of v at time T-1

12

by inductive hypothesis:
only depends on the (T-1)-radius neighborhood of v

Locality
A T-round algorithm is just a mapping from radius-T balls to outputs.

Proof by induction.

‣ T = 0. trivial

‣ T > 0.

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

• prove: after T rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v at time T, depends on:

‣The state of node v at time T-1, and

‣The messages received by v at time T, that only depend on:

• the state of the neighbors of v at time T-1

12

by inductive hypothesis:
only depends on the (T-1)-radius neighborhood of v

by inductive hypothesis:
only depends on the (T-1)-radius neighborhood of the
neighbors of v

Locality
A T-round algorithm is just a mapping from radius-T balls to outputs.

Proof by induction.

‣ T = 0. trivial

‣ T > 0.

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

• prove: after T rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v at time T, depends on:

‣The state of node v at time T-1, and

‣The messages received by v at time T, that only depend on:

• the state of the neighbors of v at time T-1

12

by inductive hypothesis:
only depends on the (T-1)-radius neighborhood of v

by inductive hypothesis:
only depends on the (T-1)-radius neighborhood of the
neighbors of v

Locality
A T-round algorithm is just a mapping from radius-T balls to outputs.

Proof by induction.

‣ T = 0. trivial

‣ T > 0.

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

• prove: after T rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v at time T, depends on:

‣The state of node v at time T-1, and

‣The messages received by v at time T, that only depend on:

• the state of the neighbors of v at time T-1

12

by inductive hypothesis:
only depends on the (T-1)-radius neighborhood of v

by inductive hypothesis:
only depends on the (T-1)-radius neighborhood of the
neighbors of v

Locality
A T-round algorithm is just a mapping from radius-T balls to outputs.

Proof by induction.

‣ T = 0. trivial

‣ T > 0.

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

• prove: after T rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v at time T, depends on:

‣The state of node v at time T-1, and

‣The messages received by v at time T, that only depend on:

• the state of the neighbors of v at time T-1

12

by inductive hypothesis:
only depends on the (T-1)-radius neighborhood of v

by inductive hypothesis:
only depends on the (T-1)-radius neighborhood of the
neighbors of v

contained in the T-radius neighborhood of v

Main technique to prove lower bounds

same radius-T neighborhood

 ⇩

any T-round algorithm

outputs the same

13

1210

1

5

9

7

6

3

11
4

2

8

127

11

5

9

10

6

3

1
4

8

2

same view,
same output

Main technique to prove lower bounds

same radius-T neighborhood

 ⇩

any T-round algorithm

outputs the same

13

1210

1

5

9

7

6

3

11
4

2

8

127

11

5

9

10

6

3

1
4

8

2

same view,
same output

(different algorithms may output different things,
but all algorithms will output the same in both instances)

Main technique to prove lower bounds

same radius-T neighborhood

 ⇩

any T-round algorithm

outputs the same

13

1210

1

5

9

7

6

3

11
4

2

8

127

11

5

9

10

6

3

1
4

8

2

same view,
same output

(different algorithms may output different things,
but all algorithms will output the same in both instances)

A() = 1

A() = 1

Main technique to prove lower bounds

same radius-T neighborhood

 ⇩

any T-round algorithm

outputs the same

13

1210

1

5

9

7

6

3

11
4

2

8

127

11

5

9

10

6

3

1
4

8

2

same view,
same output

(different algorithms may output different things,
but all algorithms will output the same in both instances)

B() = 2

B() = 2

Main technique to prove lower bounds

14

It can be extended to randomized algorithms:

same radius-T view

⇩

same probability distribution

over the outputs

2-coloring

15

2-coloring

We can solve 2-coloring in O(n) rounds on paths

15

2-coloring

We can solve 2-coloring in O(n) rounds on paths

15

2-coloring

We can solve 2-coloring in O(n) rounds on paths

15

2-coloring

We can solve 2-coloring in O(n) rounds on paths

15

2-coloring

We can solve 2-coloring in O(n) rounds on paths

15

2-coloring

16

2-coloring

We can solve 2-coloring in O(n) rounds on paths

16

2-coloring

We can solve 2-coloring in O(n) rounds on paths

16

7 3 1 4 9 2 6 8 10 5

2-coloring

We can solve 2-coloring in O(n) rounds on paths

1. Find minimum among endpoints

16

7 3 1 4 9 2 6 8 10 5

2-coloring

We can solve 2-coloring in O(n) rounds on paths

1. Find minimum among endpoints

16

7 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 5

2-coloring

We can solve 2-coloring in O(n) rounds on paths

1. Find minimum among endpoints

2. Color it red

16

7 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 5

2-coloring

We can solve 2-coloring in O(n) rounds on paths

1. Find minimum among endpoints

2. Color it red

16

7 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 5

2-coloring

We can solve 2-coloring in O(n) rounds on paths

1. Find minimum among endpoints

2. Color it red

3. Propagate

16

7 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 5

2-coloring

We can solve 2-coloring in O(n) rounds on paths

1. Find minimum among endpoints

2. Color it red

3. Propagate

16

7 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 5

2-coloring

We can solve 2-coloring in O(n) rounds on paths

1. Find minimum among endpoints

2. Color it red

3. Propagate

16

7 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 5

2-coloring

We can solve 2-coloring in O(n) rounds on paths

1. Find minimum among endpoints

2. Color it red

3. Propagate

16

7 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 5

2-coloring

We can solve 2-coloring in O(n) rounds on paths

1. Find minimum among endpoints

2. Color it red

3. Propagate

16

7 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 5

2-coloring

We can solve 2-coloring in O(n) rounds on paths

1. Find minimum among endpoints

2. Color it red

3. Propagate

16

7 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 5

2-coloring

We can solve 2-coloring in O(n) rounds on paths

1. Find minimum among endpoints

2. Color it red

3. Propagate

16

7 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 5

2-coloring

We can solve 2-coloring in O(n) rounds on paths

1. Find minimum among endpoints

2. Color it red

3. Propagate

16

7 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 5

2-coloring

We can solve 2-coloring in O(n) rounds on paths

1. Find minimum among endpoints

2. Color it red

3. Propagate

16

7 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 5

2-coloring

We can solve 2-coloring in O(n) rounds on paths

1. Find minimum among endpoints

2. Color it red

3. Propagate

16

7 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 57 3 1 4 9 2 6 8 10 5

2-coloring

17

2-coloring

We can prove that Ω(n) rounds are required, even if:

‣ The value of n is known to all nodes

‣ IDs are exactly from {1, ..., n}

‣ Nodes can use randomization

17

2-coloring

We can prove that Ω(n) rounds are required, even if:

‣ The value of n is known to all nodes

‣ IDs are exactly from {1, ..., n}

‣ Nodes can use randomization

17

7 3 1 4 9 2 6 8 10 5

2-coloring

We can prove that Ω(n) rounds are required, even if:

‣ The value of n is known to all nodes

‣ IDs are exactly from {1, ..., n}

‣ Nodes can use randomization

17

7 3 1 4 9 2 6 8 10 5

"Of course these two nodes need to communicate,
hence this problem requires at least n-1 rounds"

2-coloring

We can prove that Ω(n) rounds are required, even if:

‣ The value of n is known to all nodes

‣ IDs are exactly from {1, ..., n}

‣ Nodes can use randomization

17

7 3 1 4 9 2 6 8 10 5

"Of course these two nodes need to communicate,
hence this problem requires at least n-1 rounds"

2-coloring

We can prove that Ω(n) rounds are required, even if:

‣ The value of n is known to all nodes

‣ IDs are exactly from {1, ..., n}

‣ Nodes can use randomization

17

7 3 1 4 9 2 6 8 10 5

"Of course these two nodes need to communicate,
hence this problem requires at least n-1 rounds"

