Algorithmen und Datenstrukturen

Vorlesung 2

Laufzeitanalyse, Sortieren II

Fabian Kuhn Algorithmen und Komplexität

Laufzeitanalyse I

- Wie können wir die Laufzeit des Algorithmus analysieren?
 - Ist auf jedem Computer unterschiedlich...
 - Hängt vom Compiler, Programmiersprache, etc. ab
- Wir benötigen ein abstraktes Mass, um die Laufzeit zu messen
- Idee: Zähle Anzahl (Grund-)Operationen
 - Anstatt direkt die Zeit zu messen
 - Ist unabhängig von Computer, Compiler
 - Ein gutes Mass für die Laufzeit, falls alle Grundoperationen etwa gleich lange brauchen:

Was ist eine Grundoperation?

- Einfache arithmetische Operationen
 - +, -, *, /, % (mod), ...
- Ein Speicherzugriff
 - Variable auslesen, Variablenzuweisung
 - Ist das wirklich eine Grundoperation?
- Ein Funktionsaufruf
 - Natürlich nur das Springen in die Funktion
- Intuitiv: eine Zeile Programmcode
- Besser: eine Zeile Maschinencode
- Noch besser (?): ein Prozessorzyklus
- Wir werden sehen: Es ist nur wichtig, dass die Anzahl Grundoperation ungefähr proportional zur Laufzeit ist.

RAM Modell

RAM = Random Access Machine

- Standardmodell, um Algorithmen zu analysieren!
- Grundoperationen (wie "definiert") benötigen alle eine Zeiteinheit
- Insbesondere sind alle Speicherzugriffe gleich teuer:
 - Jede Speicherzelle (1 Maschinenwort) kann in 1 Zeiteinheit gelesen, bzw. beschrieben werden
 - ignoriert insbesondere Speicherhierarchien
 - Ist aber in den meisten Fällen eine vernünftige Annahme
- Alternative abstrakte Modelle existieren:
 - um Speicherhierarchien explizit abzubilden
 - bei riesigen Datenmengen (vgl. «Buzzword» Big Data)
 - z.B.: Streaming-Modelle: Speicher muss sequentiell gelesen werden
 - für verteilte/parallele Architekturen
 - Speicherzugriff kann lokal oder über's Netzwerk sein...

Laufzeitanalyse II

Bisher: Anzahl Grundoperationen ist proportional zur Laufzeit

 Das können wir auch erreichen, ohne die Anzahl Grundoperationen genau zu zählen!

Vereinfachung 1: Wir berechnen nur eine obere Schranke (bzw. eine untere Schranke) an die Anzahl Grundoperationen

- So, dass die obere/untere Schranke immer noch proportional ist...
- Anz. Grundop. kann von div. Eigenschaften der Eingabe abhängen
 - Länge der Eingabe, aber auch z.B. bei Sortieren: zufällig, vorsortiert, ...

Vereinfachung 2: Wichtigster Parameter ist Grösse der Eingabe n Wir betrachten daher die Laufzeit T(n) als Funktion von n.

Und ignorieren weitere Eigenschaften der Eingabe

SelectionSort(A):

- 1: for i=0 to n-2 do
- 2: $\min Idx = i \leftarrow c_1$
- 3: **for** j=i **to** n-1 **do**
- 4: if A[j] < A[minIdx] then $\leq c_2$
- 5: minIdx = j
- 6: swap(A[i], A[minIdx]) \leftarrow $\leq c_3$

#Grundop. $\leq c \cdot \text{|#Schleifeniterationen der inneren for-Schleife}$

$$x(n) = \sum_{i=0}^{n-2} (n-i) = \sum_{h=2}^{n} h \le \sum_{h=1}^{n} h = \frac{n(n+1)}{2} \le n^2$$

Selection Sort: Analyse

```
SelectionSort(A):
 1: for i=0 to n-2 do
       minIdx = i ←
       for j=i to n-1 do
 3:
         if A[j] < A[minIdx] then \leq c_2
 4:
            minIdx = j
 5:
    swap(A[i], A[minIdx]) \leftarrow \leq c_3
 6:
#Grundop. \leq c \cdot \text{#Schleifenite}rationen der inneren for-Schleife
                                  x(n) \leq n^2
  T(n)
```

