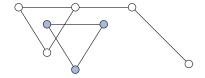


Graphentheorie 06 – Erreichbarkeit, Zusammenhang

Dr. Sven Köhler Rechnernetze und Telematik Technische Fakultät Albert-Ludwigs-Universität Freiburg

JNI REIBURG

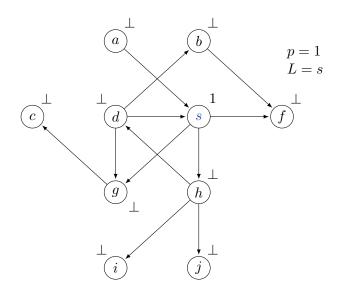


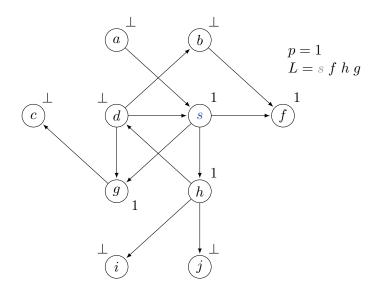
Definition 3.10

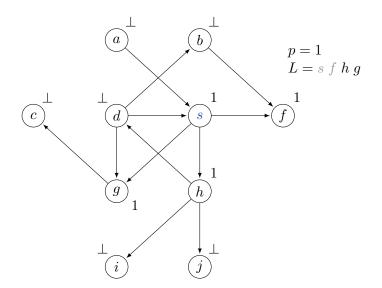
Ein Knoten w heißt $von\ v$ erreichbar, wenn es Weg P mit $\alpha(P)=v$ und $\omega(P)=w$ gibt.

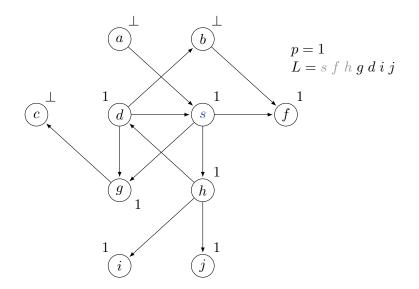
Notation: $E_G(v) :=$ Menge aller von v erreichbaren Knoten in G

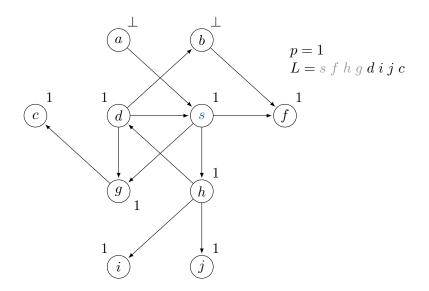
```
Algorithmus 3.2 Erreichbar(G, s, p)
  Eingabe: Graph G = (V, R) oder (V, E), Knoten s \in V und Wert p \in \mathbb{N}
  for each v \in V do
      marke[v] := \bot
  L := (s)
                                                                          \triangleright L ist eine Liste
  marke[s] := p
  while L \neq () do
                                                                     ▷ () ist die leere Liste
      v := entferne erstes Element aus L
      for each w \in ADJ[v] do
                                                                     \triangleright Adjazenzliste von v
         if marke[w] = \bot then
             Füge w am Ende von L ein
             marke[w] := p
  return \{v \in V \mid marke[v] = p\}
```

