Dennis Olivetti

University of Freiburg, Germany

Dennis Olivetti

University of Freiburg, Germany

"The 2-coloring problem requires $\Omega(n)$ rounds"

▶ 2 coloring

▶ 2 coloring

- ▶ 2 coloring
 - can be solved in O(n) rounds

- ▶ 2 coloring
 - can be solved in O(n) rounds
 - requires Ω(n) rounds

▶ 2 coloring

can be solved in O(n) rounds

requires Ω(n) rounds

- ▶ 2 coloring
 - can be solved in O(n) rounds
 - requires Ω(n) rounds
- Coloring trees

- ▶ 2 coloring
 - can be solved in O(n) rounds
 - requires Ω(n) rounds
- Coloring trees
 - 3 coloring trees can be done in O(log n) rounds

- ▶ 2 coloring
 - can be solved in O(n) rounds
 - requires Ω(n) rounds
- Coloring trees
 - 3 coloring trees can be done in O(log n) rounds
 - 3 coloring rooted trees can be done in O(log* n) rounds

nds <mark>* n)</mark> rounds

- ▶ 2 coloring
 - can be solved in O(n) rounds
 - requires Ω(n) rounds
- Coloring trees
 - 3 coloring trees can be done in O(log n) rounds
 - 3 coloring rooted trees can be done in O(log* n) rounds
 - $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_{\Delta} n)$ rounds

nds * n) rounds ree Δ requires Ω(log_Δ n

- ▶ 2 coloring
 - can be solved in O(n) rounds
 - requires Ω(n) rounds
- Coloring trees
 - 3 coloring trees can be done in O(log n) rounds
 - 3 coloring rooted trees can be done in O(log* n) rounds
 - o(Δ / log Δ) coloring trees of maximum degree Δ requires Ω(log_Δ n) rounds

nds * n) rounds ree Δ requires Ω(log_Δ n)

- ▶ 2 coloring
 - can be solved in O(n) rounds
 - requires Ω(n) rounds
- Coloring trees
 - 3 coloring trees can be done in O(log n) rounds
 - 3 coloring rooted trees can be done in O(log* n) rounds
 - o(Δ / log Δ) coloring trees of maximum degree Δ requires Ω(log_Δ n) rounds
- ▶ 3 coloring paths or cycles

- 2 coloring
 - can be solved in O(n) rounds
 - requires Ω(n) rounds
- Coloring trees
 - 3 coloring trees can be done in O(log n) rounds
 - 3 coloring rooted trees can be done in O(log* n) rounds
 - o(Δ / log Δ) coloring trees of maximum degree Δ requires Ω(log_Δ n) rounds
- ▶ 3 coloring paths or cycles
 - can be solved in O(log* n) rounds

- 2 coloring
 - can be solved in O(n) rounds
 - requires Ω(n) rounds
- Coloring trees
 - 3 coloring trees can be done in O(log n) rounds
 - 3 coloring rooted trees can be done in O(log* n) rounds
 - o(Δ / log Δ) coloring trees of maximum degree Δ requires Ω(log_Δ n) rounds
- ▶ 3 coloring paths or cycles
 - can be solved in O(log* n) rounds
 - requires Ω(log* n) rounds

- 2 coloring
 - can be solved in O(n) rounds
 - requires Ω(n) rounds
- Coloring trees
 - 3 coloring trees can be done in O(log n) rounds
 - 3 coloring rooted trees can be done in O(log* n) rounds
 - o(Δ / log Δ) coloring trees of maximum degree Δ requires Ω(log_Δ n) rounds
- ▶ 3 coloring paths or cycles
 - can be solved in O(log* n) rounds
 - requires Ω(log* n) rounds

Concept that allows us to prove **lower bounds** even when:messages can be arbitrarily large

- messages can be arbitrarily large
- Iocal computation is unbounded

- messages can be arbitrarily large
- Iocal computation is unbounded

"same view = same output"

- messages can be arbitrarily large
- Iocal computation is unbounded

"same view = same output"

same view. same output

1. Gather the radius-T neighborhood

1. Gather the radius-T neighborhood

- 1. Gather the radius-T neighborhood
- 2. Perform some local computation

- 1. Gather the radius-T neighborhood
- 2. Perform some local computation

- 1. Gather the radius-T neighborhood
- 2. Perform some local computation

- 1. Gather the radius-T neighborhood
- 2. Perform some local computation
- 3. Output a result

A 0-round algorithm is just a mapping from input to output

A 0-round algorithm is just a mapping from input to output

A 0-round algorithm is just a mapping from input to output

A 1-round algorithm is just a mapping from radius-1 balls to outputs

A 1-round algorithm is just a mapping from radius-1 balls to outputs

A 1-round algorithm is just a mapping from radius-1 balls to outputs

A T-round algorithm is just a mapping from radius-T balls to outputs

A T-round algorithm is just a mapping from radius-T balls to outputs

A T-round algorithm is just a mapping from radius-T balls to outputs.

T = 0. trivial

- T = 0. trivial
- ► **T** > **O**.

- ▶ **T** = **0**. trivial
- ► **T** > **O**.

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

- \blacktriangleright **T** = **0**. trivial
- ► **T** > **O**.

 - prove:

A T-round algorithm is just a mapping from radius-T balls to outputs. Proof by induction.

- \blacktriangleright **T** = **0**. trivial
- ► **T** > **O**.

 - prove:

The state of node v at time T, depends on:

A **T**-round algorithm is just a mapping from radius-**T** balls to outputs. Proof by induction.

- \blacktriangleright **T** = **0**. trivial
- ► **T** > **O**.

 - prove:

The state of node v at time T, depends on:

The state of node v at time T-1, and

A T-round algorithm is just a mapping from radius-T balls to outputs. Proof by induction.

- \blacktriangleright **T** = **0**. trivial
- ► **T** > **O**.

 - after **T** • prove:

The state of node v at time T, depends on:

- The state of node v at time T-1, and
- The messages received by v at time T, that only depend on:

A T-round algorithm is just a mapping from radius-T balls to outputs. Proof by induction.

- \blacktriangleright **T** = **O**. trivial
- ► **T** > **O**.

 - after **T** • prove:

The state of node v at time T, depends on:

- The state of node v at time T-1, and
- The messages received by v at time T, that only depend on:
 - the state of the neighbors of v at time T-1

A T-round algorithm is just a mapping from radius-T balls to outputs. Proof by induction.

- \blacktriangleright **T** = **0**. trivial
- ► **T** > **O**.

 - after **T** • prove:

The state of node v at time T, depends on:

- The state of node v at time T-1, and
- The messages received by v at time T, that only depend on:
 - the state of the neighbors of v at time T-1

A T-round algorithm is just a mapping from radius-T balls to outputs. Proof by induction.

- \blacktriangleright **T** = **0**. trivial
- ► **T** > **O**.

 - after **T** • prove:

The state of node v at time T, depends on:

- The state of node v at time T-1, and
- The messages received by v at time T, that only depend on:
 - the state of the neighbors of v at time T-1

A **T**-round algorithm is just a mapping from radius-**T** balls to outputs. Proof by induction.

- \blacktriangleright **T** = **0**. trivial
- ► **T** > **O**.

 - after **T** • prove:

The state of node v at time T, depends on:

- The state of node v at time T-1, and
- The messages received by v at time T, that only depend on:
 - the state of the neighbors of v at time T-1

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood rounds, the state of a node only depends on its T-radius neighborhood.

by inductive hypothesis:

only depends on the (T-1)-radius neighborhood of v

A **T**-round algorithm is just a mapping from radius-**T** balls to outputs. Proof by induction.

- \blacktriangleright **T** = **O**. trivial
- ► **T** > **O**.

 - after **T** • prove:

The state of node v at time T, depends on:

- The state of node v at time T-1, and
- The messages received by v at time T, that only depend on:
 - the state of the neighbors of v at time T-1

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood rounds, the state of a node only depends on its T-radius neighborhood.

by inductive hypothesis:

only depends on the (T-1)-radius neighborhood of v

A **T**-round algorithm is just a mapping from radius-**T** balls to outputs. Proof by induction.

- \blacktriangleright **T** = **O**. trivial
- ► **T** > **O**.