2-coloring paths can be solved in n/2+1 rounds

2-coloring lower bound

18

2-coloring lower bound

‣ We want to prove that coloring requires Ω(n) on paths

18

2-coloring lower bound

‣ We want to prove that coloring requires Ω(n) on paths

18

2-coloring lower bound

‣ We want to prove that coloring requires Ω(n) on paths

18

2-coloring lower bound

‣ We want to prove that coloring requires Ω(n) on paths

‣ We will prove that any T(n) ∈ o(n) rounds algorithm must fail

18

2-coloring lower bound

‣ We want to prove that coloring requires Ω(n) on paths

‣ We will prove that any T(n) ∈ o(n) rounds algorithm must fail

‣ T(n) ∈ o(n): ∀ 𝜖, ∃ n0, ∀ n > n0, T(n) < 𝜖 n

18

2-coloring lower bound

‣ We want to prove that coloring requires Ω(n) on paths

‣ We will prove that any T(n) ∈ o(n) rounds algorithm must fail

‣ T(n) ∈ o(n): ∀ 𝜖, ∃ n0, ∀ n > n0, T(n) < 𝜖 n

18

2-coloring lower bound

‣ We want to prove that coloring requires Ω(n) on paths

‣ We will prove that any T(n) ∈ o(n) rounds algorithm must fail

‣ T(n) ∈ o(n): ∀ 𝜖, ∃ n0, ∀ n > n0, T(n) < 𝜖 n

18

2-coloring lower bound

‣ We want to prove that coloring requires Ω(n) on paths

‣ We will prove that any T(n) ∈ o(n) rounds algorithm must fail

‣ T(n) ∈ o(n): ∀ 𝜖, ∃ n0, ∀ n > n0, T(n) < 𝜖 n

18

2-coloring lower bound

‣ We want to prove that coloring requires Ω(n) on paths

‣ We will prove that any T(n) ∈ o(n) rounds algorithm must fail

‣ T(n) ∈ o(n): ∀ 𝜖, ∃ n0, ∀ n > n0, T(n) < 𝜖 n

18

2-coloring lower bound

‣ We want to prove that coloring requires Ω(n) on paths

‣ We will prove that any T(n) ∈ o(n) rounds algorithm must fail

‣ T(n) ∈ o(n): ∀ 𝜖, ∃ n0, ∀ n > n0, T(n) < 𝜖 n

‣ 𝜖 = 1/5. ∃ n0, ∀ n > n0, T(n) < n/5

18

2-coloring lower bound

‣ We want to prove that coloring requires Ω(n) on paths

‣ We will prove that any T(n) ∈ o(n) rounds algorithm must fail

‣ T(n) ∈ o(n): ∀ 𝜖, ∃ n0, ∀ n > n0, T(n) < 𝜖 n

‣ 𝜖 = 1/5. ∃ n0, ∀ n > n0, T(n) < n/5

18

2-coloring lower bound

‣ We want to prove that coloring requires Ω(n) on paths

‣ We will prove that any T(n) ∈ o(n) rounds algorithm must fail

‣ T(n) ∈ o(n): ∀ 𝜖, ∃ n0, ∀ n > n0, T(n) < 𝜖 n

‣ 𝜖 = 1/5. ∃ n0, ∀ n > n0, T(n) < n/5

18

For any n large enough

2-coloring lower bound

‣ We want to prove that coloring requires Ω(n) on paths

‣ We will prove that any T(n) ∈ o(n) rounds algorithm must fail

‣ T(n) ∈ o(n): ∀ 𝜖, ∃ n0, ∀ n > n0, T(n) < 𝜖 n

‣ 𝜖 = 1/5. ∃ n0, ∀ n > n0, T(n) < n/5

18

2-coloring lower bound

‣ We want to prove that coloring requires Ω(n) on paths

‣ We will prove that any T(n) ∈ o(n) rounds algorithm must fail

‣ T(n) ∈ o(n): ∀ 𝜖, ∃ n0, ∀ n > n0, T(n) < 𝜖 n

‣ 𝜖 = 1/5. ∃ n0, ∀ n > n0, T(n) < n/5

‣ If we take n large enough, the algorithm must terminate in less
than n/5 rounds.

18

2-coloring lower bound

‣ We want to prove that coloring requires Ω(n) on paths

‣ We will prove that any T(n) ∈ o(n) rounds algorithm must fail

‣ T(n) ∈ o(n): ∀ 𝜖, ∃ n0, ∀ n > n0, T(n) < 𝜖 n

‣ 𝜖 = 1/5. ∃ n0, ∀ n > n0, T(n) < n/5

‣ If we take n large enough, the algorithm must terminate in less
than n/5 rounds.

18

2-coloring lower bound

‣ Let us prove that n/5 rounds are not enough, for all (large enough) n

‣ We use the principle of locality. We build two instances such that:

• There are two pairs of nodes that have the same view in both
instances

• Such nodes cannot output the same in both instances

19

2-coloring lower bound

20

2-coloring lower bound

20

For n = 10, T = 2 is not enough

1 2 3 4 5 6 7 8 9 10

2-coloring lower bound

20

For n = 10, T = 2 is not enough

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

2-coloring lower bound

20

For n = 10, T = 2 is not enough

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

2-coloring lower bound

20

For n = 10, T = 2 is not enough

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

2-coloring lower bound

20

For n = 10, T = 2 is not enough

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

2-coloring lower bound

20

For n = 10, T = 2 is not enough

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

1 2 3 10 4 5 6 7 8 9

2-coloring lower bound

20

For n = 10, T = 2 is not enough

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

1 2 3 10 4 5 6 7 8 9

2-coloring lower bound

20

For n = 10, T = 2 is not enough

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

1 2 3 10 4 5 6 7 8 9

2-coloring lower bound

20

For n = 10, T = 2 is not enough

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

1 2 3 10 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

1 2 3 10 4 5 6 7 8 9

2-coloring lower bound

20

For n = 10, T = 2 is not enough

2-coloring lower bound

21

2-coloring lower bound
‣ Consider the path of length n, where there is an edge between nodes i and i+1

21

1 2 n/5
+1

n/5
+2 … … n/2

+1 … … n-1

1 2 n/5
+1 n n/5

+2 … … n/2
+1 … … n-1

n

2-coloring lower bound
‣ Consider the path of length n, where there is an edge between nodes i and i+1

21

1 2 n/5
+1

n/5
+2 … … n/2

+1 … … n-1

1 2 n/5
+1 n n/5

+2 … … n/2
+1 … … n-1

n

2-coloring lower bound
‣ Consider the path of length n, where there is an edge between nodes i and i+1

‣ Create a new instance, obtained by removing the edges {n-1,n} and {n/5+1,n/5+2}, and
adding the edges {n/5+1,n} and {n,n/5+2}

21

1 2 n/5
+1

n/5
+2 … … n/2

+1 … … n-1

1 2 n/5
+1 n n/5

+2 … … n/2
+1 … … n-1

n

2-coloring lower bound
‣ Consider the path of length n, where there is an edge between nodes i and i+1

‣ Create a new instance, obtained by removing the edges {n-1,n} and {n/5+1,n/5+2}, and
adding the edges {n/5+1,n} and {n,n/5+2}

‣ For large enough n, nodes 1 and (n/2+1) have the same radius-n/5 view, hence they must
output the same in both instances, but this is wrong (the distances of these nodes in the
two instances have different parity)

21

1 2 n/5
+1

n/5
+2 … … n/2

+1 … … n-1

1 2 n/5
+1 n n/5

+2 … … n/2
+1 … … n-1

n

2-coloring lower bound (randomized)

22

2-coloring lower bound (randomized)

‣ The proof works for deterministic algorithms, but it can be extended to work
also for randomized algorithms

22

2-coloring lower bound (randomized)

‣ The proof works for deterministic algorithms, but it can be extended to work
also for randomized algorithms

‣ Main ingredient:

 same radius-T neighborhood

 ⇩

 same probability distribution

 over the outputs

22

Coloring trees

23

Coloring trees

‣ The 3-coloring problem can be solved in:

23

Coloring trees

‣ The 3-coloring problem can be solved in:

• O(log n) rounds on trees

23

Coloring trees

‣ The 3-coloring problem can be solved in:

• O(log n) rounds on trees

• O(log* n) rounds on rooted trees

23

Coloring trees

‣ The 3-coloring problem can be solved in:

• O(log n) rounds on trees

• O(log* n) rounds on rooted trees

‣ What can we do in o(log n) rounds on trees? Do we really need to have a
rooted tree to solve 3-coloring fast?

23

Coloring trees

‣ The 3-coloring problem can be solved in:

• O(log n) rounds on trees

• O(log* n) rounds on rooted trees

‣ What can we do in o(log n) rounds on trees? Do we really need to have a
rooted tree to solve 3-coloring fast?

‣ Coloring trees of maximum degree Δ with Δ colors requires Ω(logΔ n) rounds

23

Coloring trees

‣ The 3-coloring problem can be solved in:

• O(log n) rounds on trees

• O(log* n) rounds on rooted trees

‣ What can we do in o(log n) rounds on trees? Do we really need to have a
rooted tree to solve 3-coloring fast?

