
Chapter 12

Massively Parallel Computations

Theory of Distributed Systems

Fabian Kuhn

Theory of Distributed Systems Fabian Kuhn 2

Massively Parallel Computations

Challenges

• Moore’s law does not hold for ever

• We can only increase computational power by increasing the parallelism

• We need algorithmic techniques to deal with immense amounts of data

Massively Parallel Graph Computations

• Many important applications require solving standard graph problems in very
large graphs (e.g., search engines, shortest path computations, etc.)

• We need ways to perform graph computations in highly parallel settings:

– Graph data is shared among many servers / machines

– Each machine can only store a small part of the graph

– Need techniques to split and parallelize computations among machines

– Use communication to coordinate between the machines

• Related to (standard) distributed graph computations

Theory of Distributed Systems Fabian Kuhn 3

Massively Parallel Computation (MPC) Model

MPC Model

• An abstract formal model to study large-scale parallel computations

– Aims to study parallelism at a more coarse-grained level than classic fine-grained
parallel models like PRAM
(models settings where communication is much more expensive than computation)

Formal Model

• Input of size 𝑁 words (1 word = 𝑂 log𝑁 bits, for graphs, 𝑁 = 𝑂 𝐸)

• There are 𝑀 ≪ 𝑁 machines

• Each machine has a memory of 𝑆 words, i.e., we need 𝑆 ≥ 𝑁/𝑀

– We typically assume that 𝑆 = 𝑁𝑐 for a constant 𝑐 < 1

• Time progresses in synchronous rounds, in each round,
every machine can send & receive 𝑆 words to & from other machines

• Initially, the data is partitioned in an arbitrary way among the 𝑀 machines

– Such that every machine has a roughly equal part of the data

– W.l.o.g., data is partitioned in a random way among the machines

Theory of Distributed Systems Fabian Kuhn 4

MPC Model for Graph Computations

Assumption: Input is a graph 𝑮 = 𝑽, 𝑬

• Number of nodes 𝑛 = 𝑉 , number of edges 𝑚 = 𝐸 , nodes have IDs

• Input can be specified by the set 𝐸 of edges

– each edge might have some other information, e.g., a weight

– for simplicity, assume that every node has degree ≥ 1

• Initially, each edge is given to a uniformly random machine

• We typically assume that 𝑆 = ෨𝑂 Τ𝑁 𝑀 = ෨𝑂 𝑚/𝑀

Strongly superlinear memory regime

𝑺 = 𝒏𝟏+𝜺 for a constant 𝜺 > 𝟎

Strongly sublinear memory regime

𝑺 = 𝒏𝜶 for a constant 𝟎 < 𝜶 < 𝟏

Near-linear memory regime

𝑺 = ෩𝑶 𝒏

Theory of Distributed Systems Fabian Kuhn 5

Minimum Spanning Tree (MST) Problem

Given: connected graph 𝐺 = 𝑉, 𝐸 with edge weights 𝑤𝑒
Goal: find a spanning tree 𝑇 = 𝑉, 𝐸𝑇 of minimum total weight

– For simplicity, assume that the edge weights 𝑤𝑒 are unique (makes MST unique)

3

14
4

6

1

10

13

23

21

31

8
25

20

1118

17

16

199

12

7 2
28

Theory of Distributed Systems Fabian Kuhn 6

Properties of the MST

Minimum Spanning Forest (MSF) of 𝑮:

• A forest consisting of the MST of each of the connected components of 𝐺

– Maximal forest of minimum total weight

Claim: Let 𝐺 = 𝑉, 𝐸, 𝑤 be a weighted graph and let 𝐻 = 𝑉′, 𝐸′, 𝑤 be a
subgraph of 𝐺. If 𝑒 ∈ 𝐸′ is an edge of the MST (or MSF) of 𝐺, then 𝑒 is also an
edge of the minimum spanning forest (MSF) of 𝐻

Theory of Distributed Systems Fabian Kuhn 7

MST With Strongly Superlinear Memory

Initially:

• Each machine has 𝑂 𝑛1+𝜀 edges

– There are 𝑀 = 𝑂 Τ𝑚 𝑛1+𝜀 machines

• Let 𝐻𝑀 be the subgraph induced by the edges of machine 𝑀

MPC Algorithm:

1. Each machine 𝑀 computes minimum spanning forest 𝐹𝑀 of 𝐻𝑀
2. Discard all edges that are not part of some MSF 𝐹𝑀
3. Remaining number of edges:

𝑚′ ≤ 𝑀 ⋅ 𝑛 = 𝑂 Τ𝑚 𝑛𝜀

4. Redistribute remaining edges to 𝑀′ = 𝑂 Τ𝑚′ 𝑛1+𝜀 machines

• Randomly reassign each edge

• Algorithm reduces number of edges by factor Θ 𝑛𝜀 in 1 round.

