

Graphentheorie

24.09.2021, 09:00 -10:30

Name:	
Matrikel Nr.:	
Unterschrift:	

Erst öffnen wenn die Klausuraufsicht die Erlaubnis erteilt!

- Unterschreiben Sie diese Seite um zu bestätigen, dass Sie die Fragen ohne unerlaubte Hilfsmittel beantwortet haben und die Klausuraufsicht über (gesundheitliche) Probleme informiert haben.
- Es sind keinerlei Hilfsmittel (wie z.B. ausgedruckte Skripte, handschriftliche Notizen oder elektronische Hilfsmittel) erlaubt!
- Schreiben Sie lesbar und nur mit dokumentenechten Stiften. Benutzen Sie keine rote Farbe und keinen Bleistift!
- Es wird nur eine Lösung pro Aufgabe gewertet. Vergewissern Sie sich, dass Sie zusätzliche Lösungen durchstreichen, andernfalls wird die schlechteste Lösung gewertet.
- Detaillierte Schritte können Ihnen zu Teilpunkten verhelfen falls das Endergebnis falsch ist.
- Die Schlüsselwörter **Zeigen Sie...**, **Beweisen Sie...**, **Begründen Sie...** oder **Leiten Sie ...** her zeigen an, dass Sie Ihre Antwort sorgfältig und gegebenenfalls formal begründen müssen.
- Die Schlüsselwörter **Geben Sie ... an** zeigen an, dass Sie lediglich die geforderte Antwort und keine Begründung liefern müssen.
- Lesen Sie jede Aufgabe sorgfältig durch und stellen Sie sicher dass Sie diese verstanden haben!
- Falls Sie eine Frage zur Aufgabenstellung haben, geben Sie der Klausuraufsicht ein Handzeichen.
- Schreiben Sie Ihren Namen auf alle Blätter!

Aufgabe	1	2	3	Total
Maximum	40	14	36	90
Punkte				

Aufgabe 1: Grapheigenschaften

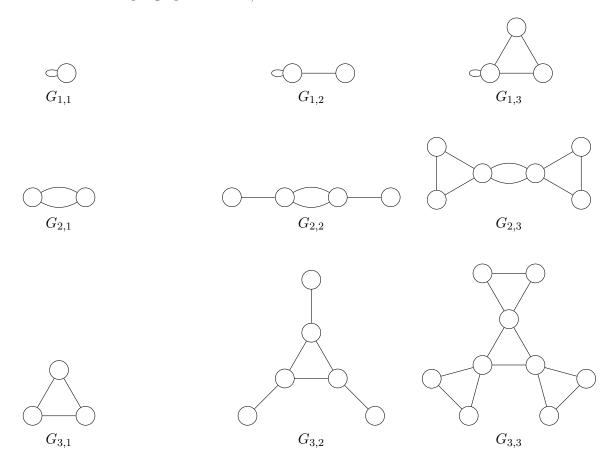
(40 Punkte)

Im Folgenden werden ungerichtete Graphen $G_{a,b}$ für $a,b \geq 1$ verwendet, die aus einem Kreis C_a der Länge a sowie a disjunkten b-elementigen Cliquen bestehen, welche jeweils einen Knoten aus $V(C_a)$ enthalten.

Formal ist $G = (V, E, \gamma)$ gegeben durch

$$\begin{split} V &= \{v_{i,j} \mid i \in \{1,\dots,a\}, j \in \{1,\dots,b\}\} \;, \\ E &= E_I \cup E_O \;, \\ E_I &= \{e_{i,i+1} \mid i \in \{1,\dots,a-1\}\} \cup \{e_{a,1}\} \\ E_O &= \{e_{i,j,k} \mid i \in \{1,\dots,a\} \;, j,k \in \{1,\dots,b\} \; \text{und} \; j < k\} \\ \gamma(e) &= \begin{cases} \{v_{i,1},v_{j,1}\} \;, & \text{wenn} \; e = e_{i,j} \in E_I \;, \\ \{v_{i,j},v_{i,k}\} \;, & \text{wenn} \; e = e_{i,j,k} \in E_O \;. \end{cases} \end{split}$$

Unten sehen Sie neun Beispielgraphen für $G_{a,b}$.



- (a) Zeichnen Sie $G_{4,4}$. (3 Punkte)
- (b) Wie viele Kanten hat $G_{a,b}$ in Abhängigkeit von a,b? (3 Punkte)
- (c) Für welche a, b ist $G_{a,b}$ einfach? (2 Punkte)
- (d) Für welche a, b ist $G_{a,b}$ regulär? (2 Punkte)
- (e) Was ist der Maximalgrad von $G_{a,b}$ in Abhängigkeit von a,b? (2 Punkte)
- (f) Seien $a, b \geq 3$. Nennen Sie die chromatische Zahl $\chi(G_{a,b})$, die Unabhängigkeitszahl $\alpha(G_{a,b})$ sowie die Knotenüberdeckungszahl $\tau(G_{a,b})$ von $G_{a,b}$ in Abhängigkeit von a, b. (6 Punkte)
- (g) Ist $G_{15,24}$ perfekt? Begründen Sie Ihre Antwort. (3 Punkte)
- (h) Für welche Werte a, b ist $G_{a,b}$ eulersch? Begründen Sie Ihre Antwort. (3 Punkte)
- (i) Welcher der folgenden Graphen ist hamiltonsch: $G_{6,2}$, $G_{2,3}$, $G_{4,1}$, $G_{4,5}$. Welche der vier Graphen haben einen hamiltonschen Weg? (4 Punkte)
- (j) Nennen Sie die Matchingzahl $\nu(G_{5,12})$. Begründen Sie Ihre Antwort. (3 Punkte)
- (k) Wie viele simpliziale Knoten hat $G_{9,5}$? (3 Punkte)
- (1) Für welche Werte a, b ist $G_{a,b}$ chordal? (2 Punkte)
- (m) Seien $a, b \geq 3$. Geben Sie die Taillenweite $g(G_{a,b})$ und den Durchmesser diam $(G_{a,b})$ in Abhängigkeit von a, b an.