Laufzeit
$$T(n) \leq c \cdot n^2$$

Selection Sort: Obere Schranke

 $m{T}(m{n})$: Anzahl Grundop. von Selection Sort bei Arrays der Länge n

Lemma: Es gibt eine **Konstante** $c_U > 0$, so dass $T(n) \le c_U \cdot n^2$

Lemma: Es gibt eine **Konstante** $c_L > 0$, so dass $T(n) \ge c_L \cdot n^2$

Laufzeitanalyse

Zusammenfassung

- Wir können nur eine Grösse berechnen, welche proportional zur Laufzeit ist
- Wir wollen auch gar nichts anderes berechnen:
 - Analyse sollte unabhängig von Computer / Compiler / etc. sein
 - Wir wollen Aussagen, welche auch in 10/100/... Jahren noch Gültigkeit haben
- Wir werden immer Aussagen der folgenden Art haben:

Es gibt eine Konstante C, so dass

$$T(n) \le C \cdot f(n)$$
 oder $T(n) \ge C \cdot f(n)$

Um dies zu vereinfachen / verallgemeinern gibt's die O-Notation...

- Formalismus, um das asymptotische Wachstum von Funktionen zu beschreiben.
 - Formale Definitionen: siehe n\u00e4chste Folie...
- Es gibt eine Konst. C>0, so dass $T(n)\leq C\cdot f(n)$ wird zu: $T(n)\in O(f(n))$
- Es gibt eine Konst. C>0, so dass $T(n)\geq C\cdot g(n)$ wird zu: $T(n)\in\Omega(g(n))$
- Bei Selection Sort: $T(n) \in O(n^2)$ $T(n) \in \Omega(n^2)$

Landau-Symbole: Definitionen

$$O(g(n)) \coloneqq \{f(n) \mid \exists c, n_0 > 0 \ \forall n \geq n_0 : f(n) \leq c \cdot g(n)\}$$

• Funktion $f(n) \in O(g(n))$, falls es Konstanten c und n_0 gibt, so dass $f(n) \le c \cdot g(n)$ für alle $n \ge n_0$

$$f(m) = n^2 + 100 \text{ m}$$

$$\Omega(g(n)) \coloneqq \{f(n) \mid \exists c, n_0 > 0 \ \forall n \geq n_0 : f(n) \geq c \cdot g(n)\}$$

• Funktion $f(n) \in \Omega(g(n))$, falls es Konstanten c und n_0 gibt, so dass $f(n) \ge c \cdot g(n)$ für alle $n \ge n_0$

$$\Thetaig(g(n)ig)\coloneqq Oig(g(n)ig)\cap\Omegaig(g(n)ig)$$

• Funktion $f(n) \in \Theta(g(n))$, falls es Konstanten c_1 , c_2 und n_0 gibt, so dass $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ für alle $n \ge n_0$, resp. falls $f(n) \in O(n)$ und $f(n) \in \Omega(n)$

Landau-Symbole: Definitionen

$$o(g(n)) \coloneqq \{f(n) \ (\forall c > 0 \ \exists n_0 > 0 \ \forall n \geq n_0 : f(n) \leq c \cdot g(n)\}$$

• Funktion $f(n) \in o(g(n))$, falls für alle Konstanten c > 0 gilt, dass $f(n) \le c \cdot g(n)$ (für genug grosse n, abhängig von c)

$$\omega\big(g(n)\big)\coloneqq\{f(n)\mid\forall c>0\;\exists n_0>0\;\forall n\geq n_0:f(n)\geq c\cdot g(n)\}$$

• Funktion $f(n) \in \omega(g(n))$, falls für alle Konstanten c > 0 gilt, dass $f(n) \ge c \cdot g(n)$ (für genug grosse n, abhängig von c)

Insbesondere gilt:

$$f(n) \in o(g(n)) \implies f(n) \in O(g(n))$$

$$f(n) \in \omega(g(n)) \implies f(n) \in \Omega(g(n))$$

Landau-Symbole: Intuitiv

$f(n) \in O(g(n))$:

- $f(n) " \le " g(n)$, asymptotisch gesehen...
- f(n) wächst asymptotisch nicht schneller als g(n)

$$f(n) \in \Omega(g(n))$$
:

- $f(n) " \ge " g(n)$, asymptotisch gesehen...
- f(n) wächst asymptotisch mindestens so schnell, wie g(n)

$$f(n) \in \Theta(g(n))$$
:

- f(n) " = " g(n), asymptotisch gesehen...
- f(n) wächst asymptotisch gleich schnell, wie g(n)

$$f(n) \in o(g(n))$$
:

- f(n) " < " g(n), asymptotisch gesehen...
- f(n) wächst asymptotisch langsamer als g(n)

$$f(n) \in \omega(g(n))$$
:

- f(n) " > " g(n), asymptotisch gesehen...
- f(n) wächst asymptotisch schneller als g(n)

monoton wachsen und sich "vernünftig" verhalten

Falls f(n) und g(n) monoton wachsen, gilt:

$$f(n) \in o(g(n)) \iff f(n) \notin \Omega(g(n))$$

$$f(n) \in \omega(g(n)) \iff f(n) \notin O(g(n))$$

$$\|f(n) < g(n)\| \iff f(n) \not= g(n)\|$$

Definition über Grenzwerte (vereinfacht)