 - after **T** • prove:

The state of node v at time T, depends on:

- The state of node v at time T-1, and
- The messages received by v at time T, that only depend on:
 - the state of the neighbors of v at time T-1

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood rounds, the state of a node only depends on its T-radius neighborhood.

by inductive hypothesis:

only depends on the (T-1)-radius neighborhood of v

A **T**-round algorithm is just a mapping from radius-**T** balls to outputs. Proof by induction.

- \blacktriangleright **T** = **O**. trivial
- ► **T** > **O**.

 - after **T** • prove:

The state of node v at time T, depends on:

- The state of node v at time T-1, and
- The messages received by v at time T, that only depend on:
 - the state of the neighbors of v at time T-1

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood rounds, the state of a node only depends on its T-radius neighborhood.

by inductive hypothesis:

only depends on the (T-1)-radius neighborhood of v

A T-round algorithm is just a mapping from radius-T balls to outputs. Proof by induction.

- \blacktriangleright **T** = **O**. trivial
- ► **T** > **O**.

 - after **T** • prove:

The state of node v at time T, depends on:

- The state of node v at time T-1, and
- The messages received by v at time T, that only depend on:
 - the state of the neighbors of v at time T-1

• assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood rounds, the state of a node only depends on its T-radius neighborhood.

by inductive hypothesis:

only depends on the (T-1)-radius neighborhood of v

contained in the T-radius neighborhood of v

same radius-T neighborhood ↓ any T-round algorithm outputs the same

Same radius-T neighborhood↓↓any T-round algorithmoutputs the same

(different algorithms may output different things, but all algorithms will output the same in both instances)

Same radius-T neighborhood↓↓any T-round algorithmoutputs the same

(different algorithms may output different things, but all algorithms will output the same in both instances)

Same radius-T neighborhood↓↓any T-round algorithmoutputs the same

(different algorithms may output different things, but all algorithms will output the same in both instances)

It can be extended to randomized algorithms:

- same radius-T view
- same probability distribution
 - over the outputs

2-coloring

15

We can solve 2-coloring in O(n) rounds on paths

We can solve 2-coloring in O(n) rounds on paths

16

We can solve 2-coloring in O(n) rounds on paths 1. Find minimum among endpoints

We can solve 2-coloring in O(n) rounds on paths 1. Find minimum among endpoints

We can solve 2-coloring in O(n) rounds on paths

- 1. Find minimum among endpoints
- 2. Color it red

We can solve 2-coloring in O(n) rounds on paths

- 1. Find minimum among endpoints
- 2. Color it red

We can solve 2-coloring in O(n) rounds on paths

- 1. Find minimum among endpoints
- 2. Color it red
- 3. Propagate

We can solve 2-coloring in O(n) rounds on paths

- 1. Find minimum among endpoints
- 2. Color it red
- 3. Propagate

We can solve 2-coloring in O(n) rounds on paths

- 1. Find minimum among endpoints
- 2. Color it red
- 3. Propagate

We can solve 2-coloring in O(n) rounds on paths

- 1. Find minimum among endpoints
- 2. Color it red
- 3. Propagate

We can solve 2-coloring in O(n) rounds on paths

- 1. Find minimum among endpoints
- 2. Color it red
- 3. Propagate

We can solve 2-coloring in O(n) rounds on paths

- 1. Find minimum among endpoints
- 2. Color it red
- 3. Propagate

We can solve 2-coloring in O(n) rounds on paths

- 1. Find minimum among endpoints
- 2. Color it red
- 3. Propagate

We can solve 2-coloring in O(n) rounds on paths

- 1. Find minimum among endpoints
- 2. Color it red
- 3. Propagate

We can solve 2-coloring in O(n) rounds on paths

- 1. Find minimum among endpoints
- 2. Color it red
- 3. Propagate

We can solve 2-coloring in O(n) rounds on paths

- 1. Find minimum among endpoints
- 2. Color it red
- 3. Propagate

17

We can prove that $\Omega(n)$ rounds are required, even if: The value of **n** is known to all nodes IDs are exactly from {1, ..., n}

- Nodes can use randomization

We can prove that $\Omega(n)$ rounds are required, even if: The value of n is known to all nodes IDs are exactly from {1, ..., n}

- Nodes can use randomization

- We can prove that $\Omega(n)$ rounds are required, even if: The value of n is known to all nodes IDs are exactly from {1, ..., n}
 - Nodes can use randomization

3)

"Of course these two nodes need to communicate, hence this problem requires at least n-1 rounds" (4) (9) (2) -(6 ⊦ 5 8

We can prove that $\Omega(n)$ rounds are required, even if: The value of n is known to all nodes IDs are exactly from {1, ..., n} Nodes can use randomization "Of course these two n need to communicate, hence this problem r s at least n-1 rounds" (1) - (4) - (9) - (2) --(6 ⊢ 8 5 10) 3)

We can prove that $\Omega(n)$ rounds are required, even if: The value of n is known to all nodes IDs are exactly from {1, ..., n} Nodes can use randomization 2-coloring paths can be solved in n/2+1 rounds "Of course these two n need to communicate, hence this problem r s at least n-1 rounds" (4) (9) (2) -(6 ⊦ 5 8

We want to prove that coloring requires $\Omega(n)$ on paths

• We want to prove that coloring requires $\Omega(n)$ on paths

We want to prove that coloring requires $\Omega(n)$ on paths

- We want to prove that coloring requires $\Omega(n)$ on paths

We will prove that any $T(n) \in o(n)$ rounds algorithm must fail

- We want to prove that coloring requires $\Omega(n)$ on paths We will prove that any $T(n) \in o(n)$ rounds algorithm must fail
- ► $T(n) \in o(n)$: $\forall \epsilon, \exists n_0, \forall n > n_0, T(n) < \epsilon n$

- We want to prove that coloring requires $\Omega(n)$ on paths We will prove that any $T(n) \in o(n)$ rounds algorithm must fail
- ► $T(n) \in o(n)$: $\forall \epsilon, \exists n_0, \forall n > n_0, T(n) < \epsilon n$

- We want to prove that coloring requires $\Omega(n)$ on paths We will prove that any $T(n) \in o(n)$ rounds algorithm must fail
- ► $T(n) \in o(n)$: $\forall \epsilon, \exists n_0, \forall n > n_0, T(n) < \epsilon n$

- We want to prove that coloring requires $\Omega(n)$ on paths
- ► $T(n) \in o(n)$: $\forall \epsilon, \exists n_0, \forall n > n_0, T(n) < \epsilon n$

We will prove that any $T(n) \in o(n)$ rounds algorithm must fail

- We want to prove that coloring requires $\Omega(n)$ on paths
- ► $T(n) \in o(n)$: $\forall \epsilon, \exists n_0, \forall n > n_0, T(n) < \epsilon n$

We will prove that any $T(n) \in o(n)$ rounds algorithm must fail

- We want to prove that coloring requires $\Omega(n)$ on paths We will prove that any $T(n) \in o(n)$ rounds algorithm must fail
- T(n) \in o(n): $\forall \epsilon$, $\exists n_0, \forall n > n_0, T(n) < \epsilon n$
- $\epsilon = 1/5$. $\exists n_0, \forall n > n_0, T(n) < n/5$

- We want to prove that coloring requires $\Omega(n)$ on paths We will prove that any $T(n) \in o(n)$ rounds algorithm must fail
- ► $T(n) \in o(n)$: $\forall \epsilon, \exists n_0, \forall n > n_0, T(n) < \epsilon n$
- ► $\epsilon = 1/5$. $\exists n_0, \forall n > n_0, T(n) < n/5$

- We want to prove that coloring requires $\Omega(n)$ on paths We will prove that any $T(n) \in o(n)$ rounds algorithm must fail
- ► $T(n) \in o(n)$: $\forall \epsilon, \exists n_0, \forall n > n_0, T(n) < \epsilon n$
- $\epsilon = 1/5$. $\exists n_0, \forall n > n_0, T(n) < n/5$
 - For any n large enough

- We want to prove that coloring requires $\Omega(n)$ on paths We will prove that any $T(n) \in o(n)$ rounds algorithm must fail
- T(n) \in o(n): $\forall \epsilon$, $\exists n_0, \forall n > n_0, T(n) < \epsilon n$
- $\epsilon = 1/5$. $\exists n_0, \forall n > n_0, T(n) < n/5$

- We want to prove that coloring requires $\Omega(n)$ on paths We will prove that any $T(n) \in o(n)$ rounds algorithm must fail
- T(n) \in o(n): $\forall \epsilon$, $\exists n_0, \forall n > n_0, T(n) < \epsilon n$
- $\epsilon = 1/5$. $\exists n_0, \forall n > n_0, T(n) < n/5$
- If we take n large enough, the algorithm must terminate in less than n/5 rounds.