Hinweis: Der Durchmesser eines Graphen G ist definiert durch

$$diam(G) = \max_{u,v \in V(G)} dist(u,v),$$

wobei dist(u, v) die Länge eines kürzesten Pfades zwischen u und v angibt. (4 Punkte)

Aufgabe 2: Flüsse

(14 Punkte)

In eine Klinik werden 169 Patienten eingeliefert, die jeweils eine Konserve Blut zur Transfusion benötigen. Die Klinik verfügt über 170 Blut-Konserven. In folgender Tabelle ist dargestellt, wie viele Blut-Konserven sowie Patienten es in jeder der vier Blutgruppen A, B, 0, AB gibt:

Blutgruppe A B 0 AB Konserven 46 34 45 45 Patienten 39 38 42 50

Typ A Patienten können nur Blut vom Typ A oder 0 erhalten, Typ B Patienten können nur Typ B oder 0 erhalten, Typ 0 Patienten können nur Typ 0 erhalten und Typ AB Patienten können alle vier Typen erhalten.

- (a) Übersetzen Sie das obige Verteilungsproblem in ein Flussproblem. Zeichnen Sie dazu den entsprechenden gerichteten Graphen und schreiben Sie an jede Kante ihre Kapazität. Ihr Netzwerk sollte aus 10 Knoten bestehen: Ein Quelle, einen "Konserven-Knoten" für jede Blutgruppe, einen "Patienten-Knoten" für jede Blutgruppe und eine Senke.

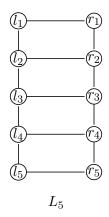
 (6 Punkte)
- (b) Können alle Patienten mit Blut versorgt werden? Begründen Sie Ihre Antwort. (8 Punkte)

Aufgabe 3: Verschiedenes

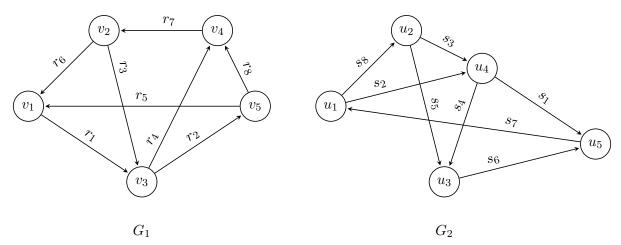
(36 Punkte)

(a) Im folgenden ist der "Leiter"-Graph L_5 skizziert. Ist L_5 ein bipartiter Graph? Begründen Sie ihre Aussage.

(3 Punkte)



(b) Sind die folgenden Graphen $G_1 = (V_1, E_1, \alpha_1, \omega_1)$ und $G_2 = (V_2, E_2, \alpha_2, \omega_2)$ isomorph zueinander? Falls ja, geben Sie die zugehörigen Abbildungen $\sigma: V_1 \to V_2$ und $\tau: E_1 \to E_2$ an. Falls nicht, begründen Sie warum es keine solchen Abbildungen geben kann. (6 Punkte)



- (c) Sei G ein Erdős-Rényi-Graph mit den Parametern n=3 und p=1/3. Wie hoch ist die Wahrscheinlichkeit, dass G zusammenhängend ist? (7 Punkte)
- (d) Zeigen Sie, dass für jeden einfachen ungerichteten Graphen G mit n Knoten und Maximalgrad Δ folgende Ungleichung bezüglich der Unabhängigkeitszahl $\alpha(G)$ gilt: (6 Punkte)

$$\alpha(G) \ge \frac{n}{\Delta + 1}$$

- (e) Sei G ein gerichteter, schwach zusammenhängender Graph mit der Eigenschaft, dass für jeden Knoten v gilt $g_G^+(v) = g_G^-(v)$ (d.h. jeder Knoten hat den gleichen Außen- wie Innengrad).
 - (i) Zeigen Sie, dass G stark zusammenhängend ist. (3 Punkte)
 - (ii) Zeigen Sie, dass für jeden Schnitt (S,T) von G gilt $|\delta^+(S)| = |\delta^-(S)|$ (d.h. es gehen genau so viele Kanten von S nach T wie von T nach S). (4 Punkte)
- (f) Sei $G = (A \dot{\cup} B, E)$ ein Δ -regulärer bipartiter Graph mit $\Delta \geq 1$.
 - (i) Zeigen Sie, dass |A| = |B| gilt. (3 Punkte)
 - (ii) Zeigen Sie, dass G ein perfektes Matching hat. (4 Punkte) Hinweis: Sie können Resultate aus der Vorlesung als Blackbox benutzen.