BURG

Folgende Definitionen gelten für monoton wachsende Funktionen

falls der Grenzwert $\lim_{n\to\infty}\frac{f(n)}{g(n)}$ definiert ist

$$f(n) \in O(g(n)),$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}<\infty$$

$$f(n) \in \Omega(g(n)),$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$$

$$f(n) \in \underline{\Theta(g(n))},$$

$$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

$$f(n) \in o(g(n)),$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$f(n) \in \omega(g(n)),$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Landau-Notation: Bemerkungen

Schreibweise:

- O(g(n)), $\Omega(g(n))$, ... sind Mengen (von Funktionen)
- Korrekte Schreibweise ist deshalb eigentlich: $f(n) \in O(g(n))$
- Sehr verbreitete Schreibweise: f(n) = O(g(n))

Beispiele:

- $T(n) = O(n^2)$ statt $T(n) \in O(n^2)$
- $T(n) = \Omega(n^2)$ statt $T(n) \in \Omega(n^2)$ $\int_{-\infty}^{\infty} f(n) = \int_{-\infty}^{\infty} f(n) dn = \int_{-\infty}^{\infty}$
- $f(n) = n^2 + O(n)$:

$$f(n) \in \{g(n) : \exists h(n) \in O(n) \text{ s.t. } g(n) = n^2 + h(n)\}$$

•
$$\underline{a(n)} = \underline{(1 + o(1))} \cdot \underline{b(n)}$$

Landau-Notation: Bemerkungen

Schreibweise:

- O(g(n)), $\Omega(g(n))$, ... sind Mengen (von Funktionen)
- Korrekte Schreibweise ist deshalb eigentlich: $f(n) \in O(g(n))$
- Sehr verbreitete Schreibweise: f(n) = O(g(n))

Asymptotisches Verhalten für allgemeine Grenzwerte:

- gleiche Schreibweise auch für Verhalten von z.B. f(x) für $x \to 0$
- z.B. Taylor-Reihen: $e^x = 1 + x + O(x^2)$, bzw. $e^x = 1 + x + o(x)$ Alternative Definition für $\Omega(g(n))$: $\Im(n) = n^2$, $\gcd(n) = \Im(n) = \Im($

$$\Omega(g(n)) \coloneqq \{f(n) \mid \exists c > 0 \ \forall n_0 > 0 \ \exists n \geq n_0 : f(n) \geq c \cdot g(n)\}$$

- Wir verwenden die 1. Definition
- Macht keinen Unterschied falls der Grenzwert $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ definiert ist

Landau-Notation: Beispiele

Selection Sort:

- Laufzeit T(n), es gibt Konstanten $c_1, c_2 : c_1 n^2 \le T(n) \le c_2 n^2$ $T(n) \in O(n^2), \qquad T(n) \in \Omega(n^2), \qquad T(n) \in \Theta(n^2)$
- T(n) wächst schneller als linear: $T(n) \in \omega(n)$

Weitere Beispiele:

- $f(n) = 10n^3$, $g(n) = n^3/1000$; $f(n) \in \Theta(g(n))$
- $f(n) = e^n$, $g(n) = n^{100}$: $f(n) \in \omega(g(n))$
- $f(n) = n/\log_2 n$, $g(n) = \sqrt{n}$: $f(n) \in \omega(g(n))$
- $f(n) = n^{1/256}$, $g(n) = 10 \ln n$: $f(n) \in \omega(g(n))$
- $f(n) = \log_{10} n$, $g(n) = \log_2 n$: $f(n) \in \Theta(g(n))$ $\log_{10} n = \frac{\log_2 n}{\log_2 10}$
- $f(n) = n^{\sqrt{n}}, g(n) = 2^n$: $f(n) \in o(g(n))$

$$\lim_{n\to\infty}\frac{e^n}{n^{100}}\to\infty$$

$$\frac{f(n)}{g(n)} = \frac{\sqrt{n}}{\log_2 n}$$
$$= \frac{2^{t/2}}{t}$$

$$\log_{10} n = \frac{\log_2 n}{\log_2 10}$$

 $\log\left(n^{\sqrt{n}}\right) = \sqrt{n} \cdot \log n$, $\log(2^n) = n$ Algorithmen und Datenstruktur

Analyse Insertion Sort

InsertionSort(A):