- We want to prove that coloring requires $\Omega(n)$ on paths We will prove that any $T(n) \in o(n)$ rounds algorithm must fail
- T(n) \in o(n): $\forall \epsilon$, $\exists n_0, \forall n > n_0, T(n) < \epsilon n$
- $\epsilon = 1/5$. $\exists n_0, \forall n > n_0, T(n) < n/5$
- If we take n large enough, the algorithm must terminate in less than n/5 rounds.

- Let us prove that n/5 rounds are not enough, for all (large enough) n
- We use the principle of locality. We build two instances such that:
 - There are two pairs of nodes that have the same view in both instances
 - Such nodes cannot output the same in both instances

Consider the path of length n, where there is an edge between nodes i and i+1

Consider the path of length n, where there is an edge between nodes i and i+1

- Consider the path of length n, where there is an edge between nodes i and i+1
- Create a new instance, obtained by removing the edges {n-1,n} and {n/5+1,n/5+2}, and adding the edges {n/5+1,n} and {n,n/5+2}

- Consider the path of length n, where there is an edge between nodes i and i+1
- Create a new instance, obtained by removing the edges {n-1,n} and {n/5+1,n/5+2}, and adding the edges {n/5+1,n} and {n,n/5+2}
- For large enough n, nodes 1 and (n/2+1) have the same radius-n/5 view, hence they must output the same in both instances, but this is wrong (the distances of these nodes in the two instances have different parity)

2-coloring lower bound (randomized)

2-coloring lower bound (randomized)

also for randomized algorithms

The proof works for deterministic algorithms, but it can be extended to work

2-coloring lower bound (randomized)

- also for randomized algorithms
- Main ingredient:

same radius-T neighborhood

 \hat{U}

same probability distribution

over the outputs

The proof works for deterministic algorithms, but it can be extended to work

23

The 3-coloring problem can be solved in:

- The 3-coloring problem can be solved in:
 - O(log n) rounds on trees

- The 3-coloring problem can be solved in:
 - O(log n) rounds on trees
 - O(log* n) rounds on rooted trees

- The 3-coloring problem can be solved in:
 - O(log n) rounds on trees
 - O(log* n) rounds on rooted trees
- **rooted** tree to solve **3**-coloring fast?

What can we do in o(log n) rounds on trees? Do we really need to have a

- The 3-coloring problem can be solved in:
 - O(log n) rounds on trees
 - O(log* n) rounds on rooted trees
- **rooted** tree to solve **3**-coloring fast?

What can we do in o(log n) rounds on trees? Do we really need to have a

• Coloring trees of maximum degree Δ with Δ colors requires $\Omega(\log_{\Lambda} n)$ rounds

- The 3-coloring problem can be solved in:
 - O(log n) rounds on trees
 - O(log* n) rounds on rooted trees
- **rooted** tree to solve **3**-coloring fast?

• $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_{\Lambda} n)$ rounds

What can we do in o(log n) rounds on trees? Do we really need to have a

• Coloring trees of maximum degree Δ with Δ colors requires $\Omega(\log_{\Lambda} n)$ rounds

- The 3-coloring problem can be solved in:
 - O(log n) rounds on trees
 - O(log* n) rounds on rooted trees
- What can we do in o(log n) rounds on trees? Do we really need to have a **rooted** tree to solve **3**-coloring fast?
- Coloring trees of maximum degree Δ with Δ colors requires $\Omega(\log_{\Lambda} n)$ rounds

- $(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_{\Lambda} n)$ rounds
- \Rightarrow 3-coloring trees of (large enough) constant degree requires $\Omega(\log n)$ rounds 23

Coloring trees lower bound

Coloring trees lower bound

o(Δ / log Δ) coloring trees of maximum degree Δ requires Ω(log_Δ n) rounds
"Few"

o(Δ / log Δ) coloring trees of maximum degree Δ requires Ω(log_Δ n) rounds

"Few" "3"

o(Δ / log Δ) coloring trees of maximum degree Δ requires Ω(log_Δ n) rounds

\bullet o(Δ / log Δ) coloring trees of maximum degree Δ requires $\Omega(\log_{\Lambda} n)$ rounds

We use the fact that there are graphs that:

\bullet o(Δ / log Δ) coloring trees of maximum degree Δ requires $\Omega(\log_{\Lambda} n)$ rounds

We use the fact that there are graphs that:

"Few" "3"

• cannot be colored using $o(\Delta / \log \Delta)$ colors

• $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_n)$ rounds

We use the fact that there are graphs that:

"Few" "3"

• cannot be colored using $o(\Delta / \log \Delta)$ colors

"Large chromatic number"

\bullet o(Δ / log Δ) coloring trees of maximum degree Δ requires $\Omega(\log_n)$ rounds

- "Large chromatic number" We use the fact that there are graphs that: • cannot be colored using $o(\Delta / \log \Delta)$ colors
- - they look like a tree, in every o(log, n) radius neighborhood

\bullet o(Δ / log Δ) coloring trees of maximum degree Δ requires $\Omega(\log_n)$ rounds

- "Large chromatic number" We use the fact that there are graphs that: • cannot be colored using $o(\Delta / \log \Delta)$ colors they look like a tree, in every o(log, n) radius
- - neighborhood

\bullet o(Δ / log Δ) coloring trees of maximum degree Δ requires $\Omega(\log_{\Lambda} n)$ rounds "NOT Trees!" "Large chromatic number" • We use the fact that there are graphs that: • cannot be colored using $o(\Delta / \log \Delta)$ colors they look like a tree, in every o(log, n) radius

- neighborhood

Theorem (Bollobas '78):

Theorem (Bollobas '78):

Theorem (Bollobas '78):

There exists an infinite family H of n-node graphs where:

all nodes have degree

Theorem (Bollobas '78):

- all nodes have degree
- the girth is $\Omega(\log_{\Lambda} n)$

Theorem (Bollobas '78):

- all nodes have degree
- the girth is $\Omega(\log_n n)$
- the chromatic number is $\Omega(\Delta / \log \Delta)$

Theorem (Bollobas '78):

- all nodes have degree
- the girth is $\Omega(\log_n n)$
- the chromatic number is $\Omega(\Delta / \log \Delta)$

Theorem (Bollobas '78):

There exists an infinite family H of n-node graphs where:

- all nodes have degree
- the girth is $\Omega(\log_n n)$
- the chromatic number is $\Omega(\Delta / \log \Delta)$

T=2

Theorem (Bollobas '78):

- all nodes have degree
- the girth is $\Omega(\log_n n)$
- the chromatic number is $\Omega(\Delta / \log \Delta)$

Theorem (Bollobas '78):

- all nodes have degree
- the girth is $\Omega(\log_n n)$
- the chromatic number is $\Omega(\Delta / \log \Delta)$

Theorem (Bollobas '78):

- all nodes have degree
- the girth is $\Omega(\log_n n)$
- the chromatic number is $\Omega(\Delta / \log \Delta)$

 $\Omega(\log_{\Lambda} n)$ rounds

• We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires

- $\Omega(\log_n)$ rounds

• We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires

• Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in $o(\log_{\Lambda} n)$ rounds. We show that we reach a contradiction

- $\Omega(\log_n)$ rounds

• What happens if we run A on the graphs of the family H?

• We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires

• Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in $o(\log_{\Lambda} n)$ rounds. We show that we reach a contradiction

- $\Omega(\log_n)$ rounds

- What happens if we run A on the graphs of the family H?
 - chromatic number is $\Omega(\Delta / \log \Delta)$

• We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires

• Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in $o(\log_{\Lambda} n)$ rounds. We show that we reach a contradiction

• It must fail! Such graphs cannot be colored using $o(\Delta / \log \Delta)$ colors, since the

- We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_n)$ rounds
- Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in $o(\log_{\Lambda} n)$ rounds. We show that we reach a contradiction

- What happens if we run A on the graphs of the family H?
 - It must fail! Such graphs cannot be colored using $o(\Delta / \log \Delta)$ colors, since the chromatic number is $\Omega(\Delta / \log \Delta)$
 - We now prove that such failure implies that A must also fail on some specific tree

Fail on a real tree!