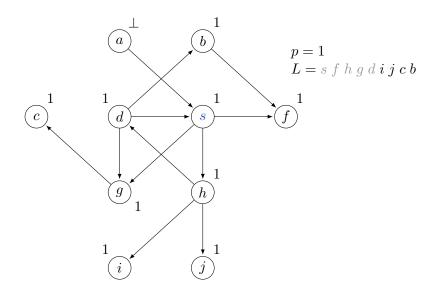


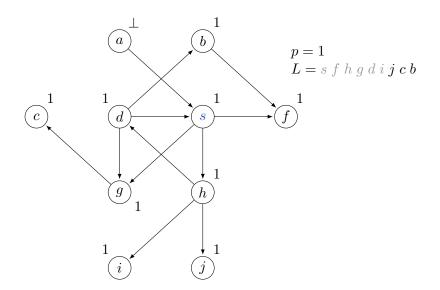


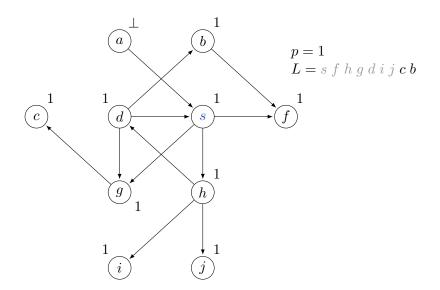


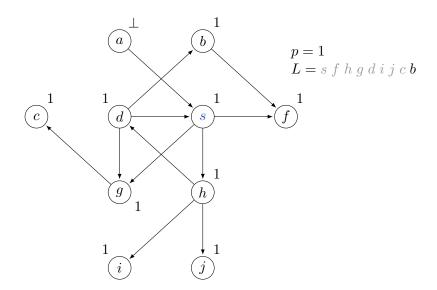


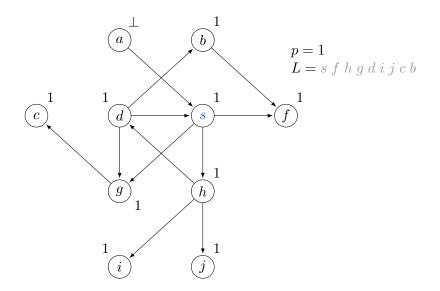












Beobachtung

Algorithmus 3.2 implementiert eine Breitensuche (BFS = breadth-first search). Diese findet die kürzesten Wege von s zu allen Knoten aus $E_G(s)$.

Der Liste *L* werden der Reihe nach hinzugefügt:

- alle Knoten mit Distanz 0,
- alle Knoten mit Distanz 1,
- alle Knoten mit Distanz 2,
- USW.

Distanz = Länge des kürzesten Weges von s zum Knoten

Satz 3.11

Algorithmus 3.2 berechnet $E_G(s)$ in Laufzeit $\mathcal{O}(n+m)$.

Beweis, Teil 1.

Initialisierung:

• Laufzeit $\mathcal{O}(n)$

Innere for-each-Schleife:

- Laufzeit $\mathcal{O}(g^+(v))$ bzw. $\mathcal{O}(g(v))$
- Annahme: G liegt in Adjazenzlisten-Repräsentation vor

Äußere for-Schleife:

- Besucht jeden Knoten h
 öchstens einmal
- Benutzt jede Kante höchstens einmal bzw. zweimal
- Laufzeit $\mathcal{O}(n+m)$

Satz 3.11

Algorithmus 3.2 berechnet $E_G(s)$ in Laufzeit $\mathcal{O}(n+m)$.

Beweis, Teil 2.

Zu zeigen: $v \in E_G(s) \Rightarrow v$ wird markiert

Sei $P=(v_0,r_1,v_1,\ldots,r_k,v_k)$ ein kürzester Weg von s nach v.

Induktionsanfang: i = 0

• $s = v_0$ wird markiert und L hinzugefügt

Induktionsschluss:

- v_i wurde L hinzugefügt, hat Distanz i
- v_{i+1} hat Distanz i+1
- v_{i+1} wird ebenfalls markiert und L hinzugefügt

 $\Rightarrow v = v_k$ wird markiert

Satz 3.11

Algorithmus 3.2 berechnet $E_G(s)$ in Laufzeit $\mathcal{O}(n+m)$.

Beweis, Teil 3.

Zu zeigen: $v \notin E_G(s) \Rightarrow v$ wird *nicht* markiert

Es gibt keinen Weg von s zu v.

Es werden immer nur Nachfolger markiert.

Daher kann v nicht markiert werden.

Definition 3.12

Sei G ein gerichteter oder ungerichteter Graph.

Knoten $v,w\in V(G)$ heißen stark zusammenhängend (Notation: $v\leftrightarrow w$) wenn $v\in E_G(w)$ und $w\in E_G(v)$.

 $ZK_G(v) := \{w \in V(G) \mid v \leftrightarrow w\}$ heißt starke Zusammenhangskomponente von v.

G heißt stark zusammenhängend falls $\exists v : ZK_G(v) = V(G)$.

Falls G gerichtet:

Knoten $v,w\in V(G)$ heißen schwach zusammenhängend wenn $v\leftrightarrow w$ in G^{sym} .

Definition 3.12

Sei G ein gerichteter oder ungerichteter Graph.

Knoten $v,w\in V(G)$ heißen stark zusammenhängend (Notation: $v\leftrightarrow w$) wenn $v\in E_G(w)$ und $w\in E_G(v)$.

 $ZK_G(v) := \{w \in V(G) \mid v \leftrightarrow w\}$ heißt starke Zusammenhangskomponente von v.

G heißt stark zusammenhängend falls $\exists v : ZK_G(v) = V(G)$.

Falls G gerichtet:

Knoten $v, w \in V(G)$ heißen schwach zusammenhängend wenn $v \leftrightarrow w$ in G^{sym} .

Definition 3.12

Sei G ein gerichteter oder ungerichteter Graph.

Knoten $v,w\in V(G)$ heißen stark zusammenhängend (Notation: $v\leftrightarrow w$) wenn $v\in E_G(w)$ und $w\in E_G(v)$.

 $ZK_G(v) := \{w \in V(G) \mid v \leftrightarrow w\}$ heißt starke Zusammenhangskomponente von v.

G heißt stark zusammenhängend falls $\exists v : ZK_G(v) = V(G)$.

Falls G gerichtet:

Knoten $v, w \in V(G)$ heißen schwach zusammenhängend wenn $v \leftrightarrow w$ in G^{sym} .

Definition 3.12

Sei G ein gerichteter oder ungerichteter Graph.

Knoten $v, w \in V(G)$ heißen stark zusammenhängend (Notation: $v \leftrightarrow w$) wenn $v \in E_G(w)$ und $w \in E_G(v)$.

 $ZK_G(v) := \{w \in V(G) \mid v \leftrightarrow w\}$ heißt starke Zusammenhangskomponente von v.

G heißt stark zusammenhängend falls $\exists v : ZK_G(v) = V(G)$.

Falls *G* gerichtet:

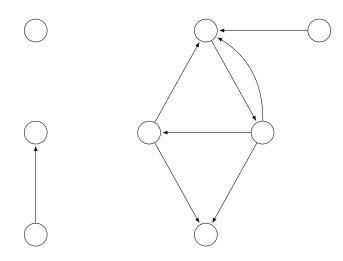
Knoten $v, w \in V(G)$ heißen schwach zusammenhängend wenn $v \leftrightarrow w$ in G^{sym} .

Beobachtung

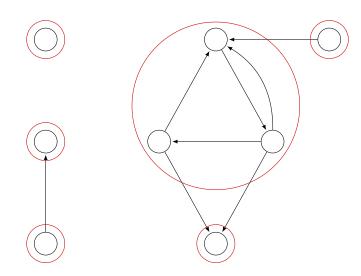
 $ZK_G(v) = ZK_G(w)$ für alle $w \in ZK_G(v)$.

Wenn $ZK_G(v) = V(G)$ für ein $v \in V(G)$ gilt, dann gilt es für alle $v \in V(G)$.

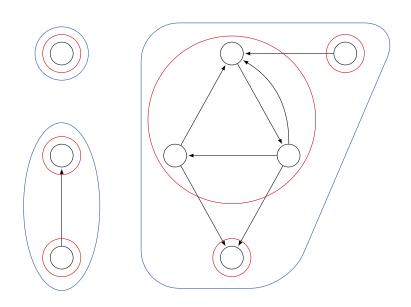
Schwache vs. Starke Zusammenhangskomponenten



Schwache vs. Starke Zusammenhangskomponenten



Schwache vs. Starke Zusammenhangskomponenten



Lemma 3.14

Die Relation \leftrightarrow ist eine Äquivalenzrelation.

Beweis.

Reflexivität: $v \leftrightarrow v$

• Folgt aus Definition von $E_G(v)$

Symmetrie: $v \leftrightarrow w \Leftrightarrow w \leftrightarrow v$

Folgt aus Definition von ↔.

Transitivität: $u \leftrightarrow v \land v \leftrightarrow w \Rightarrow u \leftrightarrow w$

- Sei P_1 Weg von u nach v
- Sei P_2 Weg von v nach w.
- Dann $w \in E_G(u)$, denn $P_1 \circ P_2$ ist Weg von u nach w
- Zeige $u \in E_G(w)$ analog

Lemma 3.14

Die Relation \leftrightarrow ist eine Äquivalenzrelation.

Beweis.

Reflexivität: $v \leftrightarrow v$

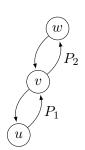
• Folgt aus Definition von $E_G(v)$

Symmetrie: $v \leftrightarrow w \Leftrightarrow w \leftrightarrow v$

Folgt aus Definition von ↔.

Transitivität: $u \leftrightarrow v \land v \leftrightarrow w \Rightarrow u \leftrightarrow w$

- Sei P_1 Weg von u nach v
- Sei P_2 Weg von v nach w.
- Dann $w \in E_G(u)$, denn $P_1 \circ P_2$ ist Weg von u nach w
- Zeige $u \in E_G(w)$ analog



Fakt

Falls $R\subseteq V\times V$ eine Äquivalenzrelation ist, dann liefern die Äquivalenzklassen eine Partition von V.

Daraus folgt:

Es gibt eine Partition $V=ZK_1\,\dot\cup\, ZK_2\,\dot\cup\,\ldots\,\dot\cup\, ZK_k$, so dass jedes ZK_i eine starken Zusammenhangskomponente ist.

Algorithmus 3.3 Zusammenhangskomponenten berechnen

```
\begin{aligned} & \textbf{Eingabe:} \text{ ungerichteter Graph } G = (V, E) \\ & \textbf{for each } v \in V \text{ do} \\ & marke[v] := \bot \\ & p := 0 \\ & \textbf{for each } v \in V \text{ do} \\ & \textbf{if } marke[v] = \bot \text{ then} \\ & p := p + 1 \\ & \texttt{Erreichbar}(G, v, p) \\ & \rhd \text{ setzt } marke[w] := p \text{ für alle } w \in E_G(v) \end{aligned}
```

```
Algorithmus 3.3 hat Laufzeit O(n+m), denn: Erreichbar(G,v,p) hat eigentlich Laufzeit O(n'+m'), wobei n' und m' die Anzahl der Knoten bzw. Kanten in ZK(v) ist.
```

Lemma 3.22

Sei G gerichtet oder ungerichtet, $v \in V(G)$ und $u \in ZK(v) \setminus \{v\}$.

- Jeder Weg P von v nach u (oder u nach v) berührt nur Knoten aus ZK(v).
- Es existiert ein Kreis C, der genau alle Knoten in ZK(v) berührt.

Lemma 3.22

Sei G gerichtet oder ungerichtet, $v \in V(G)$ und $u \in ZK(v) \setminus \{v\}$.

- Jeder Weg P von v nach u (oder u nach v) berührt nur Knoten aus ZK(v).
- Es existiert ein Kreis C, der genau alle Knoten in ZK(v) berührt.

Beweis.

Sei w ein Knoten der von P berührt wird und P' ein Weg von u nach v.

- Dann existiert Weg von v nach w (Prefix von P)
- und ein Weg von w nach v (Suffix von $P \circ P'$).
- Damit ist $w \in ZK(v)$.

Lemma 3.22

Sei G gerichtet oder ungerichtet, $v \in V(G)$ und $u \in ZK(v) \setminus \{v\}$.

- Jeder Weg P von v nach u (oder u nach v) berührt nur Knoten aus ZK(v).
- Es existiert ein Kreis C, der genau alle Knoten in ZK(v) berührt.

Beweis.

Sei w ein Knoten der von P berührt wird und P' ein Weg von u nach v.

- Dann existiert Weg von v nach w (Prefix von P)
- und ein Weg von w nach v (Suffix von $P \circ P'$).
- Damit ist $w \in ZK(v)$.

Konstruktion von C:

- Sei C_i ein Kreis der v und $u_i \in ZK(v)$ berührt
- Wähle $C = C_1 \circ C_2 \circ C_3 \circ \dots$