- 1: for i = 1 to n-1 do
- 2: // prefix A[1..i] is already sorted
- 3: pos = i
- 4: while (pos > 0) and (A[pos] < A[pos-1]) do
- 5: swap(A[pos], A[pos-1])
- 6: pos = pos 1

 $\times (v)$

$$\chi(u) \leq \sum_{i=1}^{n-1} i^{2} = O(n^{2})$$

$$\chi(N) \geqslant \sum_{i=1}^{N-1} I = \mathcal{N}(N)$$

Worst case, best case, average case

Worst Case Analyse

- Analysiere Laufzeit T(n) für eine schlechtestmögliche Eingabe der Grösse n
- Wichtigste / Standard- Art der Algorithmenanlyse

Best Case Analyse

- Analysiere Laufzeit T(n) für eine bestmögl. Eingabe der Grösse n
- Meistens uninteressant...

Average Case Analyse

- Analysiere Laufzeit T(n) für eine typische Eingabe der Grösse n
- Problem: was ist eine typische Eingabe?
 - Standardansatz: zufällige Eingabe
 - nicht klar, wie nahe tatsächliche Instanzen bei uniform zufälligen sind...
 - eine mögl. Alternative: smoothed analysis (werden wir nicht anschauen)

Quadratisch = 2x so grosse Eingabe $\rightarrow 4x$ so grosse Laufzeit

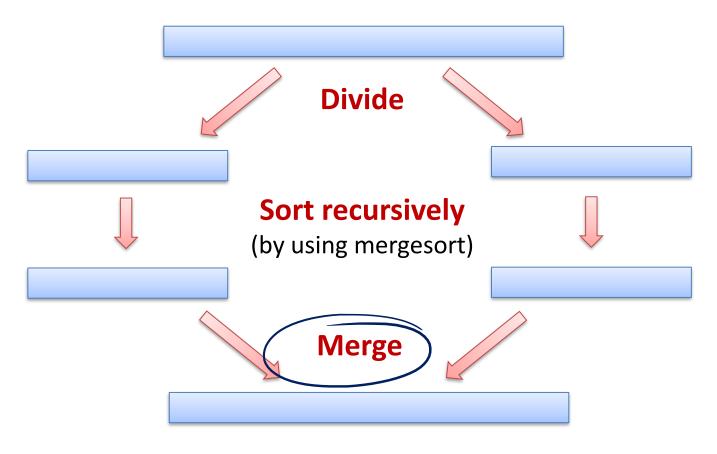
- das wächst für grosse n schon ziemlich schnell...

Beispielrechnung:

- Nehmen wir an, Anz. Grundop. $T(n) = n^2$
- Nehmen wir zudem an, 1 Grundop. pro Rechnerzyklus
- Bei einem 1Ghz-Rechner gibt das 1 ns pro Grundop.

Eingabegrösse n	4 Bytes pro Zahl	Laufzeit $oldsymbol{T}(oldsymbol{n})$
10 ³ Zahlen	≈ 4KB	$10^{3\cdot 2} \cdot 10^{-9} \text{s} = 1 \text{ms}$
10 ⁶ Zahlen	≈ 4MB	$10^{6\cdot 2} \cdot 10^{-9} \mathrm{s} = 16.7 \mathrm{min}$
10 ⁹ Zahlen	≈ 4GB	$10^{9\cdot 2} \cdot 10^{-9} \mathrm{s} = 31.7 \mathrm{Jahre}$

für grosse Probleme zu langsam!



- Divide ist trivial \rightarrow Kosten: O(1)
- Rekursives Sortieren: Werden wir gleich noch anschauen...
- Merge: Das werden wir uns zuerst anschauen...

BURG

Analyse Merge-Schritt

```
// sort A[start..end-1]
 MergeSortRecursive(A, start, end, tmp)
                                                             ond
       pos = start; i = start; j = middle
  6: | while (pos < end) do
  7:
         if (i < middle) and (A[i] < A[j]) then
  8:
           tmp[pos] = A[i]; pos++; i++
         else
 10:
           tmp[pos] = A[j]; pos++; j++
 11: | for i = start to end-1 do A[i] = tmp[i]
# Schleifeniterationen!
```

Analyse Merge Sort

Laufzeit T(n) setzt sich zusammen aus:

- Divide und Merge: O(n)
- 2 rekursive Aufrufe zum Sortieren von $\lfloor n/2 \rfloor$ und $\lfloor n/2 \rfloor$ Elementen

Rekursive Formulierung von T(n):

• Es gibt eine Konstante b > 0, so dass

$$T(n) \le T\left(\left[\frac{n}{2}\right]\right) + T\left(\left[\frac{n}{2}\right]\right) + b \cdot n, \qquad T(1) \le b$$