 $\Omega(\log_{\Lambda} n)$ rounds

• We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires

- $\Omega(\log_n)$ rounds
- colors and runs in o(log, n) rounds

• We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires

• Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$

- We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_n)$ rounds
- Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in o(log, n) rounds
- We run A on the graphs of the family H (graphs that are Δ -regular, with girth $\Omega(\log_{\Lambda} n)$, and chromatic number $\Omega(\Delta / \log \Delta)$). It must fail!

- We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_n)$ rounds
- Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in o(log, n) rounds
- We run A on the graphs of the family H (graphs that are Δ -regular, with girth $\Omega(\log_{\Lambda} n)$, and chromatic number $\Omega(\Delta / \log \Delta)$). It must fail!
- We take two neighboring nodes that gave the same output, and the subgraph T incuced by the union of their views. We create a tree T containing T as a subtree

- We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_n)$ rounds
- Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in o(log, n) rounds
- We run A on the graphs of the family H (graphs that are Δ -regular, with girth $\Omega(\log_{\Lambda} n)$, and chromatic number $\Omega(\Delta / \log \Delta)$). It must fail!
- We take two neighboring nodes that gave the same output, and the subgraph T' incuced by the union of their views. We create a tree T containing T as a subtree
- A must fail on the tree T. Contradiction!

- We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_{\Lambda} n)$ rounds
- Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in $o(\log_{\Lambda} n)$ rounds
- We run A on the graphs of the family H (graphs that are Δ -regular, with girth $\Omega(\log_{\Lambda} n)$, and chromatic number $\Omega(\Delta / \log \Delta)$). It must fail!
- We take two neighboring nodes that gave the same output, and the subgraph T incuced by the union of their views. We create a tree T containing T as a subtree
- A must fail on the tree T. Contradiction!

- We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_{\Lambda} n)$ rounds
 - Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in o(log, n) rounds
 - We run A on the graphs of the family H (graphs that are Δ -regular, with girth $\Omega(\log_{\Lambda} n)$, and chromatic number $\Omega(\Delta / \log \Delta)$). It must fail!
 - We take two neighboring nodes that gave the same output, and the subgraph T incuced by the union of their views. We create a tree T containing T as a subtree
 - A must fail on the tree T. Contradiction!

- We want to prove that $o(\Delta / \log \Delta)$ coloring trees of maximum degree Δ requires $\Omega(\log_n)$ rounds
- Let us assume that there is an algorithm A that colors trees using $o(\Delta / \log \Delta)$ colors and runs in o(log, n) rounds
- We run A on the graphs of the family H (graphs that are Δ -regular, with girth $\Omega(\log_{\Lambda} n)$, and chromatic number $\Omega(\Delta / \log \Delta)$). It must fail!
- We take two neighboring nodes that gave the same output, and the subgraph T' incuced by the union of their views. We create a tree T containing T as a subtree
- A must fail on the tree T. Contradiction!

We saw how to prove:

- We saw how to prove:
 - $\Omega(\log_{\Lambda} n)$ rounds

• Coloring trees of maximum degree Δ with $o(\Delta / \log \Delta)$ colors requires

- We saw how to prove:
 - $\Omega(\log_{\Lambda} n)$ rounds
- It is possible to prove:

• Coloring trees of maximum degree Δ with $o(\Delta / \log \Delta)$ colors requires

- We saw how to prove:
 - $\Omega(\log_{\Lambda} n)$ rounds
- It is possible to prove:
 - rounds

• Coloring trees of maximum degree Δ with $o(\Delta / \log \Delta)$ colors requires

• Coloring trees of maximum degree Δ with Δ colors requires $\Omega(\log_{\Lambda} n)$

- We saw how to prove:
 - $\Omega(\log_{\Lambda} n)$ rounds
- It is possible to prove:
 - rounds
 - Different techniques are required to prove such result

• Coloring trees of maximum degree Δ with $o(\Delta / \log \Delta)$ colors requires

• Coloring trees of maximum degree Δ with Δ colors requires $\Omega(\log_{\Lambda} n)$

- We saw how to prove:
 - $\Omega(\log_{\Lambda} n)$ rounds
- It is possible to prove:
 - rounds
 - Different techniques are required to prove such result

• Coloring trees of maximum degree Δ with $o(\Delta / \log \Delta)$ colors requires

• Coloring trees of maximum degree Δ with Δ colors requires $\Omega(\log_{\Lambda} n)$

• Note that, if $\Delta = O(1)$, then $(\Delta + 1)$ -coloring can be solved in just $O(\log * n)$

Coloring paths and cycles

Coloring paths and cycles

3-coloring paths or cycles can be done in O(log* n) rounds

Coloring paths and cycles

- 3-coloring paths or cycles can be done in O(log* n) rounds
 - log* n grows very slowly, but it is not a constant

n be done in <mark>O(log* n)</mark> rounds ut it is not a constant
- 3-coloring paths or cycles can be done in O(log* n) rounds
 - log* n grows very slowly, but it is not a constant
 - Can we do better? Can we solve 3-coloring in O(1)?

- 3-coloring paths or cycles can be done in O(log* n) rounds
 - log* n grows very slowly, but it is not a constant
 - Can we do better? Can we solve 3-coloring in O(1)?

- 3-coloring paths or cycles can be done in O(log* n) rounds
 - log* n grows very slowly, but it is not a constant
 - Can we do better? Can we solve 3-coloring in O(1)?

3-coloring paths or cycles requires Ω(log* n) rounds

[Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]

- 3-coloring paths or cycles can be done in O(log* n) rounds
 - log* n grows very slowly, but it is not a constant
 - Can we do better? Can we solve 3-coloring in O(1)?

[Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]

- 3-coloring paths or cycles can be done in O(log* n) rounds
 - log* n grows very slowly, but it is not a constant
 - Can we do better? Can we solve 3-coloring in O(1)?

[Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]

- 3-coloring paths or cycles can be done in O(log* n) rounds
 - log* n grows very slowly, but it is not a constant
 - Can we do better? Can we solve 3-coloring in O(1)?

[Linial '87] [Naor '91] [Naor, Stockmeyer '93] [Laurinharju, Suomela '14]

With Ramsey theory

- 3-coloring paths or cycles can be done in O(log* n) rounds
 - log* n grows very slowly, but it is not a constant
 - Can we do better? Can we solve 3-coloring in O(1)?

- 3-coloring paths or cycles can be done in O(log* n) rounds
 - log* n grows very slowly, but it is not a constant
 - Can we do better? Can we solve 3-coloring in O(1)?

Simple observation:

- Simple observation:
 - Assume nodes of a cycle have unique IDs in {1, ..., n}

- Simple observation:
 - Assume nodes of a cycle have unique IDs in {1, ..., n}
 - We can color the nodes with n colors in 0 rounds

have unique IDs in <mark>{1, ..., n</mark>} th **n colors** in **0 rounds**

- Simple observation:
 - Assume nodes of a cycle have unique IDs in {1, ..., n}
 - We can color the nodes with n colors in 0 rounds

have unique IDs in <mark>{1, ..., n}</mark> th **n colors** in **0 rounds**

- Simple observation:
 - Assume nodes of a cycle have unique IDs in {1, ..., n}
 - We can color the nodes with n colors in 0 rounds

have unique IDs in <mark>{1, ..., n}</mark> th **n colors** in **0 rounds**

- Simple observation:
 - Assume nodes of a cycle have unique IDs in {1, ..., n}
 - We can color the nodes with n colors in 0 rounds
 - We cannot color the nodes with n-1 colors in 0 rounds

- Simple observation:
 - Assume nodes of a cycle have unique IDs in {1, ..., n}
 - We can color the nodes with n colors in 0 rounds
 - We cannot color the nodes with n-1 colors in 0 rounds

