

Graphentheorie 13 – Matchings und Knotenüberdeckungen

Dr. Sven Köhler Rechnernetze und Telematik Technische Fakultät Albert-Ludwigs-Universität Freiburg

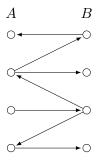
REIBURG

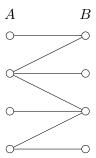
58

Bipartite Graphen

Definition 3.23

Ein Graph G heißt *bipartit*, wenn es eine Partition $V(G) = A \dot{\cup} B$ gibt, so dass jede Kante $r \in R(G)$ bzw. $e \in E(G)$ mit jeweils einem Knoten aus A und B inzident ist.





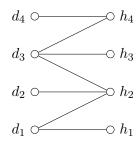
Matching

Disunkte Mengen

- Damen $D = \{d_1, d_2, \dots d_n\}$
- Herren $H = \{h_1, h_2, \dots, h_n\}$

Bipartiter Sympathiegraph:

- $\bullet \ \ G = (D \mathbin{\dot{\cup}} H, E) \ \mathsf{mit} \ E \subseteq \{[d,h] \mid d \in D \land h \in H\}$
- $[d_i, h_j] \in E$ heißt, dass d_i und h_j heiraten würden



Kann jeder Herr mit einer Dame verheiratet werden, die ihn auch akzeptiert? Der Heiratssatz wird Aufschluss darüber geben, wann genau dies der Fall ist.

Matching

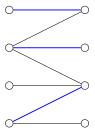
Definition 4.31

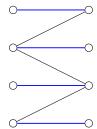
Ein *Matching* ist eine schlingenfreie Menge $M \subseteq R(G)$ bzw. $M \subseteq E(G)$ so dass keine zwei Kanten aus M inzidieren.

M heißt *perfekt*, wenn jeder Knoten $v \in V(G)$ mit einer Kante aus M inzidiert.

Matchingzahl:

 $\nu(G) := \max\{|M| : M \text{ ist Matching von } G\}$





Augmentierende Wege

Definition 10.9

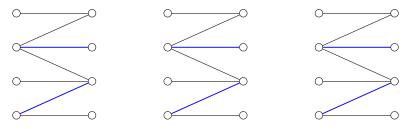
Sei M ein Matching in einem Graph G = (V, E).

Ein Weg P in G heißt alternierender Weg, wenn er abwechselnd Kanten aus $E\setminus M$ und M enthält und $\alpha(P)$ nicht mit einer Kante aus M inzidiert.

Ein alternierender Weg heißt augmentierender Weg, wenn auch $\omega(P)$ nicht mit einer Kante aus M inzidiert.

Beobachtung

Matching kann entlang des augmentierenden Weges vergrößert werden.



Augmentierende Wege

Definition 10.9

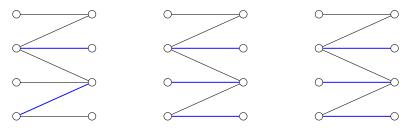
Sei M ein Matching in einem Graph G = (V, E).

Ein Weg P in G heißt *alternierender Weg*, wenn er abwechselnd Kanten aus $E \setminus M$ und M enthält und $\alpha(P)$ nicht mit einer Kante aus M inzidiert.

Ein alternierender Weg heißt augmentierender Weg, wenn auch $\omega(P)$ nicht mit einer Kante aus M inzidiert.

Beobachtung

Matching kann entlang des augmentierenden Weges vergrößert werden.



Augmentierende Wege

Definition 10.9

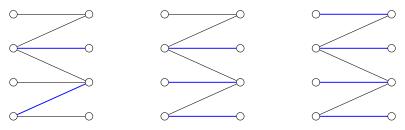
Sei M ein Matching in einem Graph G = (V, E).

Ein Weg P in G heißt alternierender Weg, wenn er abwechselnd Kanten aus $E\setminus M$ und M enthält und $\alpha(P)$ nicht mit einer Kante aus M inzidiert.

Ein alternierender Weg heißt augmentierender Weg, wenn auch $\omega(P)$ nicht mit einer Kante aus M inzidiert.

Beobachtung

Matching kann entlang des augmentierenden Weges vergrößert werden.



Satz 9.59 (Heiratssatz)

Bipartiter Graph $G=(D\cup H,E)$ besitzt genau dann ein perfektes Matching wenn

$$|D| = |H|$$
 und $\forall D' \subseteq D : |N(D')| \ge |D'|$

Hinweis: $N(D') = \bigcup_{d \in D'} N(d)$.

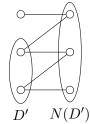
Beweis, Teil 1.

"⇒":

Sei M ein perfektes Matching und $D' \subseteq D$.

Dann verbindet M jede Dame aus D' mit einem anderen Herren aus N(D').