Wir machen uns das Leben ein bisschen einfacher und ignorieren das Auf- und Abrunden: Amahme: n Zweierpatent

$$T(n) \leq 2 \cdot T\left(\frac{n}{2}\right) + b \cdot n, \qquad T(1) \leq b$$

$$T(n) \leq 2 \cdot T\left(\frac{n}{2}\right) + b \cdot n, \ T(1) \leq b$$

Setzen wir einfach mal ein, um zu sehen, was rauskommt...

$$T(u) \leq 2 \cdot T(\frac{n}{2}) + b \cdot n \qquad \left[T(\frac{n}{2}) \leq 2 \cdot T(\frac{n}{4}) + b \cdot \frac{n}{2}\right]$$

$$\leq 4 \cdot T(\frac{n}{4}) + b \cdot n + b \cdot n$$

$$= 4 \cdot T(\frac{n}{4}) + 2b \cdot n$$

$$\leq 4 \left(2T(\frac{n}{8}) + b \cdot \frac{n}{4}\right) + 2b \cdot n$$

$$= 8 \cdot T(\frac{n}{8}) + 3 \cdot b \cdot n \qquad Vermultung$$

$$\leq 2^{K} T(\frac{n}{2}) + K \cdot b \cdot n$$

$$= n \cdot T(1) + b \cdot n \cdot \log_{2} n \leq b \cdot n \cdot (1 + \log_{2} n)$$

Analyse Merge Sort

Rekursionsgleichung: $T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + b \cdot n$, $T(1) \le b$

Vermutung: $T(n) \le b \cdot n \cdot (1 + \log_2 n)$

Beweis durch vollständige Induktion:

Induktions schrift!