‣ Coloring trees of maximum degree Δ with Δ colors requires Ω(logΔ n) rounds

‣ o(Δ / log Δ) coloring trees of maximum degree Δ requires Ω(logΔ n) rounds

23

Coloring trees

‣ The 3-coloring problem can be solved in:

• O(log n) rounds on trees

• O(log* n) rounds on rooted trees

‣ What can we do in o(log n) rounds on trees? Do we really need to have a
rooted tree to solve 3-coloring fast?

‣ Coloring trees of maximum degree Δ with Δ colors requires Ω(logΔ n) rounds

‣ o(Δ / log Δ) coloring trees of maximum degree Δ requires Ω(logΔ n) rounds

23⇒ 3-coloring trees of (large enough) constant degree requires Ω(log n) rounds

Coloring trees lower bound

24

Coloring trees lower bound

‣ o(Δ / log Δ) coloring trees of maximum degree Δ requires
Ω(logΔ n) rounds

24

Coloring trees lower bound

‣ o(Δ / log Δ) coloring trees of maximum degree Δ requires
Ω(logΔ n) rounds

24

"Few"

Coloring trees lower bound

‣ o(Δ / log Δ) coloring trees of maximum degree Δ requires
Ω(logΔ n) rounds

24

"Few" "3"

Coloring trees lower bound

‣ o(Δ / log Δ) coloring trees of maximum degree Δ requires
Ω(logΔ n) rounds

‣ We use the fact that there are graphs that:

24

"Few" "3"

Coloring trees lower bound

‣ o(Δ / log Δ) coloring trees of maximum degree Δ requires
Ω(logΔ n) rounds

‣ We use the fact that there are graphs that:

• cannot be colored using o(Δ / log Δ) colors

24

"Few" "3"

Coloring trees lower bound

‣ o(Δ / log Δ) coloring trees of maximum degree Δ requires
Ω(logΔ n) rounds

‣ We use the fact that there are graphs that:

• cannot be colored using o(Δ / log Δ) colors

24

"Few" "3"

"Large chromatic number"

Coloring trees lower bound

‣ o(Δ / log Δ) coloring trees of maximum degree Δ requires
Ω(logΔ n) rounds

‣ We use the fact that there are graphs that:

• cannot be colored using o(Δ / log Δ) colors

• they look like a tree, in every o(logΔ n) radius
neighborhood

24

"Few" "3"

"Large chromatic number"

Coloring trees lower bound

‣ o(Δ / log Δ) coloring trees of maximum degree Δ requires
Ω(logΔ n) rounds

‣ We use the fact that there are graphs that:

• cannot be colored using o(Δ / log Δ) colors

• they look like a tree, in every o(logΔ n) radius
neighborhood

24

"Few" "3"

"Large chromatic number"

"High girth"

Coloring trees lower bound

‣ o(Δ / log Δ) coloring trees of maximum degree Δ requires
Ω(logΔ n) rounds

‣ We use the fact that there are graphs that:

• cannot be colored using o(Δ / log Δ) colors

• they look like a tree, in every o(logΔ n) radius
neighborhood

24

"Few" "3"

"Large chromatic number"

"High girth"

"NOT Trees!"

Coloring trees lower bound

25

Coloring trees lower bound

Theorem (Bollobas '78):

25

Coloring trees lower bound

Theorem (Bollobas '78):

 There exists an infinite family H of n-node graphs where:

25

Coloring trees lower bound

Theorem (Bollobas '78):

 There exists an infinite family H of n-node graphs where:

• all nodes have degree Δ

25

Coloring trees lower bound

Theorem (Bollobas '78):

 There exists an infinite family H of n-node graphs where:

• all nodes have degree Δ

• the girth is Ω(logΔ n)

25

Coloring trees lower bound

Theorem (Bollobas '78):

 There exists an infinite family H of n-node graphs where:

• all nodes have degree Δ

• the girth is Ω(logΔ n)

• the chromatic number is Ω(Δ / log Δ)

25

Coloring trees lower bound

Theorem (Bollobas '78):

 There exists an infinite family H of n-node graphs where:

• all nodes have degree Δ

• the girth is Ω(logΔ n)

• the chromatic number is Ω(Δ / log Δ)

25

Coloring trees lower bound

Theorem (Bollobas '78):

 There exists an infinite family H of n-node graphs where:

• all nodes have degree Δ

• the girth is Ω(logΔ n)

• the chromatic number is Ω(Δ / log Δ)

25

T=2

Coloring trees lower bound

Theorem (Bollobas '78):

 There exists an infinite family H of n-node graphs where:

• all nodes have degree Δ

• the girth is Ω(logΔ n)

• the chromatic number is Ω(Δ / log Δ)

25

T=2

Coloring trees lower bound

Theorem (Bollobas '78):

 There exists an infinite family H of n-node graphs where:

• all nodes have degree Δ

• the girth is Ω(logΔ n)

• the chromatic number is Ω(Δ / log Δ)

25

T=2

Coloring trees lower bound

Theorem (Bollobas '78):

 There exists an infinite family H of n-node graphs where:

• all nodes have degree Δ

• the girth is Ω(logΔ n)

• the chromatic number is Ω(Δ / log Δ)

25

T=2

Coloring trees lower bound

26

Coloring trees lower bound
• We want to prove that o(Δ / log Δ) coloring trees of maximum degree Δ requires

Ω(logΔ n) rounds

26

Coloring trees lower bound
• We want to prove that o(Δ / log Δ) coloring trees of maximum degree Δ requires

Ω(logΔ n) rounds

• Let us assume that there is an algorithm A that colors trees using o(Δ / log Δ)
colors and runs in o(logΔ n) rounds. We show that we reach a contradiction

26

Coloring trees lower bound
• We want to prove that o(Δ / log Δ) coloring trees of maximum degree Δ requires

Ω(logΔ n) rounds

• Let us assume that there is an algorithm A that colors trees using o(Δ / log Δ)
colors and runs in o(logΔ n) rounds. We show that we reach a contradiction

• What happens if we run A on the graphs of the family H?

26

Coloring trees lower bound
• We want to prove that o(Δ / log Δ) coloring trees of maximum degree Δ requires

Ω(logΔ n) rounds

• Let us assume that there is an algorithm A that colors trees using o(Δ / log Δ)
colors and runs in o(logΔ n) rounds. We show that we reach a contradiction

• What happens if we run A on the graphs of the family H?

• It must fail! Such graphs cannot be colored using o(Δ / log Δ) colors, since the
chromatic number is Ω(Δ / log Δ)

26

Coloring trees lower bound
• We want to prove that o(Δ / log Δ) coloring trees of maximum degree Δ requires

Ω(logΔ n) rounds

• Let us assume that there is an algorithm A that colors trees using o(Δ / log Δ)
colors and runs in o(logΔ n) rounds. We show that we reach a contradiction

• What happens if we run A on the graphs of the family H?

• It must fail! Such graphs cannot be colored using o(Δ / log Δ) colors, since the
chromatic number is Ω(Δ / log Δ)

• We now prove that such failure implies that A must also fail on some specific tree

26

Coloring trees lower bound

27

Coloring trees lower bound

28

Coloring trees lower bound

28

Coloring trees lower bound

28

Coloring trees lower bound

28

Coloring trees lower bound

28

Coloring trees lower bound

29

Coloring trees lower bound

29

Coloring trees lower bound

29

Coloring trees lower bound

30

Coloring trees lower bound

30

A real tree

Coloring trees lower bound

30

A real tree

Coloring trees lower bound

30

A real tree

Coloring trees lower bound

31

Coloring trees lower bound

31

Coloring trees lower bound

31

Coloring trees lower bound

31

1

Coloring trees lower bound

31

1 1

Coloring trees lower bound

31

1 1

2

Coloring trees lower bound

31

1 1

2 2

Coloring trees lower bound

31

1 1

2 2
3

Coloring trees lower bound

31

1 1

2 2
3 3

Coloring trees lower bound

31

1 1

2 2
3 3

Coloring trees lower bound

31

1 1

2 2
3 3

Same size

Coloring trees lower bound

31

1 1

2 2
3 3

Same size

Coloring trees lower bound

31

1 1

2 2
3 3

Same size

Coloring trees lower bound

32

Coloring trees lower bound

32

Fail on a real tree!