- Simple observation:
 - Assume nodes of a cycle have unique IDs in {1, ..., n}
 - We can color the nodes with n colors in 0 rounds
 - We cannot color the nodes with n-1 colors in 0 rounds

- Simple observation:
 - Assume nodes of a cycle have unique IDs in {1, ..., n}
 - We can color the nodes with n colors in 0 rounds
 - We cannot color the nodes with n-1 colors in 0 rounds

- Simple observation:

 - Assume nodes of a cycle have unique IDs in {1, ..., n} • We can color the nodes with n colors in 0 rounds We cannot color the nodes with n-1 colors in 0 rounds

 \Rightarrow

We **cannot** color the nodes with o(n) colors in 0 rounds

1. We cannot color the nodes with o(n) colors in 0 rounds

- 1. We cannot color the nodes with o(n) colors in 0 rounds

2. If c-coloring can be solved in T rounds, then $2^{\rm C}$ -coloring can be solved in T-1 rounds

- 1. We cannot color the nodes with o(n) colors in 0 rounds 2. If c-coloring can be solved in T rounds, then 2^{c} -coloring can be solved in T-1 rounds
- - Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0 rounds, that is a contradiction with (1)

- 1. We cannot color the nodes with o(n) colors in 0 rounds 2. If c-coloring can be solved in T rounds, then 2^{c} -coloring can be solved in T-1 rounds
- - Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0 rounds, that is a contradiction with (1)
 - We cannot color the nodes with o(log n) colors in 1 round

- 1. We cannot color the nodes with o(n) colors in 0 rounds
- 2. If c-coloring can be solved in T rounds, then 2^{c} -coloring can be solved in T-1 rounds
 - Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0 rounds, that is a contradiction with (1)
 - We cannot color the nodes with o(log n) colors in 1 round
 - We cannot color the nodes with o(log log n) colors in 2 rounds

- 1. We cannot color the nodes with o(n) colors in 0 rounds
- 2. If c-coloring can be solved in T rounds, then 2^{c} -coloring can be solved in T-1 rounds
 - Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0 rounds, that is a contradiction with (1)
 - We cannot color the nodes with o(log n) colors in 1 round
 - We cannot color the nodes with o(log log n) colors in 2 rounds
 - We cannot color the nodes with o(log log log n) colors in 3 rounds

- 1. We cannot color the nodes with o(n) colors in 0 rounds
- 2. If c-coloring can be solved in T rounds, then 2^{c} -coloring can be solved in T-1 rounds
 - Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0 rounds, that is a contradiction with (1)
 - We cannot color the nodes with o(log n) colors in 1 round
 - We cannot color the nodes with o(log log n) colors in 2 rounds
 - We cannot color the nodes with o(log log log n) colors in 3 rounds

- 1. We cannot color the nodes with o(n) colors in 0 rounds
- 2. If c-coloring can be solved in T rounds, then 2^{c} -coloring can be solved in T-1 rounds
 - Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0 rounds, that is a contradiction with (1)
 - We cannot color the nodes with o(log n) colors in 1 round
 - We cannot color the nodes with o(log log n) colors in 2 rounds
 - We cannot color the nodes with o(log log log n) colors in 3 rounds

 - We cannot color the nodes with O(1)-colors in o(log*n) rounds

- 1. We cannot color the nodes with o(n) colors in 0 rounds
- 2. If c-coloring can be solved in T rounds, then 2^{c} -coloring can be solved in T-1 rounds
 - Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0 rounds, that is a contradiction with (1)
 - We cannot color the nodes with o(log n) colors in 1 round
 - We cannot color the nodes with o(log log n) colors in 2 rounds
 - We cannot color the nodes with o(log log log n) colors in 3 rounds

 - We cannot color the nodes with O(1)-colors in o(log*n) rounds
 - We cannot color the nodes with 3-colors in o(log*n) rounds

We can see an algorithm A as a function satisfying that:

We can see an algorithm A as a function satisfying that:

• We can see an algorithm A as a function satisfying that:

• We can see an algorithm A as a function satisfying that:

• We can see an algorithm A as a function satisfying that:

• We can see an algorithm A as a function satisfying that:

Coloring algorithms

We can see an algorithm A as a function satisfying that:

$A_n(x_1, ..., x_{2T+1}) \in \{1, 2, 3\}$

Coloring algorithms

- \blacktriangleright We can see an algorithm A as a function satisfying that: $A_n(x_1,...,x_{2T+1}) \in \{1,2,3\}$
 - $A_n(x_1, ..., x_{2T+1}) \neq A_n(x_2, ..., x_{2T+2})$
 - assuming $x_1, ..., x_{2T+2}$ are all distinct numbers from $\{1, ..., n\}$

► A is a k-ary c-coloring function if:

- A is a k-ary c-coloring function if:

$A_n(x_1, ..., x_k) \in \{1, 2, ..., c\}$

$A_n(x_1, ..., x_k) \neq A_n(x_2, ..., x_{k+1})$

assuming x_1, \dots, x_{k+1} are all distinct numbers from $\{1, \dots, n\}$

- A is a k-ary c-coloring function if:

 $A_n(4, 9, 2, 6, 8) \in \{1, 2, 3\}$

$A_n(x_1, ..., x_k) \in \{1, 2, ..., c\}$

$A_n(x_1, ..., x_k) \neq A_n(x_2, ..., x_{k+1})$

assuming x_1, \ldots, x_{k+1} are all distinct numbers from $\{1, \ldots, n\}$

- A is a k-ary c-coloring function if: $A_n(x_1, ..., x_k) \in \{1, 2, ..., c\}$
 - $A_n(x_1, ..., x_k) \neq A_n(x_2, ..., x_{k+1})$
 - assuming x_1, \dots, x_{k+1} are all distinct numbers from $\{1, \dots, n\}$

 $A_n(4, 9, 2, 6, 8) \in \{1, 2, 3\}$

- A is a k-ary c-coloring function if: $A_n(x_1, ..., x_k) \in \{1, 2, ..., c\}$
 - $A_n(x_1, ..., x_k) \neq A_n(x_2, ..., x_{k+1})$
 - assuming x_1, \ldots, x_{k+1} are all distinct numbers from $\{1, \ldots, n\}$

 $A_n(4, 9, 2, 6, 8) \in \{1, 2, 3\}$

- A is a k-ary c-coloring function if:

$A_n(x_1, ..., x_k) \in \{1, 2, ..., c\}$

$A_n(x_1, ..., x_k) \neq A_n(x_2, ..., x_{k+1})$

assuming x_1, \dots, x_{k+1} are all distinct numbers from $\{1, \dots, n\}$

- A is a k-ary c-coloring function if: $A_n(x_1, ..., x_k) \in \{1, 2, ..., c\}$
 - $A_n(x_1, ..., x_k) \neq A_n(x_2, ..., x_{k+1})$
 - assuming x_1, \dots, x_{k+1} are all distinct numbers from $\{1, \dots, n\}$
 - satisfying $1 \le x_1 \le x_2 \le \dots \le x_k \le x_{k+1} \le n$

- A is a k-ary c-coloring function if: $A_n(x_1, ..., x_k) \in \{1, 2, ..., c\}$
 - $A_n(x_1, ..., x_k) \neq A_n(x_2, ..., x_{k+1})$
 - assuming x_1, \ldots, x_{k+1} are all distinct numbers from $\{1, \ldots, n\}$
 - satisfying $1 \le x_1 \le x_2 \le \dots \le x_k \le x_{k+1} \le n$

- A is a k-ary c-coloring function if: $A_n(x_1, ..., x_k) \in \{1, 2, ..., c\}$

 - assuming x_1, \ldots, x_{k+1} are all distinct numbers from $\{1, \ldots, n\}$
 - satisfying $1 \le x_1 \le x_2 \le \dots \le x_k \le x_{k+1} \le n$

 $A_n(x_1, ..., x_k) \neq A_n(x_2, ..., x_{k+1})$

- A is a k-ary c-coloring function if: $A_n(x_1, ..., x_k) \in \{1, 2, ..., c\}$

 - assuming x_1, \ldots, x_{k+1} are all distinct numbers from $\{1, \ldots, n\}$
 - satisfying $1 \le x_1 \le x_2 \le \dots \le x_k \le x_{k+1} \le n$