• 𝑂 Τ1 𝜀 repetitions suffice to solve the problem

Theory of Distributed Systems Fabian Kuhn 8

Borůvka’s MST Algorithm

MST Fragment:

• A connected subtree 𝐹 = 𝑉𝐹 , 𝐸𝐹 of the MST

Minimum edge of MST fragment 𝑭 = (𝑽𝑭, 𝑬𝑭):

• Minimum weight edge connecting a node in 𝑉𝐹 with a node in 𝑉 ∖ 𝑉𝐹

Lemma: For every MST fragment 𝐹, the minimum edge of 𝐹 is in the MST

Theory of Distributed Systems Fabian Kuhn 9

Borůvka’s MST Algorithm

Algorithm description:

• Develops the MST in parallel phases

• Initially, each node is an MST fragment of size 1 (and with no edges)

• In each phase: add the minimum edge of each fragment to the MST

• Terminate when there is only one fragment

– or when there are no edges between different fragments

Theorem: The above alg. computes the MST in 𝑂 log 𝑛 phases.

Theory of Distributed Systems Fabian Kuhn 10

MST With Strongly Sublinear Memory: Ideas

Assume: 𝐺 = 𝑉, 𝐸 with 𝑛 nodes, 𝑚 edges, memory 𝑆 = 𝑛𝛼 for const. 𝛼 > 0

• Also assume that we have 𝑀 ≥ Τ𝑚 𝑆 ⋅ 𝑐 log 𝑛 machines for suff. large 𝑐 ≥ 1

Representation of algorithm state:

• Each fragment has a unique ID, fragment ID of node 𝑢: FID(𝑢)

• The machine storing an edge 𝑢, 𝑣 knows the fragment IDs of 𝑢 and 𝑣

Goal: implement one phase in time 𝑶 𝟏 :

• Assume that for each fragment ID 𝑥, there is some responsible machine 𝑀𝑥

– Additional empty machines that are randomly assigned (e.g. by a hash function)

• For now, assume that each node 𝑢 directly interacts with machine 𝑀FID(𝑢)

Theory of Distributed Systems Fabian Kuhn 11

Implementing One Phase (First Attempt)

Theory of Distributed Systems Fabian Kuhn 12

Small Change to the Basic Algorithm

• In each phase, each fragment initially picks a random color in red, blue

• Let 𝑢, 𝑣 be the minimum edge of a fragment 𝐹

• Only add 𝑢, 𝑣 to MST in current phase if 𝐹 is a red fragment and 𝑢, 𝑣
connects to a blue fragment.

Theory of Distributed Systems Fabian Kuhn 13

Implementation with Aggregation Trees

Theory of Distributed Systems Fabian Kuhn 14

MST with Strongly Sublinear Memory

Theorem: In the strongly sublinear memory regime (i.e., when 𝑆 = 𝑛𝛼 for a
constant 𝛼 ∈ 0,1), an MST can be computed in time 𝑂 log 𝑛 .

Theory of Distributed Systems Fabian Kuhn 15

MST in the Near-Linear Memory Regime

• Assume that 𝑆 = 𝑛 ⋅ log 𝑛 𝑐 for a sufficiently large constant 𝑐 > 0.

• Instead of MST, we consider a simpler, closely related probem

Connectivity / Component Identification

• At the end, algorithm needs to output a number 𝐶 𝑢 for each node 𝑢 ∈ 𝑉
such that 𝐶 𝑢 = 𝐶 𝑣 iff 𝑢 and 𝑣 are in the same connected component of 𝐺.