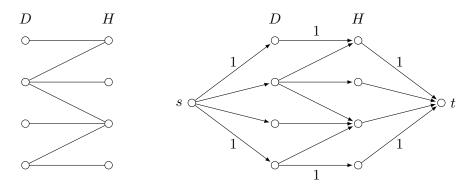
Damit ist
$$|N(D')| \ge |D'|$$
.



folgt später

Bipartites Matching vs. Flüsse

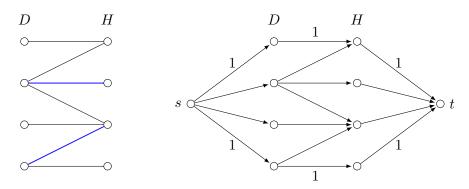
Matching-Problem in bipartiten Graphen hat analoges Flussproblem. Alle Kanten haben Kapazität 1.



Erinnerung: Es gibt ganzzahligen maximalen Fluss. Matching M enthält alle Kanten mit Flusswert 1.

Bipartites Matching vs. Flüsse

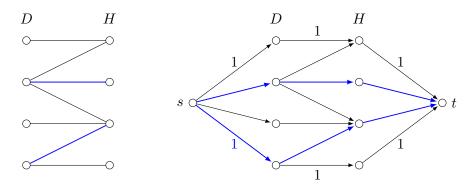
Matching-Problem in bipartiten Graphen hat analoges Flussproblem. Alle Kanten haben Kapazität 1.



Erinnerung: Es gibt ganzzahligen maximalen Fluss. Matching M enthält alle Kanten mit Flusswert 1.

Bipartites Matching vs. Flüsse

Matching-Problem in bipartiten Graphen hat analoges Flussproblem. Alle Kanten haben Kapazität 1.



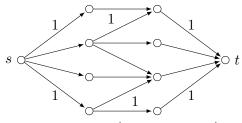
Erinnerung: Es gibt ganzzahligen maximalen Fluss. Matching M enthält alle Kanten mit Flusswert 1.

Beweis, Teil 2.

" \Leftarrow ": Sei $|N(D')| \ge |D'|$ für alle $D' \subseteq D$.

Betrachte analoges Flussproblem und (s, t)-Schnitt (S, T).

Sei $D_S = D \cap S$ und $D_T = D \cap T$ sowie $H_S = H \cap S$ und $H_T = H \cap T$.



$$c(\delta^{+}(S)) = \sum_{r \in \delta^{+}(r)} c(r) \ge |D_{T}| + |N^{+}(D_{S}) \cap H_{T}| + |H_{S}|$$

$$\ge |D_{T}| + |N^{+}(D_{S}) \cap H_{T}| + |N^{+}(D_{S}) \cap H_{S}|$$

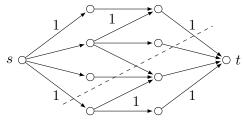
$$= |D_{T}| + |N^{+}(D_{S})| \ge |D_{T}| + |D_{S}| = |D|$$

Beweis, Teil 2.

" \Leftarrow ": Sei $|N(D')| \ge |D'|$ für alle $D' \subseteq D$.

Betrachte analoges Flussproblem und (s,t)-Schnitt (S,T).

Sei $D_S = D \cap S$ und $D_T = D \cap T$ sowie $H_S = H \cap S$ und $H_T = H \cap T$.



$$c(\delta^{+}(S)) = \sum_{r \in \delta^{+}(r)} c(r) \ge |D_{T}| + |N^{+}(D_{S}) \cap H_{T}| + |H_{S}|$$

$$\ge |D_{T}| + |N^{+}(D_{S}) \cap H_{T}| + |N^{+}(D_{S}) \cap H_{S}|$$

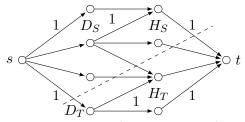
$$= |D_{T}| + |N^{+}(D_{S})| \ge |D_{T}| + |D_{S}| = |D|$$

Beweis, Teil 2.

" \Leftarrow ": Sei $|N(D')| \ge |D'|$ für alle $D' \subseteq D$.

Betrachte analoges Flussproblem und (s,t)-Schnitt (S,T).

Sei $D_S = D \cap S$ und $D_T = D \cap T$ sowie $H_S = H \cap S$ und $H_T = H \cap T$.



$$c(\delta^{+}(S)) = \sum_{r \in \delta^{+}(r)} c(r) \ge |D_{T}| + |N^{+}(D_{S}) \cap H_{T}| + |H_{S}|$$

$$\ge |D_{T}| + |N^{+}(D_{S}) \cap H_{T}| + |N^{+}(D_{S}) \cap H_{S}|$$

$$= |D_{T}| + |N^{+}(D_{S})| \ge |D_{T}| + |D_{S}| = |D|$$

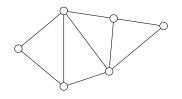
Knotenüberdeckung

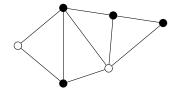
Definition 4.30

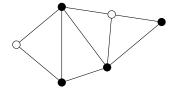
Knotenüberdeckung (Vertex Cover) eines Graphen G ist Menge $S\subseteq V(G)$, so dass jede Kante zu mindestens einem Knoten aus S inzident ist.

Knotenüberdeckungszahl:

 $\tau(G) := \min\{|S| : S \text{ ist Knotenüberdeckung von } G\}$







Matching vs. Knotenüberdeckung

Satz 4.32

Für jedes Matching ${\cal M}$ und jede Knotenüberdeckung ${\cal S}$ eines Graphen ${\cal G}$ gilt

$$|M| \le |S|$$

Beweis.

Von jeder Kante $e\in M$ muss S mind. einen Endknoten enthalten. Keine zwei Kanten aus M sind zueinander inzident, d.h. alle Endknoten von Kanten aus M sind voneinander verschieden.

Matching vs. Knotenüberdeckung

Lemma

Für jeden Graph G gilt $\tau(G) \leq 2\nu(G)$.

Proof.

Sei M ein Matching von G mit $|M| = \nu(G)$.

Sei S die Menge aller Endknoten der Kanten aus M.

S ist eine Knotenüberdeckung. Sonst gäbe es Kante e ohne Endknoten aus S und $M \cup \{e\}$ wäre ebenfalls ein Matching von G.

Korollar

Für jeden Graph G gilt $\nu(G) \le \tau(G) \le 2\nu(G)$.

Wert von $\nu(G)$ kann in Polynomialzeit berechnet werden.

Berechnung von $\tau(G)$ ist für allgemeine Graphen NP-schwer.

Daher beschäftigen wir uns nun mit Approximationsalgorithmen.

Knotenüberdeckung

Algorithmus 4.3 Approximationsalgorithmus für Knotenüberdeckung

Eingabe: ungerichteter Graph G = (V, E)

$$\begin{split} S &:= \emptyset \\ M &:= \emptyset \\ \text{for each } e = [v, u] \in E \text{ do} \\ &\text{if } M \cup \{e\} \text{ is Matching of } G \text{ then} \\ S &:= S \cup \{v, u\} \\ M &:= M \cup \{e\} \end{split}$$

return S

Bemerkung:

 $M \cup \{e\}$ ist genau dann ein Matching von G, wenn $\{v,u\} \cap S = \emptyset$.

Knotenüberdeckung

Satz 4.33

Algorithmus 4.3 berechnet eine 2-Approximation, d.h. $|S| \leq 2\tau(G)$. Die Laufzeit ist $\mathcal{O}(m)$.

Beweis.

M ist bezüglich Inklusion maximal, d.h. es gibt kein Matching $M' \supset M$. Daraus folgt: Wenn $e \notin M$, dann ist e mit einer Kante $e' \in M$ inzident.

Wenn $e \in M$: S enthält die Endknoten von e Wenn $e \notin M$: S enthält die Endknoten von e'

Damit ist S ist eine Knotenüberdeckung.

Die Mächtigkeit von S lässt sich wie folgt Abschätzen:

$$|S| = 2|M| \le 2\nu(G) \le 2\tau(G)$$

Satz 9.60 (Satz von Kőnig, 1931)

Für jeden bipartiten Graphen G gilt $\nu(G) = \tau(G)$.

Beweis, Teil 1.

 $\nu(G) \leq \tau(G)$ folgt aus Satz 4.32.

Zu zeigen: $\nu(G) \geq \tau(G)$

Grundidee:

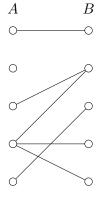
Knotenüberdeckung \cong min. cut Matching \cong max. flow

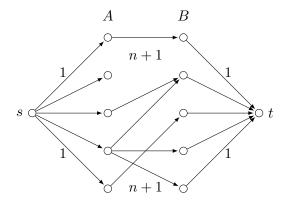
Satz von Kőnig

Beweis, Teil 2.

Sei $G = (A \dot{\cup} B, E)$ bipartiter Graph.

Betrachte folgendes Flussproblem, wobei n = |A|:



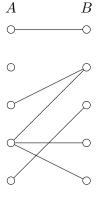


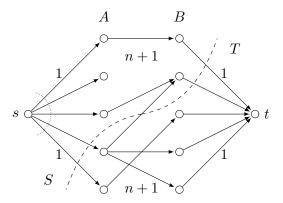
Satz von Kőnig

Beweis, Teil 2.

Sei $G = (A \dot{\cup} B, E)$ bipartiter Graph.

Betrachte folgendes Flussproblem, wobei n = |A|:

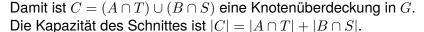




Beweis, Teil 3.

Schnitt $(\{s\}, A \cup B \cup \{t\})$ hat Kapazität n.

Betrachte minimalen (s,t)-Schnitt (S,T). $\delta^+(S)$ enthält keine Kanten mit Kapazität n+1, d.h. es gibt keine Kanten von $(A\cap S)$ nach $(B\cap T)$.



Matching entspricht maximalem Fluss.

Wegen Satz 4.32 ist *C* kleinste Knotenüberdeckung.

