"
Chapter 2

Broadcast, Convergecast,
and Spanning Trees

Distributed Systems

Summer Term 2024

Fabian Kuhn

UNI

FREIBURG

Message Passing in Arbitrary Topologies

UNI
f

FREIBURG

Assumption for this chapter:
* Network: message passing system with arbitrary topology
* network topology is given by an undirected graph ¢ = (V, E)

Distributed Systems Fabian Kuhn 2

Synchronous Message Passing

UNI

FREIBURG

Time is divided into synchronous rounds

round 1 round 2 round 3

In each synchronous round:

1. Each node does some
internal computation

2. Send a message to each
neighbor

3. Receive message from
each neighbor

time complexity = number of rounds

Distributed Systems Fabian Kuhn

Asynchronous Message Passing

UNI
f

FREIBURG

In this chapter: No failures, but asynchrony

Asynchronous message passing:
* messages are always delivered in finite time

— cf.: finite time = admissible schedule
* message delays are completely unpredictable
e algorithms are event-based:

upon receiving message from neighbor ..., do
some local computation steps
send message(s) to neighbor(s) ...

Distributed Systems Fabian Kuhn

Broadcast

UNI
f

FREIBURG

* Simple, basic communication problem

Problem Description:

* Asource node s needs to broadcast a message M to all nodes of the
system (network)

 Each node has a unique ID

* Initially, each node knows the IDs of its neighbors

— or it can distinguish its neighbors by having individual communication ports to the
pairwise communication links

Distributed Systems Fabian Kuhn 5

UNI
f

FREIBURG

Flooding

* One of the simplest distributed (network) algorithms

Basic idea:
* When receiving M for the first time, forward to all neighbors

Algorithm:

* Source node s:
initially do
send M to all neighbors

* All other nodes u:
upon receiving M from some neighbor v for the first time

if M has not been received before then
send M to all neighbors except v

Distributed Systems Fabian Kuhn 6

Flooding in Synchronous Systems

UNI

FREIBURG

Synchronous systems:
* time divided into synchronous rounds, msg. delay = 1 round

* time complexity: number of rounds

Progress in flooding algorithm: [R \
Lo el e W5-
R

Distributed Systems Fabian Kuhn

Flooding in Synchronous Systems

UNI

FREIBURG

Synchronous systems:
* time divided into synchronous rounds, msg. delay = 1 round
* time complexity: number of rounds

Progress in flooding algorithm:

e after 1 round:
— all neighbors of s know M
— nodes at distance = 2 from s do not know M

e after 2 rounds:

— exactly nodes at distance < 2 from s know M

e after r rounds:

— exactly nodes at distance < r from s know M

Distributed Systems Fabian Kuhn

UNI
f

FREIBURG

Flooding in Synchronous Systems

Radius: (Graph G = (V,E))

e Givenanodes €V, radiusof sin G:
L]

rad(G,s) = max dist;(s,v) S
VEV e—— y ‘(“\(m
* radius of G: . =
rad(G) == minrad(G,s)
SeV Ly

Diameter of G:
diam(G) = max dist; (u,v) =maxrad(G,s)
u,vev SEV

Time complexity of flooding in synchronous systems: rad(G, s)
diam(G)

<rad(G) < rad(G,s) < diam(G)

— e———————— —

Distributed Systems Fabian Kuhn 9

Radius and Diameter

rad (G,S) ’-’L‘
(Q\mu (Q =<
\’ad@qw =:7)

Distributed Systems Fabian Kuhn

UNI

Asynchronous Time Complexity

FREIBURG

 Time complexity of flooding in asynchronous systems?
 How is time complexity in asynchronous systems defined?

Assumptions:
 Message delays, time for local computations are arbitrary

— Algorithms cannot use any timing assumptions!

* For analysis:
— message delays < 1 time unit
— local computations take 0 time

Determine asynchronous time complexity:
1. determine running time of a given execution

2. asynch. time complexity = max. running time of any exec.

Distributed Systems Fabian Kuhn 11

Asynchronous Time Complexity

UNI
f

FREIBURG

Running time of an execution:

e assign times to send and receive events such that
— order of all events remains unchanged
— local computations take 0 time
— message delays are at most 1 time unit
— first send event is at time 0
(— time of last event is maximized

e essentially: normalize message delays such that the maximum delay is
1 time unit

Definition Asynchronous Time Complexity:
Total time of a worst-case execution in which local computations take
time 0 and all message delays are at most 1 time unit.