Coloring trees lower bound

33

Coloring trees lower bound
• We want to prove that o(Δ / log Δ) coloring trees of maximum degree Δ requires

Ω(logΔ n) rounds

33

Coloring trees lower bound
• We want to prove that o(Δ / log Δ) coloring trees of maximum degree Δ requires

Ω(logΔ n) rounds

• Let us assume that there is an algorithm A that colors trees using o(Δ / log Δ)
colors and runs in o(logΔ n) rounds

33

Coloring trees lower bound
• We want to prove that o(Δ / log Δ) coloring trees of maximum degree Δ requires

Ω(logΔ n) rounds

• Let us assume that there is an algorithm A that colors trees using o(Δ / log Δ)
colors and runs in o(logΔ n) rounds

• We run A on the graphs of the family H (graphs that are Δ-regular, with girth
Ω(logΔ n), and chromatic number Ω(Δ / log Δ)). It must fail!

33

Coloring trees lower bound
• We want to prove that o(Δ / log Δ) coloring trees of maximum degree Δ requires

Ω(logΔ n) rounds

• Let us assume that there is an algorithm A that colors trees using o(Δ / log Δ)
colors and runs in o(logΔ n) rounds

• We run A on the graphs of the family H (graphs that are Δ-regular, with girth
Ω(logΔ n), and chromatic number Ω(Δ / log Δ)). It must fail!

• We take two neighboring nodes that gave the same output, and the subgraph T'
incuced by the union of their views. We create a tree T containing T' as a subtree

33

Coloring trees lower bound
• We want to prove that o(Δ / log Δ) coloring trees of maximum degree Δ requires

Ω(logΔ n) rounds

• Let us assume that there is an algorithm A that colors trees using o(Δ / log Δ)
colors and runs in o(logΔ n) rounds

• We run A on the graphs of the family H (graphs that are Δ-regular, with girth
Ω(logΔ n), and chromatic number Ω(Δ / log Δ)). It must fail!

• We take two neighboring nodes that gave the same output, and the subgraph T'
incuced by the union of their views. We create a tree T containing T' as a subtree

• A must fail on the tree T. Contradiction!

33

Coloring trees lower bound
• We want to prove that o(Δ / log Δ) coloring trees of maximum degree Δ requires

Ω(logΔ n) rounds

• Let us assume that there is an algorithm A that colors trees using o(Δ / log Δ)
colors and runs in o(logΔ n) rounds

• We run A on the graphs of the family H (graphs that are Δ-regular, with girth
Ω(logΔ n), and chromatic number Ω(Δ / log Δ)). It must fail!

• We take two neighboring nodes that gave the same output, and the subgraph T'
incuced by the union of their views. We create a tree T containing T' as a subtree

• A must fail on the tree T. Contradiction!

33

Coloring trees lower bound
• We want to prove that o(Δ / log Δ) coloring trees of maximum degree Δ requires

Ω(logΔ n) rounds

• Let us assume that there is an algorithm A that colors trees using o(Δ / log Δ)
colors and runs in o(logΔ n) rounds

• We run A on the graphs of the family H (graphs that are Δ-regular, with girth
Ω(logΔ n), and chromatic number Ω(Δ / log Δ)). It must fail!

• We take two neighboring nodes that gave the same output, and the subgraph T'
incuced by the union of their views. We create a tree T containing T' as a subtree

• A must fail on the tree T. Contradiction!

33

Coloring trees lower bound
• We want to prove that o(Δ / log Δ) coloring trees of maximum degree Δ requires

Ω(logΔ n) rounds

• Let us assume that there is an algorithm A that colors trees using o(Δ / log Δ)
colors and runs in o(logΔ n) rounds

• We run A on the graphs of the family H (graphs that are Δ-regular, with girth
Ω(logΔ n), and chromatic number Ω(Δ / log Δ)). It must fail!

• We take two neighboring nodes that gave the same output, and the subgraph T'
incuced by the union of their views. We create a tree T containing T' as a subtree

• A must fail on the tree T. Contradiction!

33

Coloring trees lower bound

34

Coloring trees lower bound

‣ We saw how to prove:

34

Coloring trees lower bound

‣ We saw how to prove:

• Coloring trees of maximum degree Δ with o(Δ / log Δ) colors requires
Ω(logΔ n) rounds

34

Coloring trees lower bound

‣ We saw how to prove:

• Coloring trees of maximum degree Δ with o(Δ / log Δ) colors requires
Ω(logΔ n) rounds

‣ It is possible to prove:

34

Coloring trees lower bound

‣ We saw how to prove:

• Coloring trees of maximum degree Δ with o(Δ / log Δ) colors requires
Ω(logΔ n) rounds

‣ It is possible to prove:

• Coloring trees of maximum degree Δ with Δ colors requires Ω(logΔ n)
rounds

34

Coloring trees lower bound

‣ We saw how to prove:

• Coloring trees of maximum degree Δ with o(Δ / log Δ) colors requires
Ω(logΔ n) rounds

‣ It is possible to prove:

• Coloring trees of maximum degree Δ with Δ colors requires Ω(logΔ n)
rounds

• Different techniques are required to prove such result

34

Coloring trees lower bound

‣ We saw how to prove:

• Coloring trees of maximum degree Δ with o(Δ / log Δ) colors requires
Ω(logΔ n) rounds

‣ It is possible to prove:

• Coloring trees of maximum degree Δ with Δ colors requires Ω(logΔ n)
rounds

• Different techniques are required to prove such result

• Note that, if Δ=O(1), then (Δ+1)-coloring can be solved in just O(log* n)

34

Coloring paths and cycles

35

Coloring paths and cycles

‣ 3-coloring paths or cycles can be done in O(log* n) rounds

35

Coloring paths and cycles

‣ 3-coloring paths or cycles can be done in O(log* n) rounds

• log* n grows very slowly, but it is not a constant

35

Coloring paths and cycles

‣ 3-coloring paths or cycles can be done in O(log* n) rounds

• log* n grows very slowly, but it is not a constant

• Can we do better? Can we solve 3-coloring in O(1)?

35

Coloring paths and cycles

‣ 3-coloring paths or cycles can be done in O(log* n) rounds

• log* n grows very slowly, but it is not a constant

• Can we do better? Can we solve 3-coloring in O(1)?

‣ 3-coloring paths or cycles requires Ω(log* n) rounds

35

Coloring paths and cycles

‣ 3-coloring paths or cycles can be done in O(log* n) rounds

• log* n grows very slowly, but it is not a constant

• Can we do better? Can we solve 3-coloring in O(1)?

‣ 3-coloring paths or cycles requires Ω(log* n) rounds
 [Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]

35

Coloring paths and cycles

‣ 3-coloring paths or cycles can be done in O(log* n) rounds

• log* n grows very slowly, but it is not a constant

• Can we do better? Can we solve 3-coloring in O(1)?

‣ 3-coloring paths or cycles requires Ω(log* n) rounds
 [Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]

35

Deterministic

Coloring paths and cycles

‣ 3-coloring paths or cycles can be done in O(log* n) rounds

• log* n grows very slowly, but it is not a constant

• Can we do better? Can we solve 3-coloring in O(1)?

‣ 3-coloring paths or cycles requires Ω(log* n) rounds
 [Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]

35

Deterministic Randomized

Coloring paths and cycles

‣ 3-coloring paths or cycles can be done in O(log* n) rounds

• log* n grows very slowly, but it is not a constant

• Can we do better? Can we solve 3-coloring in O(1)?

‣ 3-coloring paths or cycles requires Ω(log* n) rounds
 [Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]

35

Deterministic Randomized With Ramsey theory

Coloring paths and cycles

‣ 3-coloring paths or cycles can be done in O(log* n) rounds

• log* n grows very slowly, but it is not a constant

• Can we do better? Can we solve 3-coloring in O(1)?

‣ 3-coloring paths or cycles requires Ω(log* n) rounds
 [Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]

35

Deterministic Randomized With Ramsey theory Easier proof

Coloring paths and cycles

‣ 3-coloring paths or cycles can be done in O(log* n) rounds

• log* n grows very slowly, but it is not a constant

• Can we do better? Can we solve 3-coloring in O(1)?

