Algorithms and Datastructures Winter Term 2024
 Grading Guidelines Exercise Sheet 4

Due: Wednesday, May 15th, 2pm

Exercise 1: Hashing with Open Addressing

(5 Points)
Let \mathcal{H} be a hash table of size $m=13$ and let $h_{1}, h_{2}, h_{3}: \mathbb{N}_{0} \mapsto\{0, \ldots, m-1\}$ be hash functions defined as follows ${ }^{1}$:

- $h_{1}(k):=\bar{k} \bmod m$
- $h_{2}(k):=3 \cdot x \bmod m$
- $h_{3}(k):=x+1 \bmod m$

Add the keys $23,12,75,945,30,99,345$ (in that order) into the initaly empty hash table \mathcal{H}. Solve conflicts as follows:
a) Linear Probing using hash function h_{1}.
b) Use Double Hashing using hash functions h_{2} and h_{3}.

Write down every intermediate step!

Exercise 2: Hashing with Chaining

(5 Points)
Given a Hash Table of size m and an arbitrary hash function $h: S \mapsto\{0, \ldots, m-1\}$. Let S be a set of at least $y \cdot m$ elements, so $|S| \geq y \cdot m$.
a) Show that S has a subset Y of at least y elements (hence $|Y| \geq y)$ such that $h\left(x_{1}\right)=h\left(x_{2}\right)$ for all $x_{1}, x_{2} \in Y$.
(4 Points)
b) What does the result of a) tells us about the Worst-Case runtime of "find" in a hash table with Chaining (if the table is filled with all the elements of S before we call "find")?
(1 Point)

Exercise 3: Application of Hashtables

Consider the following algorithm:

```
Algorithm 1 algorithm
                                    \(\triangleright\) Input: Array \(A\) of length \(n\) with integer entries
    for \(i=1\) to \(n-1\) do
        for \(j=0\) to \(i-1\) do
            for \(k=0\) to \(n-1\) do
            if \(|A[i]-A[j]|=A[k]\) then
                        return true
    return false
```

[^0](a) Describe what algorithm computes and analyse its asymptotical runtime. Hint: The difference $|A[i]-A[j]|$ may become arbitrarily large.
(b) Describe a different algorithm \mathcal{B} for this problem (i.e., $\mathcal{B}(A)=\operatorname{algorithm}(A)$ for each input A) which uses hashing and takes time $\mathcal{O}\left(n^{2}\right)$ (with proof).
(3 Points)
Hint: You may assume that inserting and finding keys in a hash table needs $\mathcal{O}(1)$ if $\alpha=\mathcal{O}(1)$ (α is the load of the table).
(c) Describe another algorithm for this problem without using hashing which takes time $\mathcal{O}\left(n^{2} \log n\right)$ (with proof).

[^0]: ${ }^{1}$ We define the digit sum of k by \bar{k}.

