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Locality

If the size of the messages and the local computation is 
unbounded, all synchronous T-round algorithms have a normal 
form:

1. Gather the radius-T neighborhood

2. Perform some local computation
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It can be extended to randomized algorithms:         

same radius-T view  

⇩ 

same probability distribution 

over the outputs
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"Of course these two nodes need to communicate, 
hence this problem requires at least n-1 rounds"

2-coloring paths can be solved in n/2+1 rounds
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2-coloring lower bound

‣ Let us prove that n/5 rounds are not enough, for all (large enough) n 

‣ We use the principle of locality. We build two instances such that: 

• There are two pairs of nodes that have the same view in both 
instances 

• Such nodes cannot output the same in both instances
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‣ Create a new instance, obtained by removing the edges {n-1,n} and {n/5+1,n/5+2}, and 
adding the edges {n/5+1,n} and {n,n/5+2}

‣ For large enough n, nodes 1 and (n/2+1) have the same radius-n/5 view, hence they must 
output the same in both instances, but this is wrong (the distances of these nodes in the 
two instances have different parity)
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2-coloring lower bound (randomized)

‣ The proof works for deterministic algorithms, but it can be extended to work 
also for randomized algorithms

‣ Main ingredient: 

        same radius-T neighborhood  

                            ⇩ 

        same probability distribution 

               over the outputs
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‣ The 3-coloring problem can be solved in:

• O(log n) rounds on trees

• O(log* n) rounds on rooted trees

‣ What can we do in o(log n) rounds on trees? Do we really need to have a 
rooted tree to solve 3-coloring fast?

‣ Coloring trees of maximum degree Δ with Δ colors requires Ω(logΔ n) rounds

‣ o(Δ / log Δ) coloring trees of maximum degree Δ requires Ω(logΔ n) rounds

23⇒ 3-coloring trees of (large enough) constant degree requires Ω(log n) rounds
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Coloring trees lower bound

‣ o(Δ / log Δ) coloring trees of maximum degree Δ requires 
Ω(logΔ n) rounds

‣ We use the fact that there are graphs that:

• cannot be colored using o(Δ / log Δ) colors

• they look like a tree, in every o(logΔ n) radius 
neighborhood
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• We want to prove that o(Δ / log Δ) coloring trees of maximum degree Δ requires 

Ω(logΔ n) rounds

• Let us assume that there is an algorithm A that colors trees using o(Δ / log Δ) 
colors and runs in o(logΔ n) rounds. We show that we reach a contradiction

• What happens if we run A on the graphs of the family H?

• It must fail! Such graphs cannot be colored using o(Δ / log Δ) colors, since the 
chromatic number is Ω(Δ / log Δ)

• We now prove that such failure implies that A must also fail on some specific tree
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‣ We saw how to prove:

• Coloring trees of maximum degree Δ with o(Δ / log Δ) colors requires 
Ω(logΔ n) rounds

‣ It is possible to prove:

• Coloring trees of maximum degree Δ with Δ colors requires Ω(logΔ n) 
rounds

• Different techniques are required to prove such result

• Note that, if Δ=O(1), then (Δ+1)-coloring can be solved in just O(log* n)
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‣ 3-coloring paths or cycles can be done in O(log* n) rounds

• log* n grows very slowly, but it is not a constant
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• We can color the nodes with n colors in 0 rounds

• We cannot color the nodes with n-1 colors in 0 rounds
⇒ 

We cannot color the nodes 
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Coloring algorithms

‣We can see an algorithm A as a function satisfying that:

 An(x1, ..., x2T+1) ∈ {1, 2, 3}

 An(x1, ..., x2T+1) ≠ An(x2, ..., x2T+2)

 assuming x1, ..., x2T+2 are all distinct numbers from {1, ..., n}
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‣We are given A, that is a k-ary c-coloring function

‣We show that we can construct B, a k-1-ary 2c-coloring function

‣Proof:

 We define Bn(x1, ..., xk-1) = { An(x1, ..., xk-1, y) |  n ≥ y > xk-1 }

 Notice that there are 2c possible outputs

 Let us now prove that it is a coloring function
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Given a problem Pi, satisfying that  
the correctness of the solution 

can be checked locally, 
 the problem Pi+1 can be defined 

mechanically [Brandt '19]