‣ 3-coloring paths or cycles requires Ω(log* n) rounds
 [Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]

35

Deterministic Randomized With Ramsey theory Easier proof

Coloring paths and cycles

36

Coloring paths and cycles

36

‣ Simple observation:

Coloring paths and cycles

36

‣ Simple observation:

• Assume nodes of a cycle have unique IDs in {1, ..., n}

Coloring paths and cycles

36

‣ Simple observation:

• Assume nodes of a cycle have unique IDs in {1, ..., n}

• We can color the nodes with n colors in 0 rounds

Coloring paths and cycles

7 3 1 4 9 2 6 8 10 5

36

‣ Simple observation:

• Assume nodes of a cycle have unique IDs in {1, ..., n}

• We can color the nodes with n colors in 0 rounds

Coloring paths and cycles

7 3 1 4 9 2 6 8 10 5

36

Takes color 9

‣ Simple observation:

• Assume nodes of a cycle have unique IDs in {1, ..., n}

• We can color the nodes with n colors in 0 rounds

Coloring paths and cycles

7 3 1 4 9 2 6 8 10 5

36

‣ Simple observation:

• Assume nodes of a cycle have unique IDs in {1, ..., n}

• We can color the nodes with n colors in 0 rounds

• We cannot color the nodes with n-1 colors in 0 rounds

Coloring paths and cycles

7 3 1 4 9 2 6 8 10 5

36

Takes color 7 Takes color 7

‣ Simple observation:

• Assume nodes of a cycle have unique IDs in {1, ..., n}

• We can color the nodes with n colors in 0 rounds

• We cannot color the nodes with n-1 colors in 0 rounds

7 3 6 4 9 2 1 8 10 5

Coloring paths and cycles

7 3 1 4 9 2 6 8 10 5

36

Takes color 7 Takes color 7

‣ Simple observation:

• Assume nodes of a cycle have unique IDs in {1, ..., n}

• We can color the nodes with n colors in 0 rounds

• We cannot color the nodes with n-1 colors in 0 rounds

7 3 6 4 9 2 1 8 10 5

Coloring paths and cycles

7 3 1 4 9 2 6 8 10 5

36

Takes color 7 Takes color 7

‣ Simple observation:

• Assume nodes of a cycle have unique IDs in {1, ..., n}

• We can color the nodes with n colors in 0 rounds

• We cannot color the nodes with n-1 colors in 0 rounds

Coloring paths and cycles

36

‣ Simple observation:

• Assume nodes of a cycle have unique IDs in {1, ..., n}

• We can color the nodes with n colors in 0 rounds

• We cannot color the nodes with n-1 colors in 0 rounds
⇒

We cannot color the nodes
with o(n) colors in 0 rounds

Coloring paths and cycles

37

Coloring paths and cycles
1. We cannot color the nodes with o(n) colors in 0 rounds

37

Coloring paths and cycles
1. We cannot color the nodes with o(n) colors in 0 rounds
2. If c-coloring can be solved in T rounds, then 2c-coloring can be solved in T-1 rounds

37

Coloring paths and cycles
1. We cannot color the nodes with o(n) colors in 0 rounds
2. If c-coloring can be solved in T rounds, then 2c-coloring can be solved in T-1 rounds

‣ Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0
rounds, that is a contradiction with (1)

37

Coloring paths and cycles
1. We cannot color the nodes with o(n) colors in 0 rounds
2. If c-coloring can be solved in T rounds, then 2c-coloring can be solved in T-1 rounds

‣ Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0
rounds, that is a contradiction with (1)

‣ We cannot color the nodes with o(log n) colors in 1 round

37

Coloring paths and cycles
1. We cannot color the nodes with o(n) colors in 0 rounds
2. If c-coloring can be solved in T rounds, then 2c-coloring can be solved in T-1 rounds

‣ Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0
rounds, that is a contradiction with (1)

‣ We cannot color the nodes with o(log n) colors in 1 round

‣ We cannot color the nodes with o(log log n) colors in 2 rounds

37

Coloring paths and cycles
1. We cannot color the nodes with o(n) colors in 0 rounds
2. If c-coloring can be solved in T rounds, then 2c-coloring can be solved in T-1 rounds

‣ Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0
rounds, that is a contradiction with (1)

‣ We cannot color the nodes with o(log n) colors in 1 round

‣ We cannot color the nodes with o(log log n) colors in 2 rounds

‣ We cannot color the nodes with o(log log log n) colors in 3 rounds

37

Coloring paths and cycles
1. We cannot color the nodes with o(n) colors in 0 rounds
2. If c-coloring can be solved in T rounds, then 2c-coloring can be solved in T-1 rounds

‣ Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0
rounds, that is a contradiction with (1)

‣ We cannot color the nodes with o(log n) colors in 1 round

‣ We cannot color the nodes with o(log log n) colors in 2 rounds

‣ We cannot color the nodes with o(log log log n) colors in 3 rounds

‣ ...

37

Coloring paths and cycles
1. We cannot color the nodes with o(n) colors in 0 rounds
2. If c-coloring can be solved in T rounds, then 2c-coloring can be solved in T-1 rounds

‣ Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0
rounds, that is a contradiction with (1)

‣ We cannot color the nodes with o(log n) colors in 1 round

‣ We cannot color the nodes with o(log log n) colors in 2 rounds

‣ We cannot color the nodes with o(log log log n) colors in 3 rounds

‣ ...

‣ We cannot color the nodes with O(1)-colors in o(log*n) rounds

37

Coloring paths and cycles
1. We cannot color the nodes with o(n) colors in 0 rounds
2. If c-coloring can be solved in T rounds, then 2c-coloring can be solved in T-1 rounds

‣ Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0
rounds, that is a contradiction with (1)

‣ We cannot color the nodes with o(log n) colors in 1 round

‣ We cannot color the nodes with o(log log n) colors in 2 rounds

‣ We cannot color the nodes with o(log log log n) colors in 3 rounds

‣ ...

‣ We cannot color the nodes with O(1)-colors in o(log*n) rounds

‣ We cannot color the nodes with 3-colors in o(log*n) rounds 37

Coloring algorithms

38

Coloring algorithms

‣We can see an algorithm A as a function satisfying that:

38

7 3 1 4 9 2 6 8 10 5

Coloring algorithms

‣We can see an algorithm A as a function satisfying that:

38

T=2

7 3 1 4 9 2 6 8 10 5

Coloring algorithms

‣We can see an algorithm A as a function satisfying that:

 An(x1, ..., x2T+1) ∈ {1, 2, 3}

38

T=2

7 3 1 4 9 2 6 8 10 5

Coloring algorithms

‣We can see an algorithm A as a function satisfying that:

 An(x1, ..., x2T+1) ∈ {1, 2, 3}

38

1 4 9 2 6

T=2

7 3 1 4 9 2 6 8 10 5

Coloring algorithms

‣We can see an algorithm A as a function satisfying that:

 An(x1, ..., x2T+1) ∈ {1, 2, 3}

38

1 4 9 2 6 4 9 2 6 8

T=2

7 3 1 4 9 2 6 8 10 5

Coloring algorithms

‣We can see an algorithm A as a function satisfying that:

 An(x1, ..., x2T+1) ∈ {1, 2, 3}

38

1 4 9 2 6 4 9 2 6 8An() = 1

T=2

7 3 1 4 9 2 6 8 10 5

Coloring algorithms

‣We can see an algorithm A as a function satisfying that:

 An(x1, ..., x2T+1) ∈ {1, 2, 3}

38

1 4 9 2 6 4 9 2 6 8An() = 1 An() = 2

T=2

7 3 1 4 9 2 6 8 10 5

Coloring algorithms

‣We can see an algorithm A as a function satisfying that:

 An(x1, ..., x2T+1) ∈ {1, 2, 3}

 An(x1, ..., x2T+1) ≠ An(x2, ..., x2T+2)

 assuming x1, ..., x2T+2 are all distinct numbers from {1, ..., n}

38

1 4 9 2 6 4 9 2 6 8An() = 1 An() = 2

T=2

Coloring functions

39

Coloring functions

‣A is a k-ary c-coloring function if:

39

Coloring functions

‣A is a k-ary c-coloring function if:

 An(x1, ..., xk) ∈ {1, 2, ..., c}

 An(x1, ..., xk) ≠ An(x2, ..., xk+1)

 assuming x1, ..., xk+1 are all distinct numbers from {1, ..., n}

39

Coloring functions

‣A is a k-ary c-coloring function if:

 An(x1, ..., xk) ∈ {1, 2, ..., c}

 An(x1, ..., xk) ≠ An(x2, ..., xk+1)

 assuming x1, ..., xk+1 are all distinct numbers from {1, ..., n}

39

4 9 2 6 8

An(4, 9, 2, 6, 8) ∊ {1, 2, 3}

Coloring functions

‣A is a k-ary c-coloring function if:

 An(x1, ..., xk) ∈ {1, 2, ..., c}

 An(x1, ..., xk) ≠ An(x2, ..., xk+1)

 assuming x1, ..., xk+1 are all distinct numbers from {1, ..., n}

39

4 9 2 6 8 4 9 2 6

An(4, 9, 2, 6, 8) ∊ {1, 2, 3} An(4, 9, 2, 6) ∊ {1, ..., 10}

Coloring functions

‣A is a k-ary c-coloring function if:

 An(x1, ..., xk) ∈ {1, 2, ..., c}

 An(x1, ..., xk) ≠ An(x2, ..., xk+1)

 assuming x1, ..., xk+1 are all distinct numbers from {1, ..., n}

39

4 9 2 6 8 4 9 2 6

An(4, 9, 2, 6, 8) ∊ {1, 2, 3} An(4, 9, 2, 6) ∊ {1, ..., 10}

4-ary 10-coloring function

Coloring functions

‣A is a k-ary c-coloring function if:

 An(x1, ..., xk) ∈ {1, 2, ..., c}

 An(x1, ..., xk) ≠ An(x2, ..., xk+1)

 assuming x1, ..., xk+1 are all distinct numbers from {1, ..., n}

40

Coloring functions

‣A is a k-ary c-coloring function if:

 An(x1, ..., xk) ∈ {1, 2, ..., c}

 An(x1, ..., xk) ≠ An(x2, ..., xk+1)

 assuming x1, ..., xk+1 are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk ≤ xk+1 ≤ n

40

Coloring functions

‣A is a k-ary c-coloring function if:

 An(x1, ..., xk) ∈ {1, 2, ..., c}

 An(x1, ..., xk) ≠ An(x2, ..., xk+1)

 assuming x1, ..., xk+1 are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk ≤ xk+1 ≤ n

40

4 9 2 6 8

An(4, 9, 2, 6, 8) ∊ {1, 2, 3}

Coloring functions

‣A is a k-ary c-coloring function if:

 An(x1, ..., xk) ∈ {1, 2, ..., c}

 An(x1, ..., xk) ≠ An(x2, ..., xk+1)

 assuming x1, ..., xk+1 are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk ≤ xk+1 ≤ n

40

4 9 2 6 8

An(4, 9, 2, 6, 8) ∊ {1, 2, 3}
An(4, 9, 2, 6, 8) is undefined

Coloring functions

‣A is a k-ary c-coloring function if:

 An(x1, ..., xk) ∈ {1, 2, ..., c}

 An(x1, ..., xk) ≠ An(x2, ..., xk+1)

 assuming x1, ..., xk+1 are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk ≤ xk+1 ≤ n

40

4 9 2 6 8 2 4 6 8 9

An(4, 9, 2, 6, 8) ∊ {1, 2, 3}
An(4, 9, 2, 6, 8) is undefined

An(2, 4, 6, 8, 9) ∊ {1, 2, 3}

Coloring functions

‣A is a k-ary c-coloring function if:

 An(x1, ..., xk) ∈ {1, 2, ..., c}

 An(x1, ..., xk) ≠ An(x2, ..., xk+1)

 assuming x1, ..., xk+1 are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk ≤ xk+1 ≤ n

‣ Any algorithm for 3-coloring defines a 2T+1-ary 3-coloring
function

41

Coloring functions

‣A is a k-ary c-coloring function if:

 An(x1, ..., xk) ∈ {1, 2, ..., c}

 An(x1, ..., xk) ≠ An(x2, ..., xk+1)

 assuming x1, ..., xk+1 are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk ≤ xk+1 ≤ n

‣ Any algorithm for 3-coloring defines a 2T+1-ary 3-coloring
function

41

We cannot use a function to construct an algorithm.
f(4, 9, 2, 6, 8) is undefined!

Coloring functions

42

Coloring functions

‣We will prove that for any k-ary 3-coloring function:

42

Coloring functions

‣We will prove that for any k-ary 3-coloring function:

 k+1 ≥ log* n

42

Coloring functions

‣We will prove that for any k-ary 3-coloring function:

 k+1 ≥ log* n

‣ Since a 2T+1-rounds coloring algorithm implies a 2T+1-ary 3-
coloring function, we get that

42

Coloring functions

‣We will prove that for any k-ary 3-coloring function:

 k+1 ≥ log* n

‣ Since a 2T+1-rounds coloring algorithm implies a 2T+1-ary 3-
coloring function, we get that

 2T+2 ≥ log* n

42

Coloring functions

‣We will prove that for any k-ary 3-coloring function:

 k+1 ≥ log* n

‣ Since a 2T+1-rounds coloring algorithm implies a 2T+1-ary 3-
coloring function, we get that

 2T+2 ≥ log* n

 T = Ω(log* n)

42

Coloring functions

‣We will prove that for any k-ary 3-coloring function:

 k+1 ≥ log* n

‣ Since a 2T+1-rounds coloring algorithm implies a 2T+1-ary 3-
coloring function, we get that

 2T+2 ≥ log* n

 T = Ω(log* n)

‣ We prove this statement by induction

42

Coloring functions (base case)

43

Coloring functions (base case)
‣ For any 1-ary c-coloring function:

 c ≥ n

43

Coloring functions (base case)
‣ For any 1-ary c-coloring function:

 c ≥ n

‣ Proof by contradiction. Assume that a 1-ary c-coloring function exists,
such that c < n

43

Coloring functions (base case)
‣ For any 1-ary c-coloring function:

 c ≥ n

‣ Proof by contradiction. Assume that a 1-ary c-coloring function exists,
such that c < n

‣ There must exist two numbers 1 ≤ xi < xj ≤ n such that

 An(xi) = An(xj)

43

Coloring functions (base case)
‣ For any 1-ary c-coloring function:

 c ≥ n

‣ Proof by contradiction. Assume that a 1-ary c-coloring function exists,
such that c < n

‣ There must exist two numbers 1 ≤ xi < xj ≤ n such that

 An(xi) = An(xj)

43

If 1 ≤ x1 ≤ x2 ≤ ... ≤ xk ≤ xk+1 ≤ n,

then An(x1, ..., xk) ≠ An(x2, ..., xk+1)

Coloring functions (base case)
‣ For any 1-ary c-coloring function:

 c ≥ n

‣ Proof by contradiction. Assume that a 1-ary c-coloring function exists,
such that c < n

‣ There must exist two numbers 1 ≤ xi < xj ≤ n such that

 An(xi) = An(xj)

43

If 1 ≤ x1 ≤ x2 ≤ ... ≤ xk ≤ xk+1 ≤ n,

then An(x1, ..., xk) ≠ An(x2, ..., xk+1)

If 1 ≤ x1 ≤ x2 ≤ n,

then An(x1) ≠ An(x2)

Coloring functions (base case)
‣ For any 1-ary c-coloring function:

 c ≥ n

‣ Proof by contradiction. Assume that a 1-ary c-coloring function exists,
such that c < n

‣ There must exist two numbers 1 ≤ xi < xj ≤ n such that

 An(xi) = An(xj)

43

If 1 ≤ x1 ≤ x2 ≤ ... ≤ xk ≤ xk+1 ≤ n,

then An(x1, ..., xk) ≠ An(x2, ..., xk+1)

If 1 ≤ x1 ≤ x2 ≤ n,

then An(x1) ≠ An(x2)

xi xj

Coloring functions (inductive case)

44

Coloring functions (inductive case)

‣We are given A, that is a k-ary c-coloring function

44

Coloring functions (inductive case)

‣We are given A, that is a k-ary c-coloring function

‣We show that we can construct B, a k-1-ary 2c-coloring function

44

Coloring functions (inductive case)

‣We are given A, that is a k-ary c-coloring function

‣We show that we can construct B, a k-1-ary 2c-coloring function

‣Proof:

44

Coloring functions (inductive case)

‣We are given A, that is a k-ary c-coloring function

‣We show that we can construct B, a k-1-ary 2c-coloring function

‣Proof:

 We define Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

44

Coloring functions (inductive case)

‣We are given A, that is a k-ary c-coloring function

‣We show that we can construct B, a k-1-ary 2c-coloring function

‣Proof:

 We define Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

44

Coloring functions (inductive case)

‣We are given A, that is a k-ary c-coloring function

‣We show that we can construct B, a k-1-ary 2c-coloring function

‣Proof:

 We define Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

44

Coloring functions (inductive case)

‣We are given A, that is a k-ary c-coloring function

‣We show that we can construct B, a k-1-ary 2c-coloring function

‣Proof:

 We define Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

 Notice that there are 2c possible outputs

44

Coloring functions (inductive case)

‣We are given A, that is a k-ary c-coloring function

‣We show that we can construct B, a k-1-ary 2c-coloring function

‣Proof:

 We define Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

 Notice that there are 2c possible outputs

44

B10(2,4,5,7)

Coloring functions (inductive case)

‣We are given A, that is a k-ary c-coloring function

‣We show that we can construct B, a k-1-ary 2c-coloring function

‣Proof:

 We define Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

 Notice that there are 2c possible outputs

44

B10(2,4,5,7)
 = {

Coloring functions (inductive case)

‣We are given A, that is a k-ary c-coloring function

‣We show that we can construct B, a k-1-ary 2c-coloring function

‣Proof:

 We define Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

 Notice that there are 2c possible outputs

44

B10(2,4,5,7)
 = {

A10(2,4,5,7,8),

Coloring functions (inductive case)

‣We are given A, that is a k-ary c-coloring function

‣We show that we can construct B, a k-1-ary 2c-coloring function

‣Proof:

 We define Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

 Notice that there are 2c possible outputs

44

B10(2,4,5,7)
 = {

A10(2,4,5,7,8),
A10(2,4,5,7,9),

Coloring functions (inductive case)

‣We are given A, that is a k-ary c-coloring function

‣We show that we can construct B, a k-1-ary 2c-coloring function

‣Proof:

 We define Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

 Notice that there are 2c possible outputs

44

B10(2,4,5,7)
 = {

A10(2,4,5,7,8),
A10(2,4,5,7,9),
A10(2,4,5,7,10)

Coloring functions (inductive case)

‣We are given A, that is a k-ary c-coloring function

‣We show that we can construct B, a k-1-ary 2c-coloring function

‣Proof:

 We define Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

 Notice that there are 2c possible outputs

44

B10(2,4,5,7)
 = {

A10(2,4,5,7,8),
A10(2,4,5,7,9),
A10(2,4,5,7,10)
}

Coloring functions (inductive case)

‣We are given A, that is a k-ary c-coloring function

‣We show that we can construct B, a k-1-ary 2c-coloring function

‣Proof:

 We define Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

 Notice that there are 2c possible outputs

 Let us now prove that it is a coloring function

44

B10(2,4,5,7)
 = {

A10(2,4,5,7,8),
A10(2,4,5,7,9),
A10(2,4,5,7,10)
}

Coloring functions (inductive case)

45

Coloring functions (inductive case)
‣ Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

‣ We need to prove that:

 Bn(x1, ..., xk-1) ≠ Bn(x2, ..., xk)

 assuming x1, ..., xk are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk-1 ≤ xk ≤ n

45

Coloring functions (inductive case)
‣ Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

‣ We need to prove that:

 Bn(x1, ..., xk-1) ≠ Bn(x2, ..., xk)

 assuming x1, ..., xk are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk-1 ≤ xk ≤ n

45

Coloring functions (inductive case)
‣ Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

‣ Assume for a contradiction that:

 Bn(x1, ..., xk-1) = Bn(x2, ..., xk)

 assuming x1, ..., xk are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk-1 ≤ xk ≤ n

46

Coloring functions (inductive case)
‣ Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

‣ Assume for a contradiction that:

 Bn(x1, ..., xk-1) = Bn(x2, ..., xk)

 assuming x1, ..., xk are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk-1 ≤ xk ≤ n

‣ Let x = An(x1, ..., xk)

46

Coloring functions (inductive case)
‣ Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

‣ Assume for a contradiction that:

 Bn(x1, ..., xk-1) = Bn(x2, ..., xk)

 assuming x1, ..., xk are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk-1 ≤ xk ≤ n

‣ Let x = An(x1, ..., xk)

46

Bn(x1, ..., xk-1) =

Coloring functions (inductive case)
‣ Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

‣ Assume for a contradiction that:

 Bn(x1, ..., xk-1) = Bn(x2, ..., xk)

 assuming x1, ..., xk are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk-1 ≤ xk ≤ n

‣ Let x = An(x1, ..., xk)

46

Bn(x1, ..., xk-1) =
{ An(x1, ..., xk-1, y) | y is larger than xk-1 }

Coloring functions (inductive case)
‣ Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

‣ Assume for a contradiction that:

 Bn(x1, ..., xk-1) = Bn(x2, ..., xk)

 assuming x1, ..., xk are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk-1 ≤ xk ≤ n

‣ Let x = An(x1, ..., xk)

46

Bn(x1, ..., xk-1) =
{ An(x1, ..., xk-1, y) | y is larger than xk-1 }

since xk > xk-1,

Coloring functions (inductive case)
‣ Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

‣ Assume for a contradiction that:

 Bn(x1, ..., xk-1) = Bn(x2, ..., xk)

 assuming x1, ..., xk are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk-1 ≤ xk ≤ n

‣ Let x = An(x1, ..., xk)

46

Bn(x1, ..., xk-1) =
{ An(x1, ..., xk-1, y) | y is larger than xk-1 }

since xk > xk-1,
then x = An(x1, ..., xk-1, xk) ∊ Bn(x1, ..., xk-1)

Coloring functions (inductive case)
‣ Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

‣ Assume for a contradiction that:

 Bn(x1, ..., xk-1) = Bn(x2, ..., xk)

 assuming x1, ..., xk are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk-1 ≤ xk ≤ n

‣ Let x = An(x1, ..., xk)

‣ By definition of B, we have that x ∈ Bn(x1, ..., xk-1)

46

Bn(x1, ..., xk-1) =
{ An(x1, ..., xk-1, y) | y is larger than xk-1 }

since xk > xk-1,
then x = An(x1, ..., xk-1, xk) ∊ Bn(x1, ..., xk-1)

Coloring functions (inductive case)
‣ Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

‣ Assume for a contradiction that:

 Bn(x1, ..., xk-1) = Bn(x2, ..., xk)

 assuming x1, ..., xk are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk-1 ≤ xk ≤ n

‣ Let x = An(x1, ..., xk)

‣ By definition of B, we have that x ∈ Bn(x1, ..., xk-1)

46

Bn(x1, ..., xk-1) =
{ An(x1, ..., xk-1, y) | y is larger than xk-1 }

since xk > xk-1,
then x = An(x1, ..., xk-1, xk) ∊ Bn(x1, ..., xk-1)

Coloring functions (inductive case)
‣ Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

‣ Assume for a contradiction that:

 Bn(x1, ..., xk-1) = Bn(x2, ..., xk)

 assuming x1, ..., xk are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk-1 ≤ xk ≤ n

‣ Let x = An(x1, ..., xk)

‣ By definition of B, we have that x ∈ Bn(x1, ..., xk-1)

‣ By assumption, we also have x ∈ Bn(x2, ..., xk)

46

Bn(x1, ..., xk-1) =
{ An(x1, ..., xk-1, y) | y is larger than xk-1 }

since xk > xk-1,
then x = An(x1, ..., xk-1, xk) ∊ Bn(x1, ..., xk-1)

Coloring functions (inductive case)
‣ Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

‣ Assume for a contradiction that:

 Bn(x1, ..., xk-1) = Bn(x2, ..., xk)

 assuming x1, ..., xk are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk-1 ≤ xk ≤ n

‣ Let x = An(x1, ..., xk)

‣ By definition of B, we have that x ∈ Bn(x1, ..., xk-1)

‣ By assumption, we also have x ∈ Bn(x2, ..., xk)

46

Bn(x1, ..., xk-1) =
{ An(x1, ..., xk-1, y) | y is larger than xk-1 }

since xk > xk-1,
then x = An(x1, ..., xk-1, xk) ∊ Bn(x1, ..., xk-1)

Bn(x2, ..., xk) contains x

Coloring functions (inductive case)
‣ Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

‣ Assume for a contradiction that:

 Bn(x1, ..., xk-1) = Bn(x2, ..., xk)

 assuming x1, ..., xk are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk-1 ≤ xk ≤ n

‣ Let x = An(x1, ..., xk)

‣ By definition of B, we have that x ∈ Bn(x1, ..., xk-1)

‣ By assumption, we also have x ∈ Bn(x2, ..., xk)

46

Bn(x1, ..., xk-1) =
{ An(x1, ..., xk-1, y) | y is larger than xk-1 }

since xk > xk-1,
then x = An(x1, ..., xk-1, xk) ∊ Bn(x1, ..., xk-1)

Bn(x2, ..., xk) contains x
 ⇒

Coloring functions (inductive case)
‣ Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

‣ Assume for a contradiction that:

 Bn(x1, ..., xk-1) = Bn(x2, ..., xk)

 assuming x1, ..., xk are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk-1 ≤ xk ≤ n

‣ Let x = An(x1, ..., xk)

‣ By definition of B, we have that x ∈ Bn(x1, ..., xk-1)

‣ By assumption, we also have x ∈ Bn(x2, ..., xk)

46

Bn(x1, ..., xk-1) =
{ An(x1, ..., xk-1, y) | y is larger than xk-1 }

since xk > xk-1,
then x = An(x1, ..., xk-1, xk) ∊ Bn(x1, ..., xk-1)