Observations

• Algorithm in particular allows to compute whether 𝐺 is connected

• The MST algorithm from before can be used to solve component identification

– The algorithm terminates when there are no more edges connecting different
fragments. The fragment IDs at the end can be used as outputs

• In combination with some binary search over the edge weights, component
identification can be used to also compute an MST

– Everything we will do can be extended to the MST problem
(at the cost of maybe a couple of log-factors in the required memory per machine)

Theory of Distributed Systems Fabian Kuhn 16

The Single-Round Coordinator Model

• We will study the problem in a different communication model

• There is a coordinator and one node for each 𝑣 ∈ 𝑉

• Node 𝑣 initially knows the set of its neighbors (i.e., all incident edges)

• Each node 𝑣 ∈ 𝑉 is allowed to send one message to the coordinator

• Afterwards the coordinate needs to be able to compute the output

• We will assume that the nodes have access to shared randomness

• We will use the graph sketching technique

coordinator

𝑽

Theory of Distributed Systems Fabian Kuhn 17

Graph Sketching: Warm Up 1

Single Cut Problem:

• Fix 𝐴 ⊆ 𝑉. Assume that there are 𝑘 ≥ 1 edges across the cut 𝐴, 𝑉 ∖ 𝐴 .

• Goal: Coordinator needs to return one of the 𝑘 edges across the cut

Assume first that 𝒌 = 𝟏:

• Define a unique ID for each edge e = 𝑢, 𝑣 ∈ 𝐸: ID 𝑒 = ID 𝑢 ∘ ID(𝑣)

• Each node 𝑢 ∈ 𝐴 computes XOR𝑢 as

XOR𝑢 ≔ ໄ

𝑒∈𝐸∶𝑢∈𝑒

ID 𝑒

• Each node 𝑢 ∈ 𝑉 sends XOR𝑢 to coordinator

• Coordinator computes

XOR𝐴 ≔ໄ

𝑢∈𝐴

XOR𝑢

Theory of Distributed Systems Fabian Kuhn 18

𝑨

Graph Sketching: Warm Up 1

Example:

𝒗𝟑

𝒗𝟐 𝒗𝟒

𝒗𝟓𝒗𝟏

ID 𝑣1 = 000

ID 𝑣3 = 010

ID 𝑣2 = 001

ID 𝑣4 = 100

ID 𝑣5 = 011

Theory of Distributed Systems Fabian Kuhn 19

Graph Sketching: Warm Up 2

Assume that 𝒌 is an arbitrary value

• Let 𝐸𝐴 be the set of edges across the cut 𝐴, 𝑉 ∖ 𝐴 (𝐸𝐴 = 𝑘)

Claim: If we use the same algorithm, XOR𝐴 = ۩𝑒∈𝐸𝐴
ID 𝑒 .

Assume that we are given an estimate 𝒌 s.t.
𝒌

𝟐
≤ 𝒌 ≤ 𝒌:

• Sample each edge with probability Τ1 𝑘 and apply alg. with sampled edges

Theory of Distributed Systems Fabian Kuhn 20

Graph Sketching: Warm Up 2

Assume that 𝒌 > 𝟏 and an estimate 𝒌 s.t.
𝒌

𝟐
≤ 𝒌 ≤ 𝒌 is given

• Sample each edge with probability Τ1 𝑘

• Let 𝐸𝐴
′ be the sampled edges of 𝐸𝐴 (across the cut)

Claim: ℙ 𝐸𝐴
′ = 1 ≥ Τ1 10.

ℙ 𝐸𝐴
′ = 1 = 𝑘 ⋅

1

𝑘
⋅ 1 −

1

𝑘

𝑘−1

≥
𝑘

2
⋅
1

𝑘
⋅ 1 −

1

𝑘

𝑘

≥
1

2
⋅ 4

−
1
𝑘
⋅𝑘

≥
1

10
.

Theory of Distributed Systems Fabian Kuhn 21

Graph Sketching: Warm Up 2

Discussion:

• How can we sample each edge with probability Τ1 𝑘?

– Use shared randomness

• If we use the same algorithm, XOR𝐴 is equal to an edge of 𝐸𝐴 if 𝐸𝐴
′ = 1

How can we distinguish 𝑬𝑨
′ = 𝟏 from 𝑬𝑨

′ ≠ 𝟏?