 $A_n(x_1, ..., x_k) \neq A_n(x_2, ..., x_{k+1})$

 $A_n(2, 4, 6, 8, 9) \in \{1, 2, 3\}$

- A is a k-ary c-coloring function if: $A_n(x_1, ..., x_k) \in \{1, 2, ..., c\}$

 - assuming x_1, \ldots, x_{k+1} are all distinct numbers from $\{1, \ldots, n\}$
 - satisfying $1 \le x_1 \le x_2 \le \dots \le x_k \le x_{k+1} \le n$
- Any algorithm for 3-coloring defines a 2T+1-ary 3-coloring function

 $A_n(X_1, ..., X_k) \neq A_n(X_2, ..., X_{k+1})$

- A is a k-ary c-coloring function if: $A_n(x_1, ..., x_k) \in \{1, 2, ..., c\}$
 - $A_n(X_1, ..., X_k) \neq A_n(X_2, ..., X_{k+1})$
 - assuming x_1, \ldots, x_{k+1} are all distinct numbers from $\{1, \ldots, n\}$
 - satisfying $1 \le x_1 \le x_2 \le \dots \le x_k \le x_{k+1} \le n$
- Any algorithm for 3-coloring defines a 2T+1-ary 3-coloring function

We cannot use a function to construct an algorithm. f(4, 9, 2, 6, 8) is undefined! 41

► We will prove that for any k-ary 3-coloring function:

► We will prove that for any k-ary 3-coloring function: k+1 ≥ log* n

- We will prove that for any k-ary 3-coloring function: **k+1** ≥ log* n
- coloring function, we get that

- We will prove that for any k-ary 3-coloring function: **k+1** ≥ log* n
- coloring function, we get that
 - 2T+2 ≥ log* n

- We will prove that for any k-ary 3-coloring function: **k+1** ≥ log* n
- coloring function, we get that
 - 2T+2 ≥ log* n
 - $T = \Omega(\log^* n)$

• We will prove that for any k-ary 3-coloring function:

k+1 ≥ log* n

- coloring function, we get that
 - 2**T+2** ≥ log* n
 - $T = \Omega(\log^* n)$
- We prove this statement by induction

For any 1-ary c-coloring function:

C ≥ **N**

- For any 1-ary c-coloring function: **C** ≥ **n**
- such that c < n

Proof by contradiction. Assume that a 1-ary c-coloring function exists,

- For any 1-ary c-coloring function: **C** ≥ **n**
- such that c < n
- For the two numbers $1 \le x_i < x_i \le n$ such that

 $A_n(x_i) = A_n(x_i)$

Proof by contradiction. Assume that a 1-ary c-coloring function exists,

- For any 1-ary c-coloring function: **C** ≥ **n**
- such that c < n
- For the two numbers $1 \le x_i < x_i \le n$ such that

 $A_n(x_i) = A_n(x_i)$

 $|f 1 \le x_1 \le x_2 \le \dots \le x_k \le x_{k+1} \le n,$

then $A_n(x_1, ..., x_k) \neq A_n(x_2, ..., x_{k+1})$

Proof by contradiction. Assume that a 1-ary c-coloring function exists,

- For any 1-ary c-coloring function: **C** ≥ **n**
- such that c < n
- For the two numbers $1 \le x_i < x_i \le n$ such that

 $A_n(x_i) = A_n(x_i)$

 $|f 1 \le x_1 \le x_2 \le \dots \le x_k \le x_{k+1} \le n$,

then $A_n(x_1, ..., x_k) \neq A_n(x_2, ..., x_{k+1})$

Proof by contradiction. Assume that a 1-ary c-coloring function exists,

$|f 1 \leq x_1 \leq x_2 \leq n,$ then $A_n(x_1) \neq A_n(x_2)$

- For any 1-ary c-coloring function: **C** ≥ **n**
- such that c < n
- For the two numbers $1 \le x_i < x_i \le n$ such that

 $A_n(x_i) = A_n(x_i)$

 $|f 1 \le x_1 \le x_2 \le \dots \le x_k \le x_{k+1} \le n$,

then $A_n(x_1, ..., x_k) \neq A_n(x_2, ..., x_{k+1})$

Proof by contradiction. Assume that a 1-ary c-coloring function exists,

$|f 1 \leq x_1 \leq x_2 \leq n,$ then $A_n(x_1) \neq A_n(x_2)$

We are given A, that is a k-ary c-coloring function

- ► We are given A, that is a k-ary c-coloring function
- We show that we can construct B, a k-1-ary 2^c-coloring function

- ► We are given A, that is a k-ary c-coloring function
- We show that we can construct B, a k-1-ary 2^c-coloring function
- Proof:

- We are given A, that is a k-ary c-coloring function
- ▶ We show that we can construct B, a k-1-ary 2^c-coloring function
- Proof:
 - We define $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) \mid n \ge y > x_{k-1}\}$

- ► We are given A, that is a k-ary c-coloring function
- ▶ We show that we can construct B, a k-1-ary 2^c-coloring function
- Proof:

We define $B_n(x_1, ..., x_{k-1}) = \{$

$$A_n(x_1, ..., x_{k-1}|y) | n \ge y > x_{k-1}$$

- We are given A, that is a k-ary c-coloring function
- ▶ We show that we can construct B, a k-1-ary 2^c-coloring function
- Proof:
 - We define $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$
- We are given A, that is a k-ary c-coloring function
- We show that we can construct B, a k-1-ary 2^c-coloring function
- Proof:

Notice that there are 2^c possible outputs

- We define $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$

- We are given A, that is a k-ary c-coloring function
- We show that we can construct B, a k-1-ary 2^c-coloring function
- Proof:

Notice that there are 2^c possible outputs

We define $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$ $B_{10}(2,4,5,7)$

- ► We are given A, that is a k-ary c-coloring function
- We show that we can construct B, a k-1-ary 2^c-coloring function
- Proof:

Notice that there are 2^c possible outputs

We define $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$ B₁₀(2,4,5,7) = {

- ► We are given A, that is a k-ary c-coloring function
- We show that we can construct B, a k-1-ary 2^c-coloring function
- Proof:

Notice that there are 2^c possible outputs

We define $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$ B₁₀(2,4,5,7) = { A₁₀(2,4,5,7,8),

- ► We are given A, that is a k-ary c-coloring function
- We show that we can construct B, a k-1-ary 2^c-coloring function
- Proof:

Notice that there are 2^c possible outputs

We define $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$ B₁₀(2,4,5,7) = { A₁₀(2,4,5,7,8),

- ► We are given A, that is a k-ary c-coloring function
- We show that we can construct B, a k-1-ary 2^c-coloring function
- Proof:

Notice that there are 2^c possible outputs

We define $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$ B₁₀(2,4,5,7) = { A₁₀(2,4,5,7,8), A₁₀(2,4,5,7,9),

- ► We are given A, that is a k-ary c-coloring function
- We show that we can construct B, a k-1-ary 2^c-coloring function
- Proof:

Notice that there are 2^c possible outputs

We define $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$ B₁₀(2,4,5,7) = { A₁₀(2,4,5,7,8), A₁₀(2,4,5,7,9), $A_{10}(2,4,5,7,10)$

- ► We are given A, that is a k-ary c-coloring function
- We show that we can construct B, a k-1-ary 2^c-coloring function
- Proof:

Notice that there are 2^c possible outputs

Let us now prove that it is a coloring function

- We define $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) \mid n \ge y > x_{k-1}\}$
- B₁₀(2,4,5,7) = { A₁₀(2,4,5,7,8), A₁₀(2,4,5,7,9), $A_{10}(2,4,5,7,10)$

- ► $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$
- We need to prove that:

 $B_n(x_1, ..., x_{k-1}) \neq B_n(x_2, ..., x_k)$ assuming x_1, \dots, x_k are all distinct numbers from $\{1, \dots, n\}$

- ► $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$
- We need to prove that:
 B_n(x₁, ..., x_{k-1}) ≠ B_n(x₂, ..., x_k)
 assuming x₁, ..., x_k are all distinct numbers from {1, ..., n}
 satisfying 1 ≤ x₁ ≤ x₂ ≤ ... ≤ x_{k-1} ≤ x_k ≤ n

- ► $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$
- Assume for a contradiction that:

 $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$

assuming x_1, \dots, x_k are all distinct numbers from $\{1, \dots, n\}$

- ► $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) \mid n \ge y > x_{k-1}\}$
- Assume for a contradiction that:

 $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$ assuming x_1, \dots, x_k are all distinct numbers from $\{1, \dots, n\}$ satisfying $1 \le x_1 \le x_2 \le \dots \le x_{k-1} \le x_k \le n$ • Let $x = A_n(x_1, ..., x_k)$

Coloring functions (inductive case) $B_n(x_1, ..., x_{k-1}) =$

- ► $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$
- Assume for a contradiction that:

 $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$ assuming x_1, \dots, x_k are all distinct numbers from $\{1, \dots, n\}$ satisfying $1 \le x_1 \le x_2 \le \dots \le x_{k-1} \le x_k \le n$ • Let $x = A_n(x_1, ..., x_k)$

- ► $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$
- Assume for a contradiction that:

 $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$ assuming x_1, \dots, x_k are all distinct numbers from $\{1, \dots, n\}$ satisfying $1 \le x_1 \le x_2 \le \dots \le x_{k-1} \le x_k \le n$ • Let $x = A_n(x_1, ..., x_k)$

$B_n(x_1, ..., x_{k-1}) =$ $\{A_n(x_1, ..., x_{k-1}, y) | y is larger than x_{k-1}\}$

- ► $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$
- Assume for a contradiction that:

 $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$ assuming x_1, \dots, x_k are all distinct numbers from $\{1, \dots, n\}$ satisfying $1 \le x_1 \le x_2 \le \dots \le x_{k-1} \le x_k \le n$ • Let $x = A_n(x_1, ..., x_k)$

$B_n(x_1, ..., x_{k-1}) =$ $\{A_n(x_1, ..., x_{k-1}, y) | y is larger than x_{k-1}\}$ since $X_k > X_{k-1}$,

- $B_n(x_1, ..., x_{k-1}) =$ ► $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$ $\{A_n(x_1, ..., x_{k-1}, y) | y is larger than x_{k-1}\}$ Since $X_k > X_{k-1}$. then $\mathbf{x} = \mathbf{A}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1}, \mathbf{x}_k) \in \mathbf{B}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1})$ $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$ assuming x_1, \dots, x_k are all distinct numbers from $\{1, \dots, n\}$
- Assume for a contradiction that:

satisfying $1 \le x_1 \le x_2 \le \dots \le x_{k-1} \le x_k \le n$ • Let $x = A_n(x_1, ..., x_k)$

- $B_n(x_1, ..., x_{k-1}) =$ ► $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$ $\{A_n(x_1, ..., x_{k-1}, y) | y is larger than x_{k-1}\}$ Since $X_k > X_{k-1}$. then $\mathbf{x} = \mathbf{A}_{n}(\mathbf{x}_{1}, ..., \mathbf{x}_{k-1}, \mathbf{x}_{k}) \in \mathbf{B}_{n}(\mathbf{x}_{1}, ..., \mathbf{x}_{k-1})$ $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$ assuming x_1, \dots, x_k are all distinct numbers from $\{1, \dots, n\}$
- Assume for a contradiction that:

- Let $x = A_n(x_1, ..., x_k)$
- ▶ By definition of **B**, we have that $\mathbf{x} \in \mathbf{B}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1})$

- $B_n(x_1, ..., x_{k-1}) =$ ► $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$ $\{A_n(x_1, ..., x_{k-1}, y) | y is larger than x_{k-1}\}$ Since $X_k > X_{k-1}$. $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$ then $\mathbf{x} = \mathbf{A}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1}, \mathbf{x}_k) \in \mathbf{B}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1})$ assuming x_1, \dots, x_k are all distinct numbers from $\{1, \dots, n\}$
- Assume for a contradiction that:

- Let $x = A_n(x_1, ..., x_k)$
- ▶ By definition of **B**, we have that $\mathbf{x} \in \mathbf{B}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1})$

 $B_n(x_1, ..., x_{k-1}) =$ ► $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$ $\{A_n(x_1, ..., x_{k-1}, y) | y is larger than x_{k-1}\}$ since $X_k > X_{k-1}$. $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$ then $\mathbf{x} = \mathbf{A}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1}, \mathbf{x}_k) \in \mathbf{B}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1})$ assuming x_1, \dots, x_k are all distinct numbers from $\{1, \dots, n\}$

Assume for a contradiction that:

- Let $x = A_n(x_1, ..., x_k)$
- ▶ By definition of **B**, we have that $\mathbf{x} \in \mathbf{B}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1})$
- By assumption, we also have $\mathbf{x} \in \mathbf{B}_{n}(\mathbf{x}_{2}, ..., \mathbf{x}_{k})$

 $B_n(x_1, ..., x_{k-1}) =$ ► $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$ $\{A_n(x_1, ..., x_{k-1}, y) | y is larger than x_{k-1}\}$ since $X_k > X_{k-1}$. $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$ then $\mathbf{x} = \mathbf{A}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1}, \mathbf{x}_k) \in \mathbf{B}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1})$ assuming x_1, \dots, x_k are all distinct numbers from $\{1, \dots, n\}$

Assume for a contradiction that:

satisfying $1 \le x_1 \le x_2 \le \dots \le x_{k-1} \le x_k \le n$

- Let $x = A_n(x_1, ..., x_k)$
- By definition of **B**, we have that $x \in B_n(x_1, ..., x_{k-1})$
- By assumption, we also have $\mathbf{x} \in \mathbf{B}_{n}(\mathbf{x}_{2}, ..., \mathbf{x}_{k})$

 $B_n(x_2, ..., x_k)$ contains x

 $B_n(x_1, ..., x_{k-1}) =$ ► $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$ $\{A_n(x_1, ..., x_{k-1}, y) | y is larger than x_{k-1}\}$ since $X_k > X_{k-1}$. $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$ then $\mathbf{x} = \mathbf{A}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1}, \mathbf{x}_k) \in \mathbf{B}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1})$ assuming x_1, \dots, x_k are all distinct numbers from $\{1, \dots, n\}$

Assume for a contradiction that:

satisfying $1 \le x_1 \le x_2 \le \dots \le x_{k-1} \le x_k \le n$

- Let $x = A_n(x_1, ..., x_k)$
- By definition of **B**, we have that $x \in B_n(x_1, ..., x_{k-1})$
- By assumption, we also have $\mathbf{x} \in \mathbf{B}_{n}(\mathbf{x}_{2}, ..., \mathbf{x}_{k})$

 $B_n(x_2, ..., x_k)$ contains x

 \Rightarrow

 $B_n(x_1, ..., x_{k-1}) =$ $\{A_n(x_1, ..., x_{k-1}, y) | y is larger than x_{k-1}\}$ since $X_k > X_{k-1}$. $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$ then $\mathbf{x} = \mathbf{A}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1}, \mathbf{x}_k) \in \mathbf{B}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1})$ assuming $x_1, ..., x_k$ are all distinct numbers from $\{1, ..., n\}$ satisfying $1 \le x_1 \le x_2 \le \dots \le x_{k-1} \le x_k \le n$ $B_n(x_2, ..., x_k)$ contains x $\exists y > x_k$ such that $A_n(x_2, ..., x_k, y) = x$

Assume for a contradiction that:

- ► $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$ • Let $x = A_n(x_1, ..., x_k)$ By definition of **B**, we have that $\mathbf{x} \in \mathbf{B}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1})$ By assumption, we also have $\mathbf{x} \in \mathbf{B}_{n}(\mathbf{x}_{2}, ..., \mathbf{x}_{k})$

 $B_n(x_1, ..., x_{k-1}) =$ ► $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$ $\{A_n(x_1, ..., x_{k-1}, y) | y is larger than x_{k-1}\}$ Assume for a contradiction that: since $X_k > X_{k-1}$. $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$ then $\mathbf{x} = \mathbf{A}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1}, \mathbf{x}_k) \in \mathbf{B}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1})$ assuming $x_1, ..., x_k$ are all distinct numbers from $\{1, ..., n\}$ satisfying $1 \le x_1 \le x_2 \le \dots \le x_{k-1} \le x_k \le n$ $B_n(x_2, ..., x_k)$ contains x • Let $x = A_n(x_1, ..., x_k)$ By definition of **B**, we have that $\mathbf{x} \in \mathbf{B}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1})$ $\exists y > x_k$ such that $A_n(x_2, ..., x_k, y) = x$ By assumption, we also have $\mathbf{x} \in \mathbf{B}_{n}(\mathbf{x}_{2}, ..., \mathbf{x}_{k})$