Bn(x2, ..., xk) contains x
 ⇒

∃ y > xk such that An(x2, ..., xk, y) = x

Coloring functions (inductive case)
‣ Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

‣ Assume for a contradiction that:

 Bn(x1, ..., xk-1) = Bn(x2, ..., xk)

 assuming x1, ..., xk are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk-1 ≤ xk ≤ n

‣ Let x = An(x1, ..., xk)

‣ By definition of B, we have that x ∈ Bn(x1, ..., xk-1)

‣ By assumption, we also have x ∈ Bn(x2, ..., xk)

‣ This implies that there exists some y > xk such that An(x2, ..., xk, y) = x

46

Bn(x1, ..., xk-1) =
{ An(x1, ..., xk-1, y) | y is larger than xk-1 }

since xk > xk-1,
then x = An(x1, ..., xk-1, xk) ∊ Bn(x1, ..., xk-1)

Bn(x2, ..., xk) contains x
 ⇒

∃ y > xk such that An(x2, ..., xk, y) = x

Coloring functions (inductive case)
‣ Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) | n ≥ y > xk-1 }

‣ Assume for a contradiction that:

 Bn(x1, ..., xk-1) = Bn(x2, ..., xk)

 assuming x1, ..., xk are all distinct numbers from {1, ..., n}

 satisfying 1 ≤ x1 ≤ x2 ≤ ... ≤ xk-1 ≤ xk ≤ n

‣ Let x = An(x1, ..., xk)

‣ By definition of B, we have that x ∈ Bn(x1, ..., xk-1)

‣ By assumption, we also have x ∈ Bn(x2, ..., xk)

‣ This implies that there exists some y > xk such that An(x2, ..., xk, y) = x

‣ An(x1, ..., xk) = An(x2, ..., xk, y), such that y > xk, contradiction!
46

Bn(x1, ..., xk-1) =
{ An(x1, ..., xk-1, y) | y is larger than xk-1 }

since xk > xk-1,
then x = An(x1, ..., xk-1, xk) ∊ Bn(x1, ..., xk-1)

Bn(x2, ..., xk) contains x
 ⇒

∃ y > xk such that An(x2, ..., xk, y) = x

Coloring functions (putting things together)

47

Coloring functions (putting things together)

• Given:

47

Coloring functions (putting things together)

• Given:

• a T-rounds coloring algorithm that solves 3-coloring

47

Coloring functions (putting things together)

• Given:

• a T-rounds coloring algorithm that solves 3-coloring

• We construct:

47

Coloring functions (putting things together)

• Given:

• a T-rounds coloring algorithm that solves 3-coloring

• We construct:

• a k-ary 3-coloring function, where k=2T+1

47

Coloring functions (putting things together)

• Given:

• a T-rounds coloring algorithm that solves 3-coloring

• We construct:

• a k-ary 3-coloring function, where k=2T+1

• a k-ary 22-coloring function

47

Coloring functions (putting things together)

• Given:

• a T-rounds coloring algorithm that solves 3-coloring

• We construct:

• a k-ary 3-coloring function, where k=2T+1

• a k-ary 22-coloring function

• a k-1-ary 222-coloring function

47

Coloring functions (putting things together)

• Given:

• a T-rounds coloring algorithm that solves 3-coloring

• We construct:

• a k-ary 3-coloring function, where k=2T+1

• a k-ary 22-coloring function

• a k-1-ary 222-coloring function

• a k-2-ary 2222-coloring function

47

Coloring functions (putting things together)

• Given:

• a T-rounds coloring algorithm that solves 3-coloring

• We construct:

• a k-ary 3-coloring function, where k=2T+1

• a k-ary 22-coloring function

• a k-1-ary 222-coloring function

• a k-2-ary 2222-coloring function

• ...

47

Coloring functions (putting things together)

• Given:

• a T-rounds coloring algorithm that solves 3-coloring

• We construct:

• a k-ary 3-coloring function, where k=2T+1

• a k-ary 22-coloring function

• a k-1-ary 222-coloring function

• a k-2-ary 2222-coloring function

• ...

• a 1-ary k+12-coloring function (k+12 is a power tower of height k+1)

47

Coloring functions (putting things together)

• Given:

• a T-rounds coloring algorithm that solves 3-coloring

• We construct:

• a k-ary 3-coloring function, where k=2T+1

• a k-ary 22-coloring function

• a k-1-ary 222-coloring function

• a k-2-ary 2222-coloring function

• ...

• a 1-ary k+12-coloring function (k+12 is a power tower of height k+1)

• In the base case we proved that k+12 ≥ n, which implies k+1 ≥ log* n, hence T = Ω(log* n)

47

Coloring functions (putting things together)

• Given:

• a T-rounds coloring algorithm that solves 3-coloring

• We construct:

• a k-ary 3-coloring function, where k=2T+1

• a k-ary 22-coloring function

• a k-1-ary 222-coloring function

• a k-2-ary 2222-coloring function

• ...

• a 1-ary k+12-coloring function (k+12 is a power tower of height k+1)

• In the base case we proved that k+12 ≥ n, which implies k+1 ≥ log* n, hence T = Ω(log* n)

47

If c-coloring can be solved in T rounds,

then 2c-coloring can be solved in T-1 rounds.

Coloring functions (putting things together)

• Given:

• a T-rounds coloring algorithm that solves 3-coloring

• We construct:

• a k-ary 3-coloring function, where k=2T+1

• a k-ary 22-coloring function

• a k-1-ary 222-coloring function

• a k-2-ary 2222-coloring function

• ...

• a 1-ary k+12-coloring function (k+12 is a power tower of height k+1)

• In the base case we proved that k+12 ≥ n, which implies k+1 ≥ log* n, hence T = Ω(log* n)

47

If c-coloring can be solved in T rounds,

then 2c-coloring can be solved in T-1 rounds.

Round elimination technique

48

Round elimination technique
• Given:

48

Round elimination technique
• Given:

• algorithm A0 solves problem P0 in T rounds

48

Round elimination technique
• Given:

• algorithm A0 solves problem P0 in T rounds

• We construct:

48

Round elimination technique
• Given:

• algorithm A0 solves problem P0 in T rounds

• We construct:
• algorithm A1 solves problem P1 in T − 1 rounds

48

Round elimination technique
• Given:

• algorithm A0 solves problem P0 in T rounds

• We construct:
• algorithm A1 solves problem P1 in T − 1 rounds
• algorithm A2 solves problem P2 in T − 2 rounds

48

Round elimination technique
• Given:

• algorithm A0 solves problem P0 in T rounds

• We construct:
• algorithm A1 solves problem P1 in T − 1 rounds
• algorithm A2 solves problem P2 in T − 2 rounds
• algorithm A3 solves problem P3 in T − 3 rounds

…

48

Round elimination technique
• Given:

• algorithm A0 solves problem P0 in T rounds

• We construct:
• algorithm A1 solves problem P1 in T − 1 rounds
• algorithm A2 solves problem P2 in T − 2 rounds
• algorithm A3 solves problem P3 in T − 3 rounds

…
• algorithm AT solves problem PT in 0 rounds

48

Round elimination technique
• Given:

• algorithm A0 solves problem P0 in T rounds

• We construct:
• algorithm A1 solves problem P1 in T − 1 rounds
• algorithm A2 solves problem P2 in T − 2 rounds
• algorithm A3 solves problem P3 in T − 3 rounds

…
• algorithm AT solves problem PT in 0 rounds

• We prove:

48

Round elimination technique
• Given:

• algorithm A0 solves problem P0 in T rounds

• We construct:
• algorithm A1 solves problem P1 in T − 1 rounds
• algorithm A2 solves problem P2 in T − 2 rounds
• algorithm A3 solves problem P3 in T − 3 rounds

…
• algorithm AT solves problem PT in 0 rounds

• We prove:

• PT cannot be solved in 0 rounds, so A0
cannot exist

48

Round elimination technique
• Given:

• algorithm A0 solves problem P0 in T rounds

• We construct:
• algorithm A1 solves problem P1 in T − 1 rounds
• algorithm A2 solves problem P2 in T − 2 rounds
• algorithm A3 solves problem P3 in T − 3 rounds

…
• algorithm AT solves problem PT in 0 rounds

• We prove:

• PT cannot be solved in 0 rounds, so A0
cannot exist

48

Given a problem Pi, satisfying that
the correctness of the solution

can be checked locally,
 the problem Pi+1 can be defined

mechanically [Brandt '19]