• We need to make sure that

a) The bit-wise XOR of 0 or > 1 edge IDs is not equal to an edge ID

b) Edge IDs can be distinguished from the XORs of 0 or > 1 edge IDs

Theory of Distributed Systems Fabian Kuhn 22

Random Edge IDs

Edge ID of edge 𝒆 = 𝒖, 𝒗 ∈ 𝑬 (assume 𝐈𝐃 𝒖 < 𝐈𝐃(𝒗))

𝐈𝐃 𝒆 = 𝐈𝐃 𝒖 ∘ 𝐈𝐃 𝒗 ∘ 𝑹𝒆

• 𝑅𝑒 is a random bit string of length 80 ln 𝑛 where each bit is 1 with prob. 1/8

• Let 𝑅𝐴
′ be the bitwise XOR of 𝑅𝑒 for 𝑒 ∈ 𝐸𝐴

′

Claim: Let 𝑋 be the number of 1s in 𝑅𝐴
′ . If 𝐸𝐴

′ = 0, then 𝑋 = 0, otherwise

• If 𝐸𝐴
′ = 1, then 1 < 𝑋 < 14 ln 𝑛 with high probability

• If 𝐸𝐴
′ > 1, then 𝑋 > 14 ln 𝑛 with high probability

Proof Sketch:

Theory of Distributed Systems Fabian Kuhn 23

Random Edge IDs

Claim: Let 𝑋 be the number of 1s in 𝑅𝐴
′ . If 𝐸𝐴

′ = 0, then 𝑋 = 0, otherwise

• If 𝐸𝐴
′ = 1, then 1 < 𝑋 < 14 ln 𝑛 with high probability

• If 𝐸𝐴
′ > 1, then 𝑋 > 14 ln 𝑛 with high probability

Proof Sketch:

• If 𝐸𝐴
′ ≥ 2, each of the 80 ln 𝑛 bits of 𝑅𝐴

′ is 1 with prob. ≥ 2 ⋅
1

8
⋅
7

8
>

1

5

Theory of Distributed Systems Fabian Kuhn 24

Connected Components with Graph Sketching

One phase of the Borůvka algorithm

• We need to find one outgoing edge for each fragment

– Then the coordinator can add a subset of these edges and reduce the number of
fragments by a factor 2

• We do not know the number of out-going edges of the different fragments

– And different fragments might have different numbers

• Use different sampling probabilities:
1

𝑛
,
2

𝑛
,
4

𝑛
, … ,

1

2
and send sketches for all

probabilities to coordinator

– For each instance, each 𝑣 ∈ 𝑉 sends XOR of sampled edges to coordinator

• For each fragment, one of the probabilities succeeds with probability ≥ Τ1 10

• When having Θ log 𝑛 instances for each of the probabilities, we get an
outgoing edge for each fragment with high probability

• Each node can send 𝑂 log3 𝑛 bits to coordinator for one phase

Observation: The protocol does not depend on the fragments

• We can therefore send the information for all phases in parallel

Theory of Distributed Systems Fabian Kuhn 25

Connected Components with Graph Sketching

Theorem: In the coordinator model, there is a protocol where every node 𝑣 ∈ 𝑉
send 𝑂 log4 𝑛 bits to the coordinator s.t. the coordinator can solve the
connectivity & connected components problem.

Remarks:

• The number of bits can be reduced to 𝑂 log3 𝑛

– It is sufficient to succeed with constant prob. for each fragment in each phase

• Ω log3 𝑛 bits are necessary [Nelson, Yu; 2019]

• Graph sketching has been introduced by [Ahn, Guha, McGregor; 2012]

Theory of Distributed Systems Fabian Kuhn 26

Implementation in the MPC Model

1. For every node 𝑣 ∈ 𝑉, create a responsible machine 𝑀𝑣

• Send each edge 𝑢, 𝑣 to both 𝑀𝑢 and 𝑀𝑣

• Make sure that each machine gets ෨𝑂 𝑛 edges

1. The randomness for each edge can be generated initially by the machine that
holds the edge

• Also send the randomness for the edge {𝑢, 𝑣} to 𝑀𝑢 and 𝑀𝑣

2. Use one additional machine for the coordinator

Theorem: In the MPC model with 𝑆 = ෨𝑂 𝑛 , the connectivity & connected
components problem can be solve in 𝑂 1 rounds.

Theory of Distributed Systems Fabian Kuhn 27

Discussion

• Graph sketching can help in many different contexts, e.g.,

– also in the strongly-sublinear memory regime to save communication

– in the streaming model

– in the standard distributed model to save message

• In the strongly sublinear memory regime, it is not known whether it is
possible to be faster than 𝑂 log𝑛 rounds

– It is widely believed that there should be an Ω log𝑛 lower bound

– Even the following simple version of the problem seems to require Ω log𝑛 time

distinguish 2 cycles of length Τ𝑛 2 from one cycle of length 𝑛