- For this implies that there exists some $y > x_k$ such that $A_n(x_2, ..., x_k, y) = x$

 $B_n(x_1, ..., x_{k-1}) =$ ► $B_n(x_1, ..., x_{k-1}) = \{A_n(x_1, ..., x_{k-1}, y) | n \ge y > x_{k-1}\}$ $\{A_n(x_1, ..., x_{k-1}, y) | y is larger than x_{k-1}\}$ Assume for a contradiction that: since $X_k > X_{k-1}$. $B_n(x_1, ..., x_{k-1}) = B_n(x_2, ..., x_k)$ then $\mathbf{x} = \mathbf{A}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1}, \mathbf{x}_k) \in \mathbf{B}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1})$ assuming $x_1, ..., x_k$ are all distinct numbers from $\{1, ..., n\}$ satisfying $1 \le x_1 \le x_2 \le \dots \le x_{k-1} \le x_k \le n$ $B_n(x_2, ..., x_k)$ contains x • Let $x = A_n(x_1, ..., x_k)$ By definition of **B**, we have that $\mathbf{x} \in \mathbf{B}_n(\mathbf{x}_1, ..., \mathbf{x}_{k-1})$ $\exists y > x_k$ such that $A_n(x_2, ..., x_k, y) = x$ By assumption, we also have $\mathbf{x} \in \mathbf{B}_{n}(\mathbf{x}_{2}, ..., \mathbf{x}_{k})$

- For this implies that there exists some $y > x_k$ such that $A_n(x_2, ..., x_k, y) = x$
- $A_n(x_1, ..., x_k) = A_n(x_2, ..., x_k, y)$, such that $y > x_k$, contradiction!

• Given:

- Given:
 - a T-rounds coloring algorithm that solves 3-coloring

- Given:
 - a T-rounds coloring algorithm that solves 3-coloring
- We construct:

- Given:
 - a T-rounds coloring algorithm that solves 3-coloring
- We construct:
 - a k-ary 3-coloring function, where k=2T+1

- Given:
 - a T-rounds coloring algorithm that solves 3-coloring
- We construct:
 - a k-ary 3-coloring function, where k=2T+1
 - a k-ary 2²-coloring function

- Given:
 - a T-rounds coloring algorithm that solves 3-coloring
- We construct:
 - a k-ary 3-coloring function, where k=2T+1
 - a k-ary 2²-coloring function
 - a k-1-ary 2²²-coloring function

- Given:
 - a T-rounds coloring algorithm that solves 3-coloring
- We construct:
 - a k-ary 3-coloring function, where k=2T+1
 - a k-ary 2²-coloring function
 - a k-1-ary 2²²-coloring function
 - a k-2-ary 2²²²-coloring function

• Given:

•

- a T-rounds coloring algorithm that solves 3-coloring
- We construct:
 - a k-ary 3-coloring function, where k=2T+1
 - a k-ary 2²-coloring function
 - a k-1-ary 2²²-coloring function
 - a k-2-ary 2²²²-coloring function

- Given:
 - a T-rounds coloring algorithm that solves 3-coloring
- We construct:
 - a k-ary 3-coloring function, where k=2T+1
 - a k-ary 2²-coloring function
 - a k-1-ary 2²²-coloring function
 - a k-2-ary 2²²²-coloring function
 - •
 - a 1-ary $^{k+1}2$ -coloring function ($^{k+1}2$ is a power tower of height k+1)

- Given:
 - a T-rounds coloring algorithm that solves 3-coloring
- We construct:
 - a k-ary 3-coloring function, where k=2T+1
 - a k-ary 2²-coloring function
 - a k-1-ary 2²²-coloring function
 - a k-2-ary 2²²²-coloring function
 - •
 - a 1-ary $^{k+1}2$ -coloring function ($^{k+1}2$ is a power tower of height k+1)

• In the base case we proved that $^{k+1}2 \ge n$, which implies $k+1 \ge \log^* n$, hence $T = \Omega(\log^* n)$
Coloring functions (putting things together)

- Given:
 - a T-rounds coloring algorithm that solves 3-coloring
- We construct:
 - a k-ary 3-coloring function, where k=2T+1
 - a k-ary 2²-coloring function
 - a k-1-ary 2²²-coloring function
 - a k-2-ary 2²²²-coloring function
 - •
 - a 1-ary $^{k+1}2$ -coloring function ($^{k+1}2$ is a power tower of height k+1)

If c-coloring can be solved in T rounds, then 2^c-coloring can be solved in T-1 rounds.

• In the base case we proved that $^{k+1}2 \ge n$, which implies $k+1 \ge \log^* n$, hence $T = \Omega(\log^* n)$

Coloring functions (putting things together)

- Given:
 - a T-rounds coloring algorithm that solves 3-coloring
- We construct:
 - a k-ary 3-coloring function, where k=2T+1
 - a k-ary 2²-coloring function
 - a k-1-ary 2²²-coloring function
 - a k-2-ary 2²²²-coloring function
 - •
 - a 1-ary $^{k+1}2$ -coloring function ($^{k+1}2$ is a power tower of height k+1)

If **c**-coloring can be solved in **T** rounds, then 2^C-coloring can be solved in T-1 rounds.

• In the base case we proved that $^{k+1}2 \ge n$, which implies $k+1 \ge \log^* n$, hence $T = \Omega(\log^* n)$

• Given:

- Given:
 - algorithm A_0 solves problem P_0 in T rounds

- Given:
 - algorithm A_0 solves problem P_0 in T rounds
- We construct:

- Given:
 - algorithm A_0 solves problem P_0 in T rounds
- We construct:
 - algorithm A_1 solves problem P_1 in T 1 rounds

- Given:
 - algorithm A_0 solves problem P_0 in T rounds
- We construct:
 - algorithm A_1 solves problem P_1 in T 1 rounds
 - algorithm A_2 solves problem P_2 in T 2 rounds

• Given:

...

- algorithm A_0 solves problem P_0 in T rounds
- We construct:
 - algorithm A_1 solves problem P_1 in T 1 rounds
 - algorithm A_2 solves problem P_2 in T 2 rounds
 - algorithm A_3 solves problem P_3 in T 3 rounds

- Given:
 - algorithm A_0 solves problem P_0 in T rounds
- We construct:
 - algorithm A_1 solves problem P_1 in T 1 rounds
 - algorithm A_2 solves problem P_2 in T 2 rounds
 - algorithm A₃ solves problem P₃ in T 3 rounds
 - algorithm A_T solves problem P_T in 0 rounds

- Given:
 - algorithm A_0 solves problem P_0 in T rounds
- We construct:
 - algorithm A_1 solves problem P_1 in T 1 rounds
 - algorithm A_2 solves problem P_2 in T 2 rounds
 - algorithm A₃ solves problem P₃ in T 3 rounds
 - algorithm A_T solves problem P_T in 0 rounds
- We prove:

- Given:
 - algorithm A_0 solves problem P_0 in T rounds
- We construct:
 - algorithm A_1 solves problem P_1 in T 1 rounds
 - algorithm A_2 solves problem P_2 in T 2 rounds
 - algorithm A₃ solves problem P₃ in T 3 rounds
 - algorithm A_T solves problem P_T in 0 rounds
- We prove:
 - P_T cannot be solved in 0 rounds, so A₀ cannot exist

- Given:
 - algorithm A_0 solves problem P_0 in T rounds
- We construct:
 - algorithm A_1 solves problem P_1 in T 1 rounds
 - algorithm A_2 solves problem P_2 in T 2 rounds
 - algorithm A_3 solves problem P_3 in T 3 rounds ...
 - algorithm A_T solves problem P_T in 0 rounds
- We prove:
 - P_{T} cannot be solved in 0 rounds, so A_{0} cannot exist

Given a problem *P*_i, satisfying that the correctness of the solution can be checked locally, the problem P_{i+1} can be defined mechanically [Brandt '19]