Ind.-voraussetting: Vermatung gilt für Werte < N

$$T(n) \leq 2 \cdot T(n/2) + b \cdot N$$

 $\leq 2 \cdot b \cdot \frac{n}{2} \cdot (1 + \log_2 \frac{n}{2}) + b \cdot N$

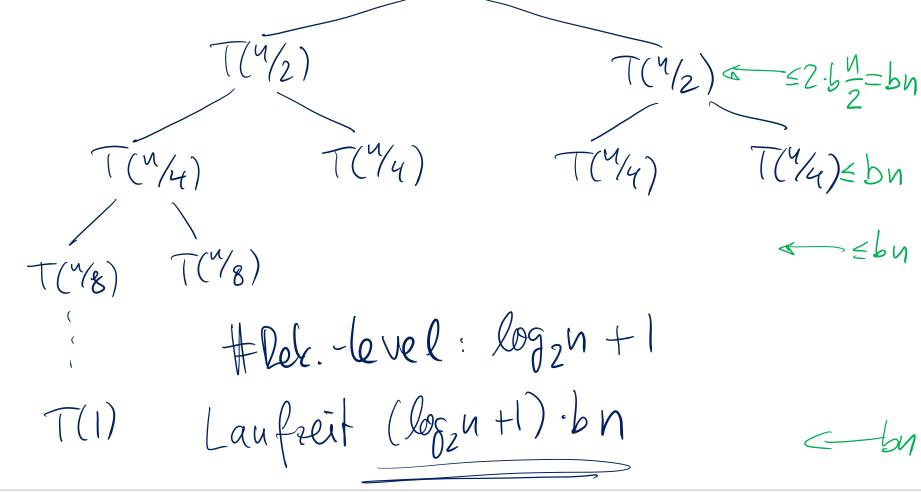
$$=bn(los_2n+1)$$

$$T(n) = O(n - \log n)$$

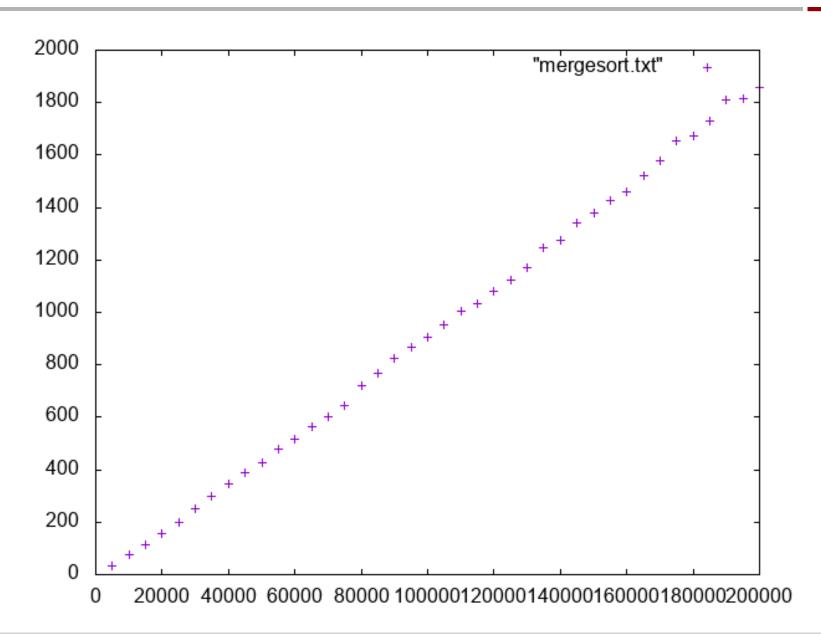
Alternative Analyse Merge Sort

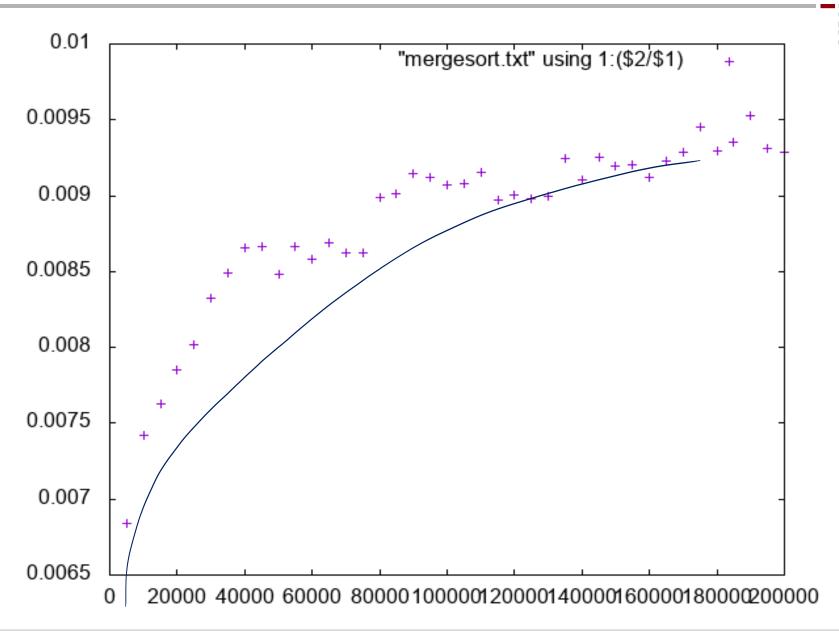
Rekursionsgleichung: $T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + \underline{b \cdot n}, \ T(1) \le b$

Betrachten wir den Rekursionsbaum:



T(4/4) & bn





Zusammenfassung Analyse Merge Sort

Die Laufzeit von Merge Sort ist $T(n) \in O(n \cdot \log n)$.

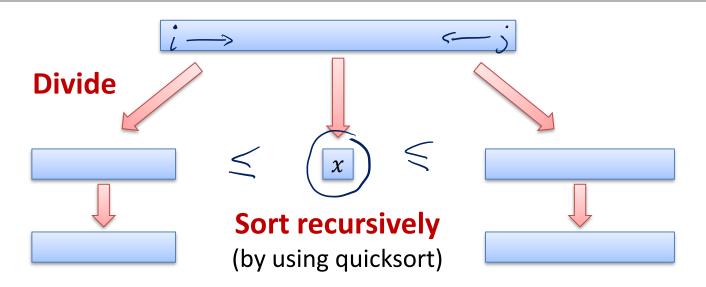
wächst fast linear mit der Grösse der Eingabe...

Wie gut ist das?

- Beispielrechnung:
 - Nehmen wir wieder an, 1 Grundop. = 1 ns
 - Wir sind aber ein bisschen konservativer als vorher und nehmen $T(n) = \underline{10} \cdot n \log n$

Eingabegrösse n	4 Bytes p. Zahl	Laufzeit $T(n) = 10 \cdot n \log n$	n^2
$2^{10} \approx 10^3$ Zahlen	≈ 4KB	$10 \cdot 10 \cdot 2^{10} \cdot 10^{-9} \mathrm{s} \approx 0.1 \mathrm{ms}$	1 ms
$2^{20} \approx 10^6$ Zahlen	≈ 4MB	$10 \cdot 20 \cdot 2^{20} \cdot 10^{-9} \mathrm{s} \approx 0.2 \mathrm{s}$	16.7 min
$2^{30} \approx 10^9$ Zahlen	≈ 4GB	$10 \cdot 30 \cdot 2^{30} \cdot 10^{-9} \text{ s} \approx \underline{5.4 \text{ min}}$	3 <u>1.7</u> Jahre
$2^{40} \approx 10^{12}$ Zahlen	≈ 4TB	$10 \cdot 40 \cdot 2^{40} \cdot 10^{-9} \text{ s} \approx \underline{122 \text{ h}}$	> <u>10</u> ⁷ Jahre

