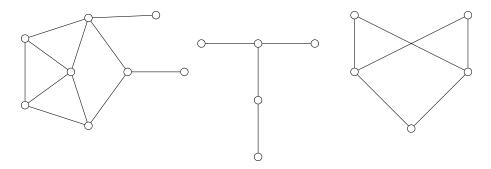


Graphentheorie 08 - Hamiltonsche Wege und Kreise

Dr. Sven Köhler Rechnernetze und Telematik Technische Fakultät Albert-Ludwigs-Universität Freiburg

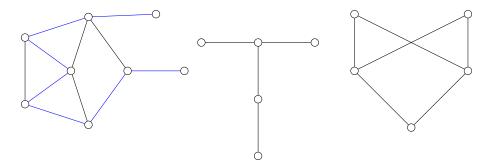
Definition 3.34

Ein Weg P in G heißt Hamiltonsch, falls P jeden Knoten genau einmal berührt. Ein Kreis K in G heißt Hamiltonsch, falls K jeden Knoten genau einmal berührt. (Start/Endknoten zählt nur einmal)



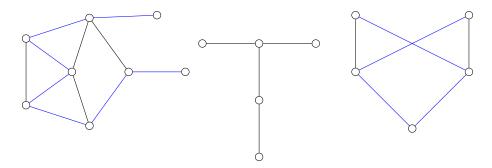
Definition 3.34

Ein Weg P in G heißt Hamiltonsch, falls P jeden Knoten genau einmal berührt. Ein Kreis K in G heißt Hamiltonsch, falls K jeden Knoten genau einmal berührt. (Start/Endknoten zählt nur einmal)



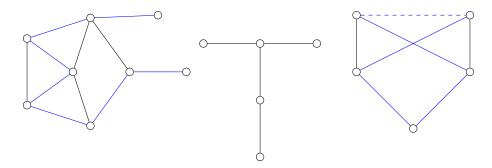
Definition 3.34

Ein Weg P in G heißt Hamiltonsch, falls P jeden Knoten genau einmal berührt. Ein Kreis K in G heißt Hamiltonsch, falls K jeden Knoten genau einmal berührt. (Start/Endknoten zählt nur einmal)



Definition 3.34

Ein Weg P in G heißt Hamiltonsch, falls P jeden Knoten genau einmal berührt. Ein Kreis K in G heißt Hamiltonsch, falls K jeden Knoten genau einmal berührt. (Start/Endknoten zählt nur einmal)



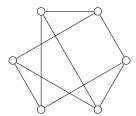
Satz von Dirac

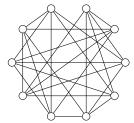
Es gibt keinen "Satz von Euler" für Hamiltonsche Wege/Kreise

- "einfache" hinreichende und notwendige Bedingung für Hamiltonsche Wege/Kreise bislang unbekannt
- Berechnung Hamiltonsche Kreise nicht effizient möglich
- Entscheidungsproblem ist NP-vollständig

Satz von Dirac

Sei G=(V,E) einfach und ungerichtet mit $n=|V|\geq 3$. Wenn $g(v)\geq \frac{n}{2}$ für alle $v\in V$, dann ist G Hamiltonsch.





Beweis, Teil 1.

Annahme: *G* ist nicht zusammenhängend.

Sei C die kleinste Zusammenhangskomponente von G.

Fall $|C| > \frac{n}{2}$:

- Sei $C' \neq C$ eine Zusammenhangskomponente
- Dann gilt $|C'| < n \frac{n}{2} = \frac{n}{2}$
- Widerspruch: C' ist kleiner als C

Beweis, Teil 1.

Annahme: *G* ist nicht zusammenhängend.

Sei C die kleinste Zusammenhangskomponente von G.

Fall $|C|>\frac{n}{2}$:

- Sei $C' \neq C$ eine Zusammenhangskomponente
- Dann gilt $|C'| < n \frac{n}{2} = \frac{n}{2}$
- Widerspruch: C' ist kleiner als C

Fall $|C| \leq \frac{n}{2}$:

- Sei $v \in C$
- Dann gilt $g(v) \leq \frac{n}{2} 1$
- Widerspruch zu $g(v) \ge \frac{n}{2}!$

Beweis, Teil 1.

Annahme: *G* ist nicht zusammenhängend.

Sei C die kleinste Zusammenhangskomponente von G.

Fall $|C|>\frac{n}{2}$:

- Sei $C' \neq C$ eine Zusammenhangskomponente
- Dann gilt $|C'| < n \frac{n}{2} = \frac{n}{2}$
- Widerspruch: C' ist kleiner als C

Fall $|C| \leq \frac{n}{2}$:

- Sei $v \in C$
- Dann gilt $g(v) \leq \frac{n}{2} 1$
- Widerspruch zu $g(v) \ge \frac{n}{2}!$

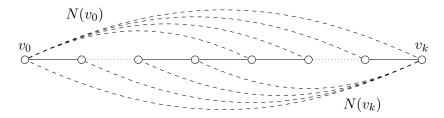
G muss also zusammenhängend sein!

Beweis, Teil 2.

Sei $P = (v_0, v_1, \dots, v_k)$ ein längster elementarer Weg in G.

Weg P berührt alle Knoten aus $N(v_0)$ und $N(v_k)$.

Ansonsten ließe sich P von v_0 oder v_k aus verlängern.

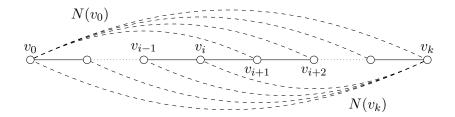


Damit gilt $k \geq \frac{n}{2}$, da v_0 bzw. v_k einen Grad von mindestens $\frac{n}{2}$ haben. Außerdem gilt $k \leq n-1$, denn P berührt jeden Knoten von G höchstens einmal.

Beweis, Teil 3.

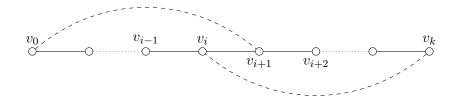
Behauptung: $\exists i \in [0, k-1] : v_{i+1} \in N(v_0) \land v_i \in N(v_k).$

- $k \le n 1$
- Es gibt $\frac{n}{2}$ Indizes $i \in [0, k-1]$ mit $v_i \in N(v_k)$
- Es gibt $\frac{n}{2}$ Indizes $i \in [0, k-1]$ mit $v_{i+1} \in N(v_0)$
- Schubfachprinzip: es existiert $i \in [0, k-1]$ mit beiden Eigenschaften



Beweis, Teil 4.

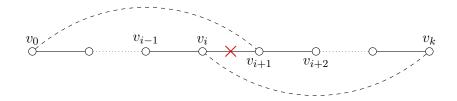
Sei $i \in [0, k-1]$ mit $v_{i+1} \in N(v_0)$ und $v_i \in N(v_k)$.



- Entferne Kante $[v_i, v_{i+1}]$ aus P
- Füge Kanten $[v_i, v_k]$ und $[v_0, v_{i+1}]$ ein
- Ergibt Kreis $K = (v_0, v_{i+1}, \dots, v_k, v_i, \dots, v_0)$.
- $|K| = |P| + 1 = k + 1 \le n$

Beweis, Teil 4.

Sei $i \in [0, k-1]$ mit $v_{i+1} \in N(v_0)$ und $v_i \in N(v_k)$.



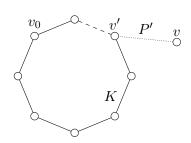
- Entferne Kante $[v_i, v_{i+1}]$ aus P
- Füge Kanten $[v_i, v_k]$ und $[v_0, v_{i+1}]$ ein
- Ergibt Kreis $K = (v_0, v_{i+1}, \dots, v_k, v_i, \dots, v_0)$.
- $|K| = |P| + 1 = k + 1 \le n$

Beweis, Teil 5.

Behauptung: *K* ist ein kein Hamiltonscher Kreis.

Dann existiert Knoten $v \in V$ welcher von K nicht berührt wird.

- G is zusammenhängend
- Es existiert elementarer Weg P' von v zu v_0
- Sei v' der erste gemeinsame Knoten von P und K
- Entferne eine Kante inzident zu v' aus K
- Verlängere K entlang Prefix von P'
- Elementarer Weg mit mind. k + 1 Kanten existiert
- Widerspruch zur Maximalität der Länge von P



Damit muss *K* Hamiltonsch sein.