Distributed Systems Fabian Kuhn 12

Flooding in Asynchronous Systems

UNI
FREIBURG

Theorem: The time complexity of flooding from a source s in an

asynchronous network G is rad (G, s).
b 1l o
S Leow M

\

b‘,' "’ﬁm (‘, a“ (M)LQSOJ
&‘\S\auu Y th S
Vuow M.

Distributed Systems Fabian Kuhn 13

Message Complexity

UNI

Message Complexity: Total number of messages sent (over all nodes)

What is the message complexity of flooding?

=
'\ /

O

Theorem: The message complexity of flooding is O(|E]).
— ongraph G = (V,E) —

Distributed Systems Fabian Kuhn

14

FREIBURG

Flooding Spanning Tree

UNI

FREIBURG

 The flooding algorithm can be used to compute a spanning tree of the
network.

Idea:
e Source s is the root of the tree

* For all other nodes, neighbor from which M is received first is the
parent node.

Distributed Systems Fabian Kuhn 15

UNI

Flooding Spanning Tree Algorithm

FREIBURG

Source node s:

initially do
parent := 1 // s is the root
send M to all neighbors

Non-source node u:

upon receiving M from some neighbor v
if M has not been received before then

parent :== v
send M to all neighbors except v

Distributed Systems Fabian Kuhn 16

UNI

Spanning Tree: Synchronous Systems

FREIBURG

e |n tree: distance of v to root = round in which v is reached

* In synchronous systems, a node v are reached in round r if and only if
distc(s,v) =r

Shortest Path Tree = BFS Tree (BFS = breadth first search)
* tree which preserves graph distances to root node

Theorem: In synchronous systems, the flooding algorithm constructs a
BFS tree.

Distributed Systems Fabian Kuhn 17

Spanning Tree: Asynchronous Systems

UNI
f

FREIBURG

How does the spanning tree look if comm. is asynchronous?

Observation: In asynchronous executions, the depth of the tree can be
n — 1 even if the radius/diameter of the graph is 1.

Distributed Systems Fabian Kuhn 18

UNI

Convergecast

FREIBURG

 “Opposite” of broadcast
* Given a rooted spanning tree, communicate from all nodes to the root

— starting from the leaves

Example: Compute sum of values in a rooted tree

y & c; A\
és /) N
A 7a

Distributed Systems Fabian Kuhn 19

Convergecast Algorithm

UNI

FREIBURG

Leaf node v:
initially do
send message to parent
(e.g., send input value)

Inner node u:
upon receiving message from child node v
if u has received messages from all children then
send message to parent
(e.g., send sum of all inputs in u’s subtree)

Root node 7:
upon receiving message from child node v
if 7 has received messages from all children then
convergecast terminates

Distributed Systems Fabian Kuhn

20

Convergecast: Analysis & Remarks

UNI
f

FREIBURG

Time Complexity:

horgl o e
Message Complexity:

%e&vw 04(ha = n-|

Application of the convergecast algorithm:
e Computing functions, e.g.:

— min, max, sum, average, median, ...
 Termination detection

— inform parent as soon as all nodes in subtree have terminated

Distributed Systems Fabian Kuhn 21

Flooding/Echo Algorithm

* If aleader (root), but no spanning tree exists, flooding and
convergecast can be used together for computing functions, ...

1. Use flooding to construct a tree
2. Use convergecast (echo) to report back to the root when done

G=(VE)

Time Complexity of Flooding + Convergecast (Echo):
"\s\.

D "\”X"HM K\o‘akm
SW . O (D) n= V)
m=El

voudnS @(V\
ooplmens) D= o (G)

Distributed Systems Fabian Kuhn 22

UNI
f

FREIBURG

Constructing Good Trees

UNI
f

FREIBURG

 When combining flooding and convergecast, the time complexity is
linear in the depth of the constructed tree.

* Insynchronous systems, the tree is a BFS tree (shortest path tree), i.e.,
the depth of the tree is O(diam(G))

— optimal time complexity: O(diam(G))

* In asynchronous systems, the time complexity can be Q(n), even if the
graph has a very small diameter!