Quick Sort : Analyse



- Laufzeit hängt davon ab, wie gut die Pivots sind
- Laufzeit, um Array der Länge n zu sortieren, falls das Pivot in Teile der Grösse λn und $(1 \lambda)n$ partitioniert:

$$T(n) = T(\lambda n) + T((1 - \lambda)n) + "Pivotsuche + Divide"$$

- Divide:
 - Wir gehen einmal von beiden Seiten über's Array mit konstanten Kosten pro Schritt \rightarrow Zeit, um Array der Länge n zu partitionieren: O(n)

Quick Sort : Analyse

BURG

Falls wir in O(n) Zeit ein Pivot finden können, welches das Array in Teile der Grösse λn und $(1 - \lambda)n$ unterteilt:

• Es gibt eine Konstante b > 0, so dass

$$T(n) \le T(\lambda n) + \underline{T((1-\lambda)n)} + b \cdot n, \qquad T(1) \le b$$

Extremfall I) $\lambda = 1/2$ (best case):

$$T(n) \le 2T\left(\frac{n}{2}\right) + bn, \qquad T(1) \le b$$

• Wie bei Merge Sort: $T(n) \in O(n \log n)$

Extremfall II) $\lambda n = 1$, $(1 - \lambda)n = n - 1$ (worst case):

$$T(n) = \underbrace{T(n-1)}_{P} + bn, \qquad T(1) \le b$$

Quick Sort: Worst Case Analyse

Extremfall II) $\lambda n = 1$, $(1 - \lambda)n = n - 1$ (worst case):

$$T(n) = T(n-1) + bn, \quad T(1) \le b$$

$$T(n) = T(n-1) + b \cdot N$$

$$= T(n-2) + b(n-1) + bN$$

$$= T(n-3) + b(n-2+n-1+n)$$

$$= T(n-2) + b(n-2+n)$$

In dem Fall, ergibt sich
$$T(n) \in \Theta(n^2)$$
:

 $T(n) = T(n-1) + b \cdot n$
 $= T(n-2) + b(n-1) + bn$
 $= T(n-3) + b(n-2+n-1+n)$
 \vdots
 $= T(n-k) + b(n-k+1+n-k+n)$
 $= T(n) + b(2+3+n-k+n)$
 $= b(1+n+n) = b$
 $= b(n-k+1)$
 $= b(n-k+1)$
 $= b(n-k+1)$
 $= b(n-k+1)$
 $= b(n-k+1)$

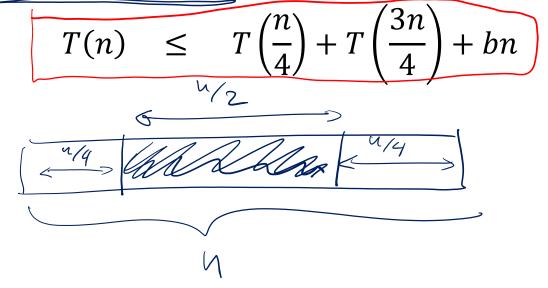
Quick Sort mit zufälligem Pivot

Aufteilung bei zufälligem Pivot:

- Laufzeit $T(n) = O(n \log n)$ für alle Eingaben
 - allerdings nur im Erwartungswert, bzw. mit sehr grosser Wahrscheinlichkeit

Intuition:

• Mit Wahrscheinlichkeit 1/2, haben die Teile Grösse $\geq n/4$, so dass



Quick Sort mit zufälligem Pivot

Aufteilung bei zufälligem Pivot:

- Laufzeit $T(n) = O(n \log n)$ für alle Eingaben
 - allerdings nur im Erwartungswert, bzw. mit sehr grosser Wahrscheinlichkeit

Analyse:

- Werden wir hier nicht tun
 - siehe z.B. Cormen et al. oder die Algorithmentheorie-Vorlesung
- Mögl. Vorgehen, Rekursion mit Erwartungswerten hinschreiben:

$$\mathbb{E}[T(n)] \leq \mathbb{E}[T(N_L) + T(n - N_L)] + bn$$

Sortieren: Untere Schranke

Aufgabe: Sortiere Folge a_1 , a_2 , ..., a_n

Ziel: benötigte (worst-case) Laufzeit nach unten beschränken

Vergleichsbasierte Sortieralgorithmen

- Vergleiche sind die einzige erlaubte Art, die relative Ordnung von Elementen zu bestimmen
- Das heisst, das Einzige, was die Reihenfolge der Elemente in der sortierten Liste beeinflussen kann, sind Vergleiche der Art

$$a_i = a_j$$
, $a_i \le a_j$, $a_i < a_j$, $a_i \ge a_j$, $a_i > a_j$

- Nehmen wir an, die Elemente sind paarweise verschieden, dann reichen Vergleiche der Art $a_i \leq a_j$
- 1 solcher Vergleich ist eine Grundoperation

