
Chapter 2
Broadcast, Convergecast,

and Spanning Trees
Distributed Systems

Summer Term 2024

Fabian Kuhn

Distributed Systems Fabian Kuhn 2

Message Passing in Arbitrary Topologies
Assumption for this chapter:
• Network: message passing system with arbitrary topology
• network topology is given by an undirected graph 𝐺 = (𝑉, 𝐸)

5

3
7

8

2

1

9

12

Distributed Systems Fabian Kuhn 3

Synchronous Message Passing

• Time is divided into synchronous rounds

5

3
7

8

2

In each synchronous round:
1. Each node does some

internal computation
2. Send a message to each

neighbor
3. Receive message from

each neighbor

time complexity = number of rounds

time
0 1 2 3

round 1 round 2 round 3

Distributed Systems Fabian Kuhn 4

Asynchronous Message Passing

In this chapter: No failures, but asynchrony

Asynchronous message passing:
• messages are always delivered in finite time

– cf.: finite time → admissible schedule

• message delays are completely unpredictable
• algorithms are event-based:

upon receiving message from neighbor ..., do
some local computation steps
send message(s) to neighbor(s) ...

Distributed Systems Fabian Kuhn 5

Broadcast

• Simple, basic communication problem

Problem Description:
• A source node 𝑠 needs to broadcast a message 𝑀 to all nodes of the

system (network)
• Each node has a unique ID
• Initially, each node knows the IDs of its neighbors

– or it can distinguish its neighbors by having individual communication ports to the
pairwise communication links

Distributed Systems Fabian Kuhn 6

Flooding

• One of the simplest distributed (network) algorithms

Basic idea:
• When receiving 𝑀 for the first time, forward to all neighbors

Algorithm:

• Source node 𝑠:
initially do

send 𝑀 to all neighbors

• All other nodes 𝑢:
upon receiving 𝑀 from some neighbor 𝑣 for the first time

if 𝑀 has not been received before then
send 𝑀 to all neighbors except 𝑣

Distributed Systems Fabian Kuhn 7

Flooding in Synchronous Systems

Synchronous systems:
• time divided into synchronous rounds, msg. delay = 1 round
• time complexity: number of rounds

Progress in flooding algorithm:

Distributed Systems Fabian Kuhn 8

Flooding in Synchronous Systems

Synchronous systems:
• time divided into synchronous rounds, msg. delay = 1 round
• time complexity: number of rounds

Progress in flooding algorithm:
• after 1 round:

– all neighbors of 𝑠 know 𝑀
– nodes at distance ≥ 2 from 𝑠 do not know 𝑀

• after 2 rounds:
– exactly nodes at distance ≤ 2 from 𝑠 know 𝑀

• ...
• after 𝑟 rounds:

– exactly nodes at distance ≤ 𝑟 from 𝑠 know 𝑀

Distributed Systems Fabian Kuhn 9

Flooding in Synchronous Systems

Radius: (Graph 𝐺 = (𝑉, 𝐸))
• Given a node 𝑠 ∈ 𝑉, radius of 𝑠 in 𝐺:

𝑟𝑎𝑑 𝐺, 𝑠 ≔ max
𝑣∈𝑉

𝑑𝑖𝑠𝑡𝐺(𝑠, 𝑣)

• radius of 𝐺:
𝑟𝑎𝑑 𝐺 ≔ min

𝑠∈𝑉
𝑟𝑎𝑑(𝐺, 𝑠)

Diameter of 𝑮:

𝑑𝑖𝑎𝑚 𝐺 ≔ max
𝑢,𝑣∈𝑉

𝑑𝑖𝑠𝑡𝐺 𝑢, 𝑣 =max
𝑠∈𝑉

𝑟𝑎𝑑(𝐺, 𝑠)

Time complexity of flooding in synchronous systems: 𝒓𝒂𝒅 𝑮, 𝒔
𝑑𝑖𝑎𝑚 𝐺

2 ≤ 𝑟𝑎𝑑 𝐺 ≤ 𝑟𝑎𝑑 𝐺, 𝑠 ≤ 𝑑𝑖𝑎𝑚(𝐺)

Distributed Systems Fabian Kuhn 10

Radius and Diameter

Distributed Systems Fabian Kuhn 11

Asynchronous Time Complexity

• Time complexity of flooding in asynchronous systems?
• How is time complexity in asynchronous systems defined?

Assumptions:
• Message delays, time for local computations are arbitrary

– Algorithms cannot use any timing assumptions!

• For analysis:
– message delays ≤ 1 time unit
– local computations take 0 time

Determine asynchronous time complexity:
1. determine running time of a given execution
2. asynch. time complexity = max. running time of any exec.

Distributed Systems Fabian Kuhn 12

Asynchronous Time Complexity

Running time of an execution:
• assign times to send and receive events such that

– order of all events remains unchanged
– local computations take 0 time
– message delays are at most 1 time unit
– first send event is at time 0
– time of last event is maximized

• essentially: normalize message delays such that the maximum delay is
1 time unit

Definition Asynchronous Time Complexity:
Total time of a worst-case execution in which local computations take
time 𝟎 and all message delays are at most 𝟏 time unit.

Distributed Systems Fabian Kuhn 13

Flooding in Asynchronous Systems

Theorem: The time complexity of flooding from a source 𝑠 in an
asynchronous network 𝐺 is 𝑟𝑎𝑑(𝐺, 𝑠).

Distributed Systems Fabian Kuhn 14

Message Complexity

What is the message complexity of flooding?

Theorem: The message complexity of flooding is 𝑂 𝐸 .
– on graph 𝐺 = (𝑉, 𝐸)

Message Complexity: Total number of messages sent (over all nodes)

Distributed Systems Fabian Kuhn 15

Flooding Spanning Tree

• The flooding algorithm can be used to compute a spanning tree of the
network.

Idea:
• Source 𝑠 is the root of the tree
• For all other nodes, neighbor from which 𝑀 is received first is the

parent node.

Distributed Systems Fabian Kuhn 16

Flooding Spanning Tree Algorithm

Source node 𝒔:

initially do
parent ≔⊥ // 𝑠 is the root
send 𝑀 to all neighbors

Non-source node 𝒖:

upon receiving 𝑀 from some neighbor 𝑣
if 𝑀 has not been received before then

parent ≔ 𝑣
send 𝑀 to all neighbors except 𝑣

Distributed Systems Fabian Kuhn 17

Spanning Tree: Synchronous Systems

• In tree: distance of 𝑣 to root = round in which 𝑣 is reached
• In synchronous systems, a node 𝑣 are reached in round 𝑟 if and only if

𝑑𝑖𝑠𝑡𝐺 𝑠, 𝑣 = 𝑟

Shortest Path Tree = BFS Tree (BFS = breadth first search)
• tree which preserves graph distances to root node

Theorem: In synchronous systems, the flooding algorithm constructs a
BFS tree.

Distributed Systems Fabian Kuhn 18

Spanning Tree: Asynchronous Systems

How does the spanning tree look if comm. is asynchronous?

Observation: In asynchronous executions, the depth of the tree can be
𝑛 − 1 even if the radius/diameter of the graph is 1.

Distributed Systems Fabian Kuhn 19

Convergecast

• “Opposite” of broadcast
• Given a rooted spanning tree, communicate from all nodes to the root

– starting from the leaves

Example: Compute sum of values in a rooted tree

Distributed Systems Fabian Kuhn 20

Convergecast Algorithm

Leaf node 𝒗:
initially do

send message to parent
(e.g., send input value)

Inner node 𝒖:
upon receiving message from child node 𝑣

if 𝑢 has received messages from all children then
send message to parent

(e.g., send sum of all inputs in 𝑢’s subtree)

Root node 𝒓:
upon receiving message from child node 𝑣

if 𝑟 has received messages from all children then
convergecast terminates

Distributed Systems Fabian Kuhn 21

Convergecast: Analysis & Remarks

Time Complexity:

Message Complexity:

Application of the convergecast algorithm:
• Computing functions, e.g.:

– min, max, sum, average, median, ...

• Termination detection
– inform parent as soon as all nodes in subtree have terminated

• ...

Distributed Systems Fabian Kuhn 22

Flooding/Echo Algorithm

• If a leader (root), but no spanning tree exists, flooding and
convergecast can be used together for computing functions, ...

1. Use flooding to construct a tree
2. Use convergecast (echo) to report back to the root when done

Time Complexity of Flooding + Convergecast (Echo):

Distributed Systems Fabian Kuhn 23

Constructing Good Trees

• When combining flooding and convergecast, the time complexity is
linear in the depth of the constructed tree.

• In synchronous systems, the tree is a BFS tree (shortest path tree), i.e.,
the depth of the tree is 𝑂 𝑑𝑖𝑎𝑚 𝐺
– optimal time complexity: 𝑂 𝑑𝑖𝑎𝑚 𝐺

• In asynchronous systems, the time complexity can be Ω 𝑛 , even if the
graph has a very small diameter!

• Convergecast / low diameter spanning trees are important!

• How can we construct a BFS tree in an asynchronous system?

Distributed Systems Fabian Kuhn 24

Constructing Shortest Path Tree

Dijkstra
• Grow tree from source 𝑠
• At intermediate step 𝑡, subtree of all nodes at distance ≤ 𝑟𝑡 from

source node 𝑠
• Next step: add node with min. distance to 𝑠

Bellman-Ford
• Each node 𝑣 keeps a distance estimate 𝑑𝑣 to 𝑠

– initially: 𝑑𝑠 = 0, 𝑑𝑣 = ∞ (for all 𝑣 ≠ 𝑠)

• In each step, all nodes update their estimate based on neighbor
estimates:

𝑑𝑣 = min 𝑑𝑣, min𝑢∈𝑁(𝑣)
𝑑𝑢 + 1

Distributed Systems Fabian Kuhn 25

Distributed Dijkstra

• In our case, the graph is unweighted
• We can therefore grow the tree level by level

– Essentially like in a synchronous execution

• Assume, the tree is constructed up to distance 𝑟 from 𝑠
• How can we add the next level?

Distributed Systems Fabian Kuhn 26

Distributed Dijkstra

• Source/root node coordinates the phases

Algorithm for Phase 𝒓 + 𝟏:

1. Root node broadcasts “start phase 𝑟 + 1” in current tree

2. Leaf nodes (level 𝑟 nodes) send “join 𝑟 + 1” to neighbors

3. Node 𝑣 receiving “join 𝑟 + 1” from neighbor 𝑢:
1. First such message: 𝑢 becomes parent of 𝑣, 𝑣 sends ACK to 𝑢
2. Otherwise, 𝑣 sends NACK to 𝑢

4. After receiving ACK or NACK from all neighbors, level 𝑟 nodes report
back to root by starting a convergecast

5. When the convergecast terminates at the root, the root can start the
next phase

Distributed Systems Fabian Kuhn 27

Distributed Dijkstra: Analysis

Time Complexity:

Message Complexity:

Distributed Systems Fabian Kuhn 28

Distributed Bellman-Ford

Basic Idea:
• Each node 𝑢 stores an integer 𝑑𝑢 with the current guess for the

distance to the root node 𝑠
• Whenever a node 𝑢 can improve 𝑑𝑢, 𝑢 informs its neighbors

Algorithm:
1. Initialization: 𝑑𝑠 ≔ 0, for 𝑣 ≠ 𝑠: 𝑑𝑣 ≔ ∞, parent𝑣 ≔⊥
2. Root 𝑠 sends “1” to all neigbors
3. For all other nodes 𝑢:

upon receiving message “𝑥” with 𝑥 < 𝑑𝑢 from neighbor 𝑣 do
set 𝑑𝑢 ≔ 𝑥
set parent𝑢 ≔ 𝑣
send “𝑥 + 1” to all neighbors (except 𝑣)

Distributed Systems Fabian Kuhn 29

Distr. Bellman-Ford: Time Complexity

Theorem: The time complexity of the distributed Bellman-Ford algorithms
is

Distributed Systems Fabian Kuhn 30

Distr. Bellman-Ford: Message Complexity

Theorem: The message complexity of the distributed Bellman-Ford
algorithms is

Distributed Systems Fabian Kuhn 31

Distr. Bellman-Ford: Message Complexity

Theorem: The message complexity of the distributed Bellman-Ford
algorithms is 𝑂 𝐸 ⋅ 𝑉 .

Distributed Systems Fabian Kuhn 32

Distributed BFS Tree Construction

Synchronous
• Time: 𝑂 𝑑𝑖𝑎𝑚 𝐺 , Messages: 𝑂 𝐸
• both optimal

Asynchronous
• Distributed Dijkstra:

Time: 𝑂 𝑑𝑖𝑎𝑚 𝐺 2 , Messages: 𝑂 𝐸 + 𝑉 ⋅ 𝑑𝑖𝑎𝑚 𝐺

• Distributed Bellman-Ford:
Time: 𝑂 𝑑𝑖𝑎𝑚 𝐺 , Messages: 𝑂 𝐸 ⋅ 𝑉

• Best known trade-off between time and messages:
Time: 𝑂 𝑑𝑖𝑎𝑚 𝐺 ⋅ log3 𝑉 , Messages: 𝑂(𝐸 + 𝑉 ⋅ log3 𝑉)
– based on synchronizers

(generic way of translating synchronous algorithms into asynch. ones)
– We will look at synchronizers in a later lecture…