* Convergecast / low diameter spanning trees are important!

 How can we construct a BFS tree in an asynchronous system?

Distributed Systems Fabian Kuhn 23

Constructing Shortest Path Tree

UNI

FREIBURG

Dijkstra
* Grow tree from source s

* Atintermediate step t, subtree of all nodes at distance < 7y from
source node s

* Next step: add node with min. distance to s

Bellman-Ford
* Each node v keeps a distance estimate d,, to s
— initially: dg = 0, d,, = oo (for all v # s)
* In each step, all nodes update their estimate based on neighbor

estimates:
d, = min {dv, min {d, + 1}}

UEN (v)

Distributed Systems Fabian Kuhn

24

Distributed Dijkstra

UNI
f

FREIBURG

* |n our case, the graph is unweighted
 We can therefore grow the tree level by level

— Essentially like in a synchronous execution

 Assume, the tree is constructed up to distance r from s

e How can we add the next level?

A+2+ %4 4D

I - pow
2

Distributed Systems Fabian Kuhn 25

Distributed Dijkstra

UNI
f

FREIBURG

* Source/root node coordinates the phases

Algorithm for Phase r + 1:

1. Root node broadcasts “start phase r + 1” in current tree

2. Leaf nodes (level r nodes) send “join r + 1” to neighbors

Husy: A(E)

3. Node v receiving jom r + 1” from neighbor u:

1. First such message: u becomes parent of v, v sends ACKto u
J
2. Otherwise, v sends NACK to u
v

4. After receiving ACK or NACK from all neighbors, level r nodes report
back to root by starting a convergecast
S——

—

5. When the convergecast terminates at the root, the root can start the
next phase

Distributed Systems Fabian Kuhn 26

Distributed Dijkstra: Analysis

UNI

FREIBURG

Time Complexity:

~ diwe cwgk«?l?z(?Lau cet 7 O(r)

—

-welly - O (D) 5\ (Dﬁo(r)]

=

Message Complexity:

O(m + Dn)

\ oL /WACL

e

Distributed Systems Fabian Kuhn

27

Distributed Bellman-Ford

UNI
f

FREIBURG

Basic Idea:

* Each node u stores an integer d,, with the current guess for the
distance to the root node s

 Whenever a node u can improve d,, u informs its neighbors

Algorithm:
1. |Initialization: d; = 0, for v # s:d,, := oo, parent,, :=1
2. Root s sends “1” to all neigbors

3. For all other nodes u:
upon receiving message “x” with x < d,, from neighbor v do
setd, = x T
set parent, = v

send “x + 1” to all neighbors (except v)
———

Distributed Systems Fabian Kuhn 28

Distr. Bellman-Ford: Time Complexity

UNI
FREIBURG

Theorem: The time complexity of the distributed Bellman-Ford algorithms

S
A

WG e 0
\7,\@‘«"‘\ Q\’ Mo

Distributed Systems Fabian Kuhn 29

Distr. Bellman-Ford: Message Complexity

Theorem: The message complexity of the distributed Bellman-Ford
algorithms is @(_W\- V\>

ﬂ?wm). pr g & o recds vn "o —)
A X=7
"%\' X £ h-)

o)
‘_‘\:“\&a 28 Q” v'

Distributed Systems Fabian Kuhn

UNI
f

FREIBURG

Distr. Bellman-Ford: Message Complexity

UNI
i

FREIBURG

Theorem: The message complexity of the distributed Bellman-Ford

algorithms is O(|E| - |V|).

Distributed Systems

Fabian Kuhn

31

Distributed BFS Tree Construction

Synchronous
+ Time: 0(diam(G)), Messages: O(|E])
* both optimal

Asynchronous

e Distributed Dijkstra:
Time: O(diam(G)?), Messages: 0(|E| + |V| - diam(G))

e Distributed Bellman-Ford:
Time: O(diam(G)), Messages: O(|E]| - |V])

* Best known trade-off between time and messages:
Time: O(diam(G) - log®|V]), Messages: O(|E| + |V] - log3|V])
— based on synchronizers
(generic way of translating synchronous algorithms into asynch. ones)
— We will look at synchronizers in a later lecture...

Distributed Systems Fabian Kuhn

UNI
f

FREIBURG