Vergleichsbasierte Sortieralgorithmen

Alternative Sichtweise

 Jedes Programm (für einen deterministischen, vgl.-basierten Sortieralg.) kann in eine Form gebracht werden, in welcher jede if/while/...-Bedingung von folgender Form ist:

if
$$(a_i \le a_j)$$
 then ...

 In jeder Ausführung eines Algorithmus, induzieren die Resultate dieser Vergleiche eine Abfolge von T/F (true/false) Werten:

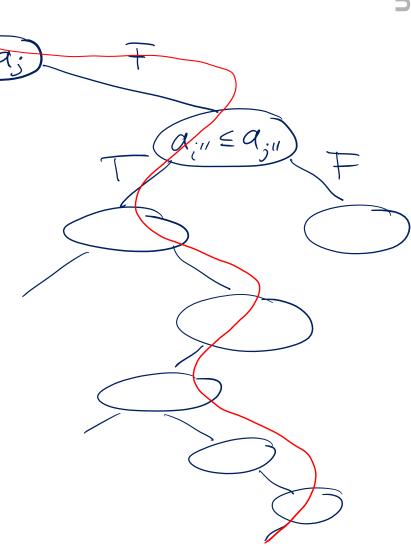
TFFTTTFFFFFFFFTTTT ...

- Diese Abfolge bestimmt in eindeutiger Weise, wie die Elemente umgeordnet werden.
- Unterschiedliche Eingaben der gleichen Werte, müssen daher zu unterschiedlichen T/F-Sequenzen führen!

Ausführung als Baum:

worst-case Laufreit

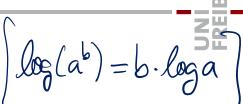
Tiefe des Baums



Vgl.-Basiertes Sortieren: Untere Schranke I

- Bei vergleichsbasierten Sortieralgorithmen hängt die Ausführung nur von der Ordnung der Werte in der Eingabe, nicht aber von den eigentlichen Werten ab
 - Wir beschränken und auf Eingaben, bei denen die Werte unterschiedlich sind.
- O.b.d.A. können wir deshalb annehmen, dass wir die Zahlen $\underbrace{1, \dots, n}$ sortieren müssen.
- Verschiedene Eingaben müssen verschieden bearbeitet werden.
- Verschiedene Eingaben erzeugen verschiedene T/F-Folgen
- Laufzeit einer Ausführung \geq Länge der erzeugten T/F-Folge
- Worst-Case Laufzeit ≥ Länge der längsten T/F-Folge:
 - Wir wollen eine untere Schranke
 - Zählen der Anz. mögl. Eingaben → wir benötigen so viele T/F-Folgen...

Vgl.-Basiertes Sortieren: Untere Schranke I



Anzahl Mögliche Eingaben (Anfangsreihenfolgen):

$$N_6 = n \cdot (N-1) \cdot (N-2) \cdot \dots \cdot 1$$

Anzahl T/F-Folgen der Länge $\leq k$: $Lange = k : 2^k$

$$2^{k} + 2^{k-1} + \dots + 1 \leq 2^{k+1}$$

Theorem: Jeder det. Vergleichs-basierte Sortieralgorithmus benötigt im Worst Case mindestens $\Omega(n \cdot \log n)$ Vergleiche.

Laufzeit
$$\leq T$$
 $\frac{2}{T+1} \geq \frac{N!}{N!}$
 $\frac{2}{T+1} \geq \log_2(N!)$
 $\frac{2}{T+1} \geq \log_2(N!)$

Sortieren in Linearzeit

- Mit Vergleichs-basierten Algorithmen nicht möglich
 - Untere Schranke gilt auch mit Randomisierung...
- Manchmal geht's schneller
 - wenn wir etwas über die Art der Eingabe wissen und ausnützen können
- Beispiel: Sortiere n Zahlen $a_i \in \{0,1\}$:
 - 1. Zähle Anzahl Nullen und Einsen in O(n) Zeit
 - 2. Schreibe Lösung in Array in O(n) Zeit

Counting Sort

FREIBURG

Aufgabe:

- Sortiere Integer-Array A der Länge n
- Wir wissen, dass für alle $i \in \{0, ..., n-1\}, A[i] \in \{0, ..., k\}$

Algorithmus: