

Theoretical Computer Science - Bridging Course Exercise Sheet 8

Due: Wednesday, 23rd of June 2021, 12:00 pm

Exercise 1: Questions about class \mathcal{NP}

(6 Points)

- Give two equivalent definitions of the class \mathcal{NP} .
- Is the 3-CLIQUE problem from the previous sheet in class \mathcal{NP} ? Is it decidable? Justify.
- Is the halting problem in \mathcal{NP} ? Justify.

Exercise 2: Proving Problems in \mathcal{NP}

(9 Points)

Show that the following problems are in the class \mathcal{NP}

- A clique in a graph G = (V, E) is a set $Q \subseteq V$ such that for all $u, v \in Q : \{u, v\} \in E$. Given a graph G and integer k, it is required to determine whether G contains a clique of size at least k, hence consider the following problem: $CLIQUE := \{\langle G, k \rangle \mid G \text{ has a clique of size at least } k \}$.
- Given a collection S of integers x_1, \ldots, x_k and a target t, it is required to determine whether S contains a sub-collection that adds up to t, hence consider the following problem:

SUBSET-SUM =
$$\left\{ \langle S, t \rangle | S = \{x_1, \dots, x_k\}, \text{ and for some } \{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\} \text{ we have } \sum_i y_i = t \right\}$$

• A hitting set $H \subseteq \mathcal{U}$ for a given universe \mathcal{U} and a set $S = \{S_1, S_2, \ldots, S_m\}$ of subsets $S_i \subseteq \mathcal{U}$, fulfills the property $H \cap S_i \neq \emptyset$ for $1 \leq i \leq m$ (H 'hits' at least one element of every S_i).

Given a universe set \mathcal{U} , a set S of subsets of \mathcal{U} , and a positive integer k, it is required to determine whether \mathcal{U} contains a hitting set of size at most k, hence consider the following problem: HITTINGSET := $\{\langle \mathcal{U}, S, k \rangle \mid \text{universe } \mathcal{U} \text{ has subset of size } \leq k \text{ that } hits \text{ all sets in } S \subseteq 2^{\mathcal{U}}\}$.

Exercise 3: From \mathcal{NP} to \mathcal{NPC}

(5 Points)

A language is called \mathcal{NP} -complete ($\Leftrightarrow: L \in \mathcal{NPC}$), if

- 1. $L \in \mathcal{NP}$ and
- 2. L is \mathcal{NP} -hard.

Recall what are \mathcal{NP} -hard problems and how to show a problem \mathcal{NP} -hard in the following.

The power set $2^{\mathcal{U}}$ of some ground set \mathcal{U} is the set of all subsets of \mathcal{U} . So $S \subseteq 2^{\mathcal{U}}$ is a collection of subsets of \mathcal{U} .

• Language L is called \mathcal{NP} -hard, if all languages $L' \in \mathcal{NP}$ are polynomially reducible to L, i.e.

$$L \text{ is } \mathcal{NP}\text{-hard} \iff \forall L' \in \mathcal{NP} : L' \leq_p L.$$

Recall let L_1, L_2 be languages (problems) over alphabets Σ_1, Σ_2 . Then $L_1 \leq_p L_2$ (L_1 is polynomially reducible to L_2), iff a function $f: \Sigma_1^* \to \Sigma_2^*$ exists, that can be calculated in polynomial time and

$$\forall s \in \Sigma_1^* : s \in L_1 \iff f(s) \in L_2.$$

• The reduction relation $'\leq_p$ ' is transitive $(L_1\leq_p L_2 \text{ and } L_2\leq_p L_3\Rightarrow L_1\leq_p L_3)$. Therefore, in order to show that L is \mathcal{NP} -hard, it suffices to reduce a known \mathcal{NP} -hard problem \tilde{L} to L, i.e. $\tilde{L}\leq_p L$.

Given a graph G = (V, E), an independent set of size k of G = (V, E) is a subset $I \subseteq V$ of nodes, such that |I| = k and $\{u, v\} \notin E$ for all $u, v \in I$.

Show that INDEPENDENTSET := $\{\langle G, k \rangle \mid G \text{ is a simple graph and has an independent set of size at least } k \}$ is in \mathcal{NPC} . Use that the CLIQUE problem from the above exercise is $\in \mathcal{NPC}$.

Hint: For the poly. transformation (\leq_p) you have to describe an algorithm (with poly. run-time!) that transforms an instance $\langle G, k \rangle$ of CLIQUE into an instance $\langle G', k' \rangle$ of INDEPENDENTSET s.t. a clique of size at least k in G becomes a independent set of G' of size at least k' and vice versa!.