

Chapter 4 Consensus I

Theory of Distributed Systems Summer Term 2024

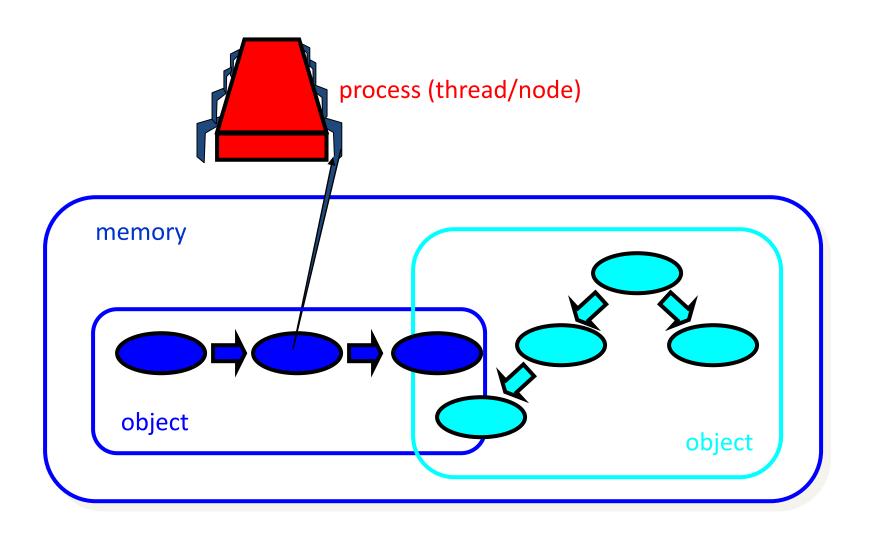
Fabian Kuhn

Overview

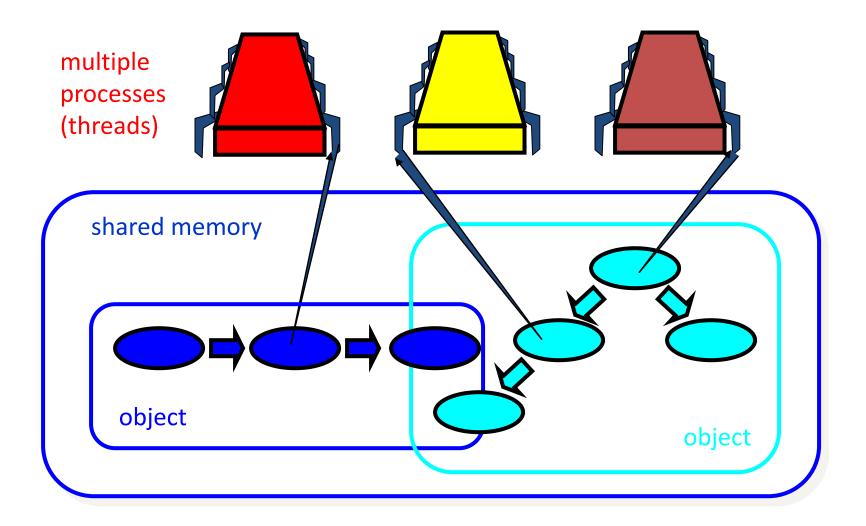
- Introduction
- Consensus #1: Shared Memory
- Consensus #2: Wait-free Shared Memory
- Consensus #3: Read-Modify-Write Shared Memory
- Consensus #4: Synchronous Systems
- Consensus #5: Byzantine Failures
- Consensus #6: A Simple Algorithm for Byzantine Agreement
- Consensus #7: The Queen Algorithm
- Consensus #8: The King Algorithm
- Consensus #9: Byzantine Agreement Using Authentication
- Consensus #10: A Randomized Algorithm
- Shared Coin

Most slides by R. Wattenhofer (ETHZ), based on slides by M. Herlihy (Brown Univ.)

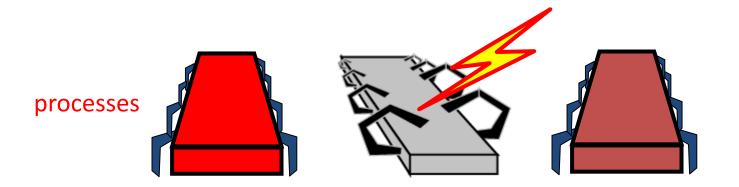
Sequential Computation



Concurrent Computation



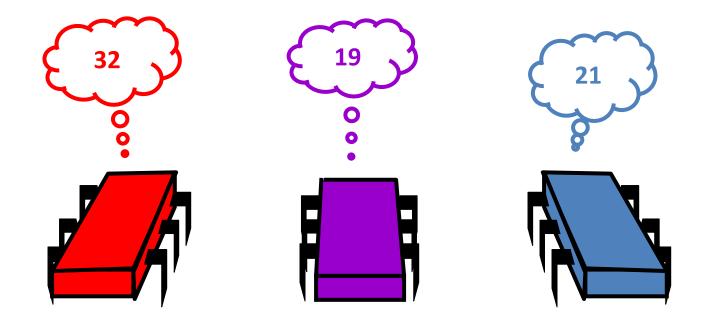
Fault Tolerance & Asynchrony



- Why fault-tolerance?
 - Even if processes do not die, there are "near-death experiences"
- Sudden unpredictable delays:
 - Cache misses (short)
 - Page faults (long)
 - Scheduling quantum used up (really long)

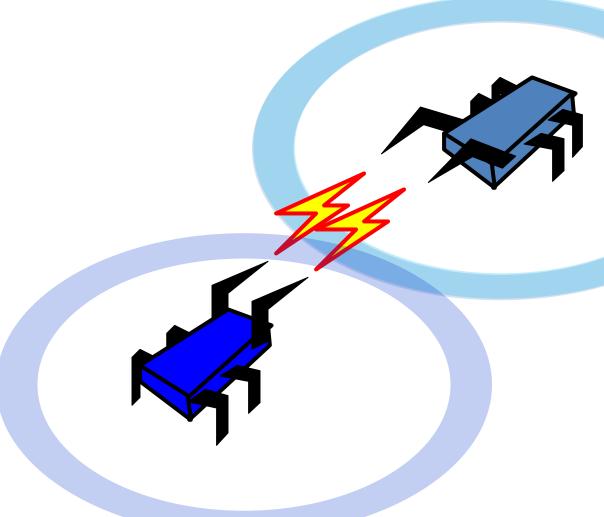
Consensus

Each thread/process has a private input



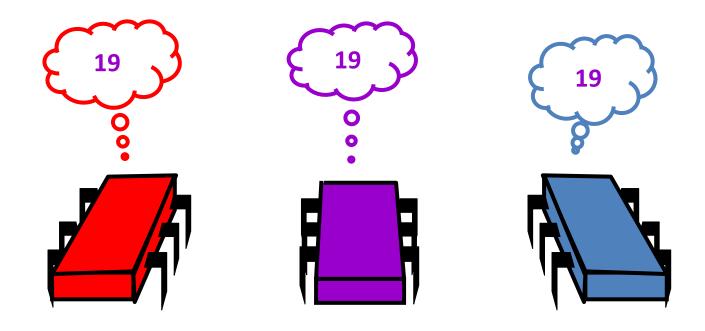
Consensus

The processes communicate



Consensus

They agree on some process's input



Consensus More Formally

Setting:

- n processes/threads/nodes $v_1, v_2, ..., v_n$
- Each process has an input $x_1, x_2, ..., x_n \in \mathcal{D}$
- binary consensus: $\mathcal{D} = \{0, 1\}$
- Each (non-failing) process computes an output $y_1, y_2, ..., y_n \in \mathcal{D}$

Agreement:

The outputs of all non-failing processes are equal.

Validity:

If all inputs are equal to x, all outputs are equal to x.

Termination:

All non-failing processes terminate after a finite number of steps.

Remarks

Validity might sometimes depend on the (failure) model

Two Generals:

- The two generals (coordinated attack) problem is a variant of binary consensus with 2 processes.
- Model:
 - Communication is synchronous, messages can be lost
- Validity:
 - If no messages are lost, and both nodes have the same input x, x needs to be the output of both nodes
- We have seen that the problem cannot be solved in this setting.

Consensus is Important

- With consensus, you can implement anything you can imagine...
- Examples:
 - With consensus you can decide on a leader,
 - implement mutual exclusion,
 - or solve the two generals problem
 - and much more...
- We will see that in some models, consensus is possible, in some other models, it is not
- The goal is to learn whether for a given model consensus is possible or not ... and prove it!

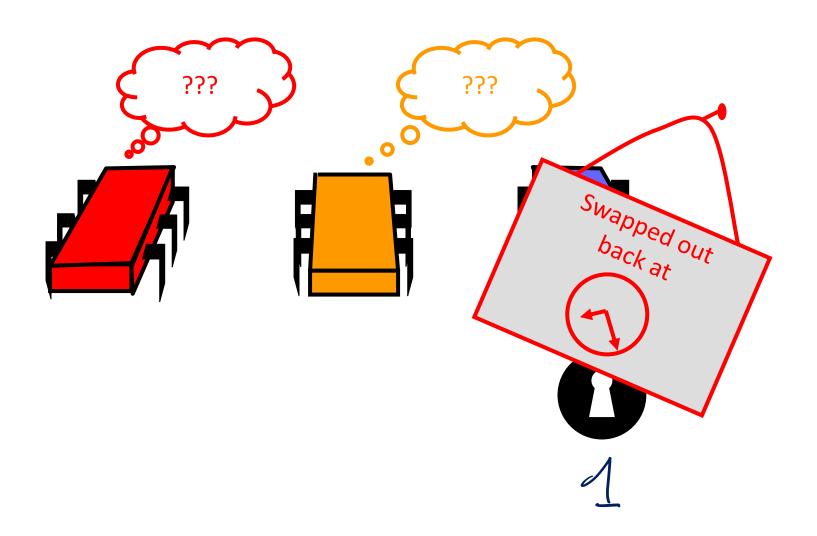
Consensus #1: Shared Memory

- n > 1 processors
- Shared memory is memory that may be accessed simultaneously by multiple threads/processes.
- Processors can atomically read from or write to (not both)
 a shared memory cell

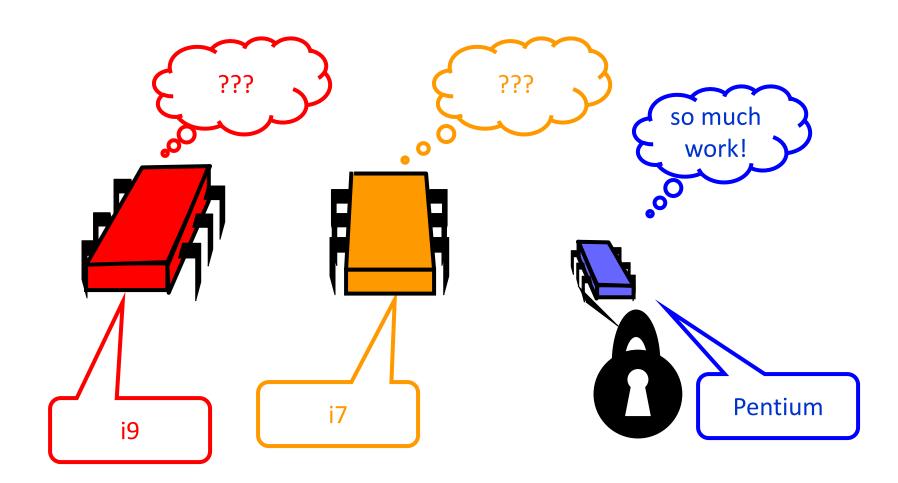
Protocol:

- There is a designated memory cell c.
- Initially c is in a special state "?"
- Processor 1 writes its value x_1 into c, then decides on x_1 .
- A processor $j \neq 1$ reads c until j reads something else than "?", and then decides on that.
- Problems with this approach?

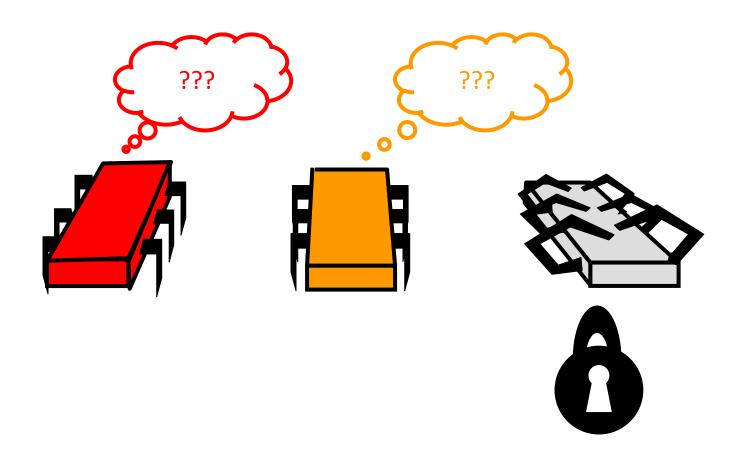
Unexpected Delay



Heterogeneous Architectures

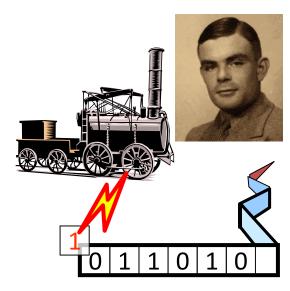


Fault-Tolerance

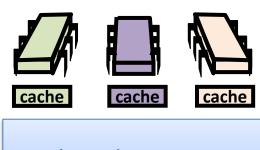


Computability

- Definition of computability
 - Computable usually means Turing-computable,
 i.e., the given problem can be solved using a
 Turing machine
 - Strong mathematical model!



- Shared-memory computability
 - Model of asynchronous concurrent computation
 - Computable means it is wait-free computable on a multiprocessor
 - Wait-free...?



shared memory

Consensus #2: Wait-free Shared Memory

- n > 1 processors
- Processors can atomically read to or write from (not both)
 a shared memory cell
- Processors might crash (stop... or become very slow...)

Wait-free implementation:

- Every process completes in a finite number of steps
- Implies that locks cannot be used → The thread holding the lock may crash and no other thread can make progress
- We assume that we have wait-free atomic registers
 (i.e., reads and/or writes to same register do not overlap)

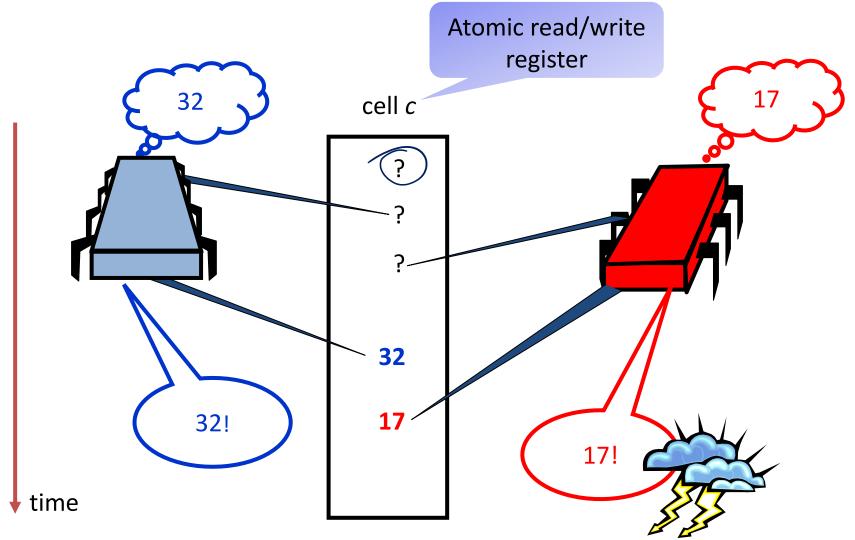
A Wait-Free Algorithm

- There is a cell c, initially c = "?"
- Every processor i does the following:

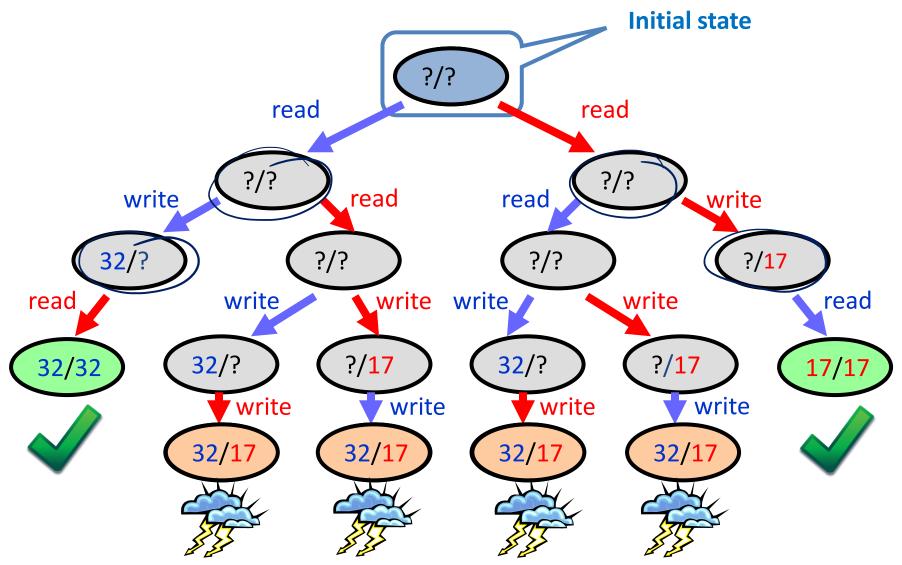
```
r = read(c);
if (r == "?") then
  write(c, x<sub>i</sub>); decide x<sub>i</sub>;
else
  decide r;
```

Is this algorithm correct...?

An Execution



Execution Tree

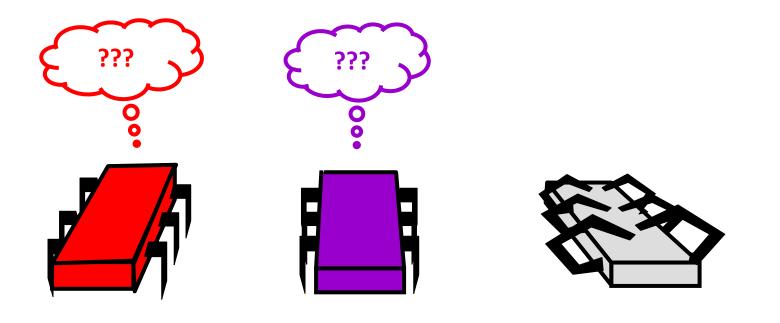


Impossibility

Theorem

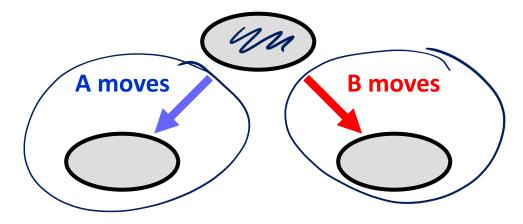
[FLP]: Fischer, Lynch, Paterson, 1985

There is no deterministic asynchronous wait-free consensus algorithm using read/write atomic registers.

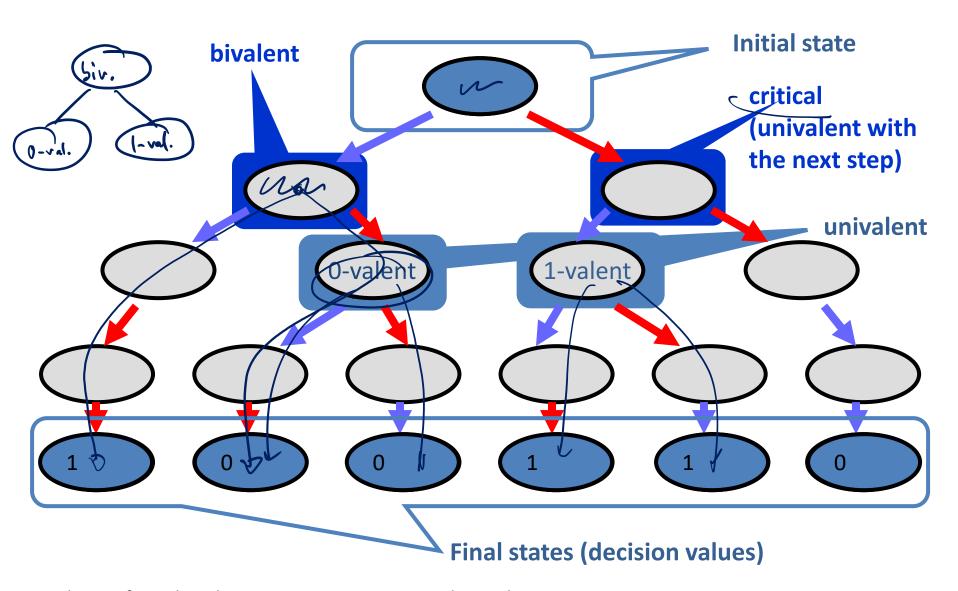


Proof

- Make it simple
 - There are only two processes A and B and the input is binary
- Assume that there is a protocol
- In this protocol, either A or B "moves" in each step
- Moving means
 - Register read
 - Register write



Execution Tree



Bivalent vs. Univalent

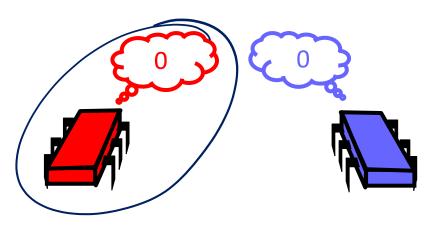
- Wait-free computation is a tree
- Bivalent system states
 - Outcome is not fixed
- Univalent states
 - Outcome is fixed
 - Maybe not "known" yet
 - 1-valent and 0-valent states

Claim:

- Some initial system state is bivalent
- Hence, the outcome is not always fixed from the start

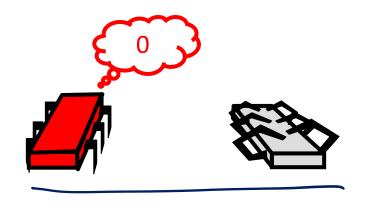
Proof of Claim: A 0-Valent Initial State

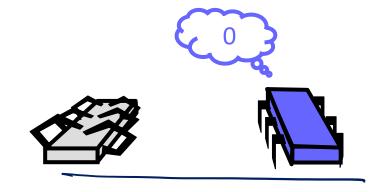
All executions lead to the decision 0



Similarly, the decision is always 1 if both threads start with 1!

Solo executions also lead to the decision 0

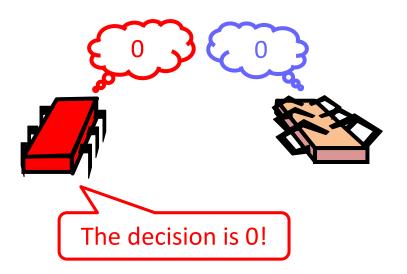


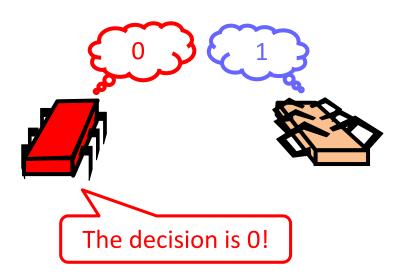


Proof of Claim: Indistinguishable Situations

Situations are indistinguishable to red process

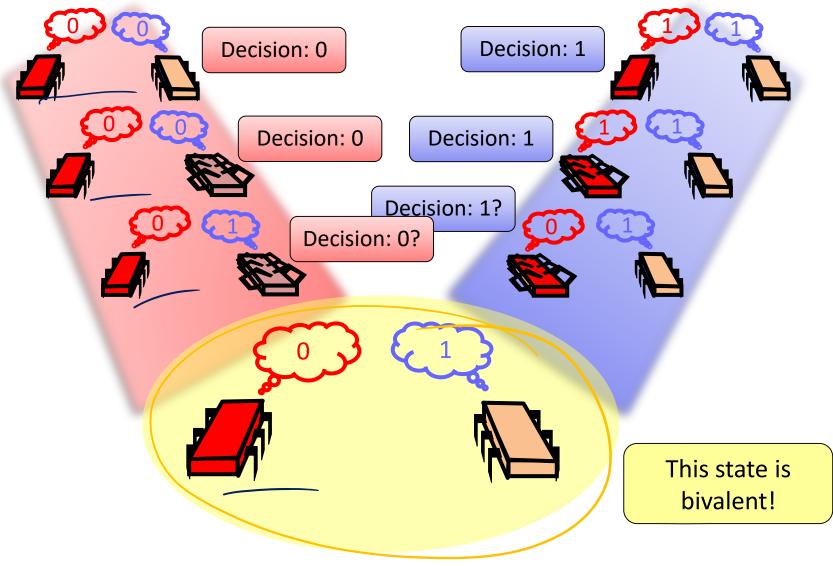
 \Rightarrow The outcome must be the same





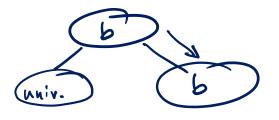
Similarly, the decision is 1 if the red thread crashed!

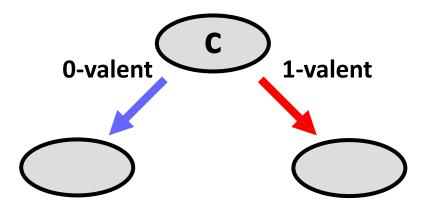
Proof of Claim: A Bivalent Initial State



Critical States

- Starting from a bivalent initial state
- The protocol must reach a critical state
 - Otherwise we could stay bivalent forever
 - And the protocol is not wait-free





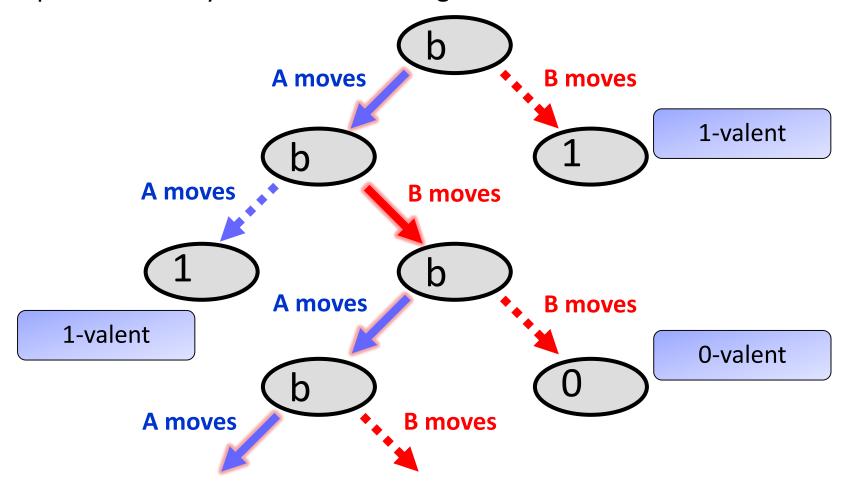
A bivalent state is critical if all

children states are univalent

 The goal is now to show that the system can always remain bivalent

Reaching a Critical State

• The system can remain bivalent forever if there is always an action that prevents the system from reaching a critical state:



Model Dependency

- So far, everything was memory-independent!
- True for
 - Registers
 - Message-passing
 - Carrier pigeons
 - Any kind of asynchronous computation

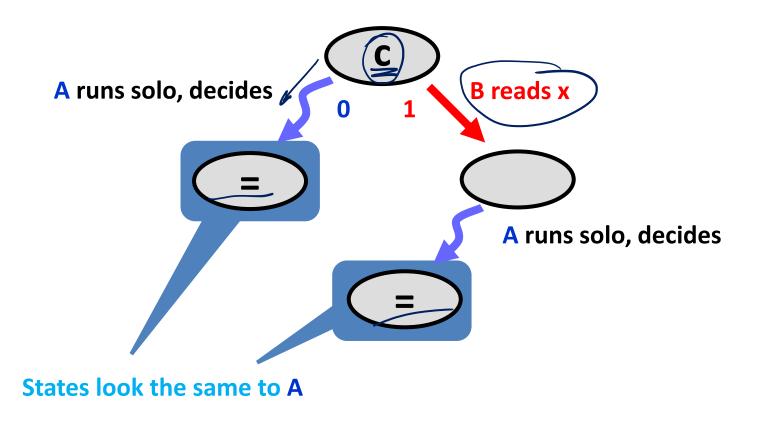
Steps with Shared Read/Write Registers

- Processes/Threads
 - Perform reads and/or writes
 - To the same or different registers
 - Possible interactions?

Possible Interactions

	A read	s x			
	x.read()	y.read()	x.write()	y.write()	
x.read()	?	,	?	Ş	
y.read()	?		?	,	
x.write()	?	?	?	,	
y.write()	?	?	?	Ş	
B writes y					

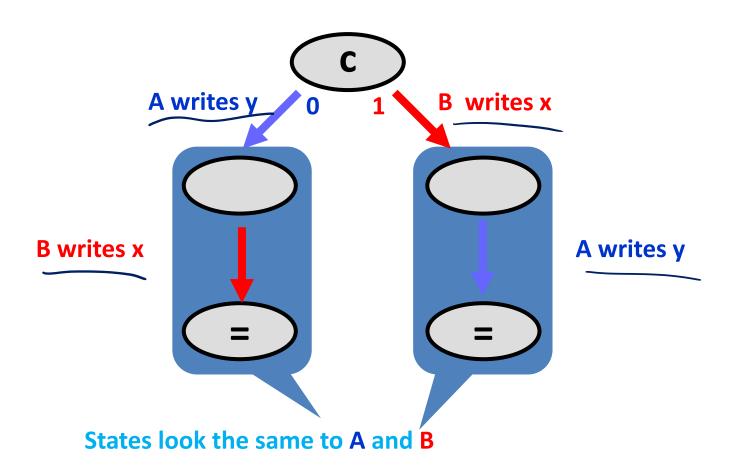
Reading Registers



Possible Interactions

	x.read()	y.read()	x.write()	y.write()
x.read()	no	no	no	no
y.read()	no	no	no	no
x.write()	no	no	?	?
y.write()	no	no	?	?

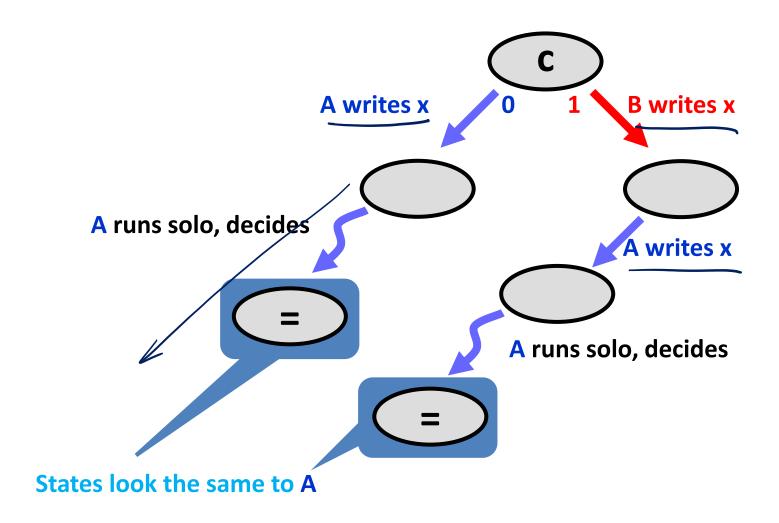
Writing Distinct Registers



Possible Interactions

	x.read()	y.read()	x.write()	y.write()
x.read()	no	no	no	no
y.read()	no	no	no	no
x.write()	no	no	?	no
y.write()	no	no	no	?

Writing Same Registers

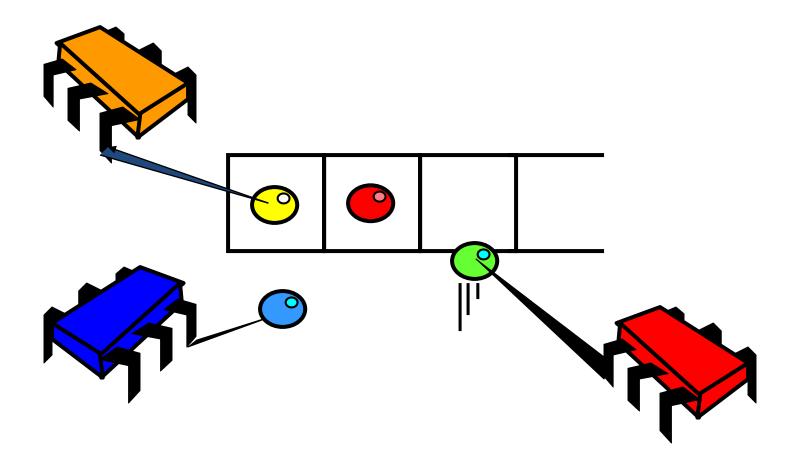


This Concludes the Proof ©

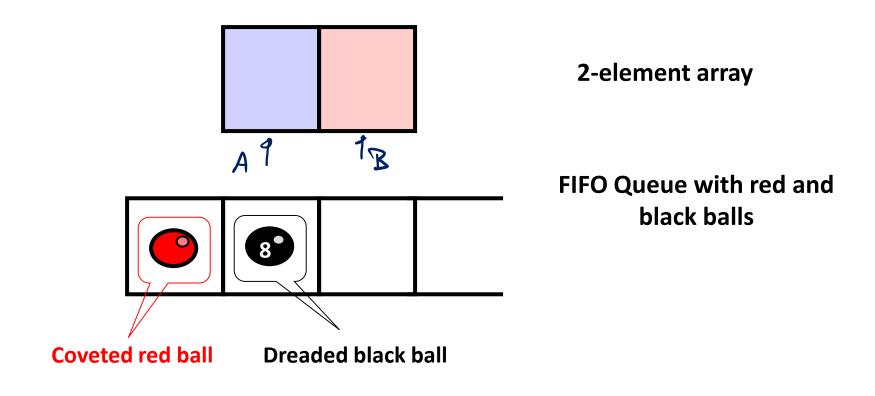
	x.read()	y.read()	x.write()	y.write()
x.read()	no	no	no	no
y.read()	no	no	no	no
x.write()	no	no	no	no
y.write()	no	no	no	no

Consensus in Distributed Systems?

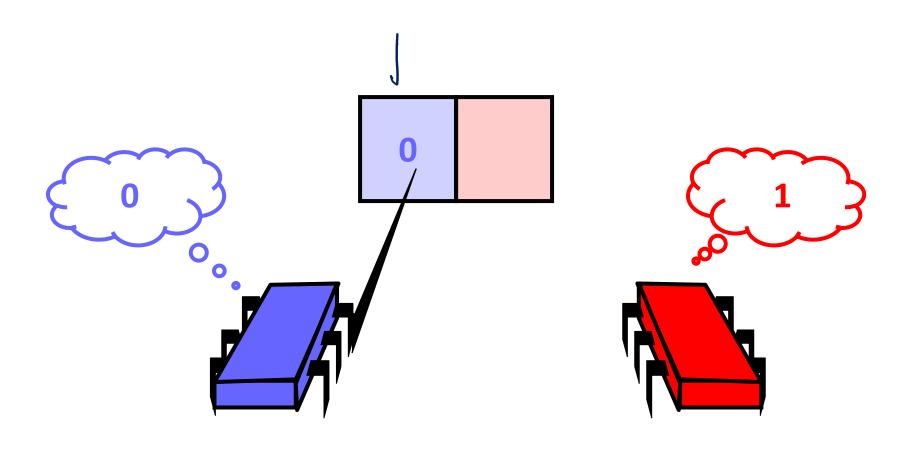
We want to build a concurrent FIFO Queue with multiple dequeuers



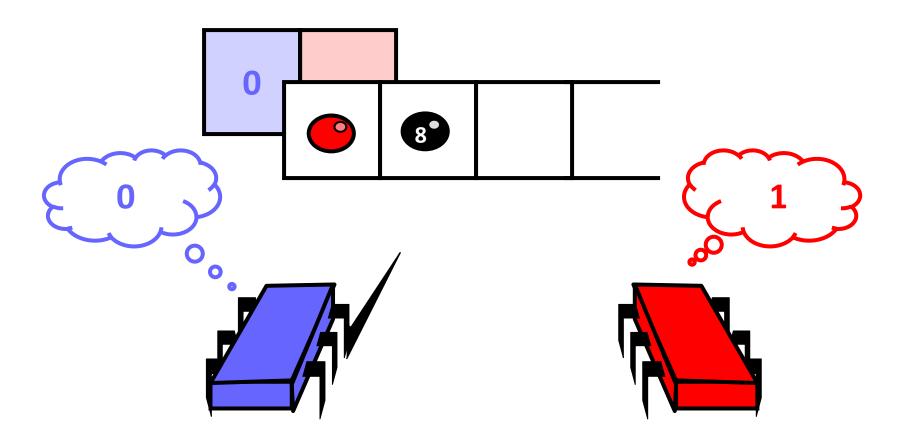
Assume we have such a FIFO queue and a 2-element array

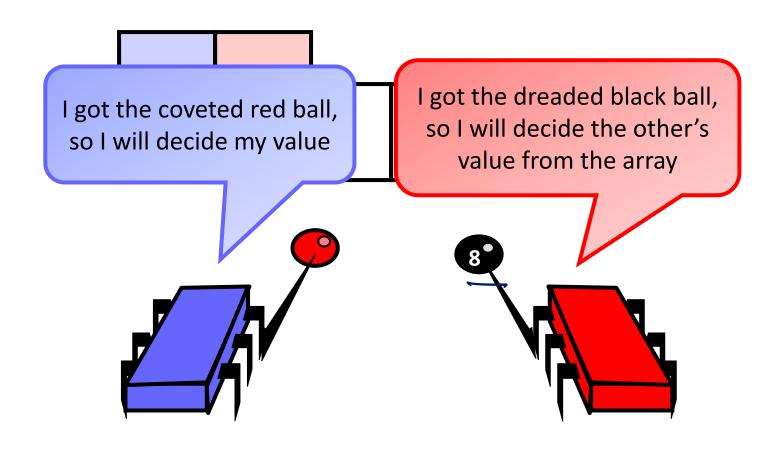


• Process i writes its value into the array at position i



Then, the thread takes the next element from the queue





Why does this work?

- If one thread gets the red ball, then the other gets the black ball
- Winner can take its own value
- Loser can find winner's value in array
 - Because processes write array before dequeuing from queue

Implication

- We can solve 2-thread consensus using only
 - A two-dequeuer queue
 - Atomic registers

Implications

- Assume there exists
 - A queue implementation from atomic registers
- Given
 - A consensus protocol from queue and registers
- Substitution yields
 - A wait-free consensus protocol from atomic registers

contradiction

Corollary

- It is impossible to implement a two-dequeuer wait-free FIFO queue with read/write shared memory.
- This was a proof by reduction; important beyond NP-completeness...

Consensus #3: Read-Modify-Write Memory

- n > 1 processes (processors/nodes/threads)
- Wait-free implementation
- Processors can read and write a shared memory cell in one atomic step: the value written can depend on the value read
- We call this a read-modify-write (RMW) register
- Can we solve consensus using a RMW register...?

Consensus Protocol Using a RMW Register

- There is a cell c, initially c = "?"
- Every processor i does the following

RMW(c)

```
if (c == "?") then
  write(c, x<sub>i</sub>); decide x<sub>i</sub>
else
  decide c;
```

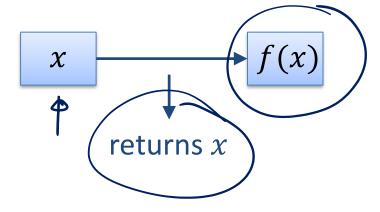
atomic step

Discussion

- Protocol works correctly
 - One processor accesses c first; this processor will determine decision
- Protocol is wait-free
- RMW is quite a strong primitive
 - Can we achieve the same with a weaker primitive?

Read-Modify-Write More Formally

- Method takes 2 arguments:
 - Cell <u>c</u>
 - Function \underline{f}
- Method call:
 - Replaces value x of cell c with f(x)
 - Returns value x of cell c



Read-Modify-Write

Read-Modify-Write: Read


```
public class RMW {
   private int value;

public synchronized int read() {
   int prior = this.value;
   this.value = this.value;
   return prior;
   }

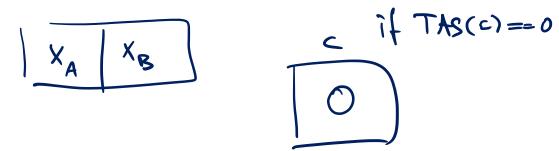
Identify function
}
```

Read-Modify-Write: Test&Set


```
public class RMW {
  private int value;

public synchronized int TAS() {
  int prior = this.value;
  this.value = 1;
  return prior;
  }

  Constant function
}
```



Read-Modify-Write: Fetch&Inc


```
public class RMW {
  private int value;

public synchronized int FAI() {
  int prior = this.value;
  this.value = this.value+1;
  return prior;
  }
  Increment function
}
```

Read-Modify-Write: Fetch&Add


```
public class RMW {
  private int value;

public synchronized int FAA(int x) {
  int prior = this.value;
  this.value = this.value+x;
  return prior;
  }

Addition function
}
```

Read-Modify-Write: Swap


```
public class RMW {
  private int value;

public synchronized int swap(int x) {
  int prior = this.value;
  this.value = x;
  return prior;
  }

Set to x
}
```

Read-Modify-Write: Compare&Swap


```
public class RMW {
   private int value;

public synchronized int CAS(int old, int new) {
   int prior = this.value;
   if(this.value == old)
        this.value = new;
   return prior;
   }

}
"Complex" function
```


Definition of Consensus Number

- An object has **consensus number** n
 - If it can be used
 - Together with atomic read/write registers
 - To implement n-process consensus, but not (n + 1)-process consensus
- Example: Atomic read/write registers have consensus number 1
 - Works with 1 process
 - We have shown impossibility with 2

Consensus Number Theorem

Theorem

If you can implement X from Y and

 \boldsymbol{X} has consensus number \boldsymbol{c} , then

Y has consensus number at least c.

Consensus Number Theorem

Theorem

If you can implement X from Y and X has consensus number c, then

Y has consensus number at least c.

- Consensus numbers are a useful way of measuring synchronization power
- An alternative formulation:
 - If X has consensus number c
 - And Y has consensus number d < c
 - Then there is no way to construct a wait-free implementation of X by Y
- This theorem is very useful
 - Unforeseen practical implications!

Theorem

- A RMW is non-trivial if there exists a value v such that $v \neq f(v)$
 - Test&Set, Fetch&Inc, Fetch&Add, Swap, Compare&Swap, general RMW...
 - But not read

Theorem

Any non-trivial RMW object has consensus number at least 2.

- Implies no wait-free implementation of RMW registers from read/write registers
- Hardware RMW instructions not just a convenience

Proof

A two-process consensus protocol using any non-trivial RMW object:

Interfering RMW

- Let F be a set of functions such that for all f_i and f_i either
 - They commute: $f_i(f_i(x))=f_i(f_i(x))$
 - They overwrite: $f_i(f_i(x))=f_i(x)$

 $f_i(x)$ = new value of cell (not return value of f_i)

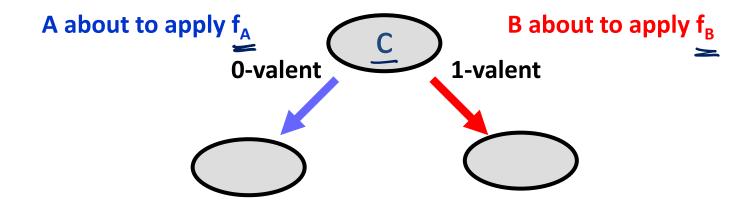
Claim: Any such non-trivial RMW object has consensus number exactly 2

Examples:

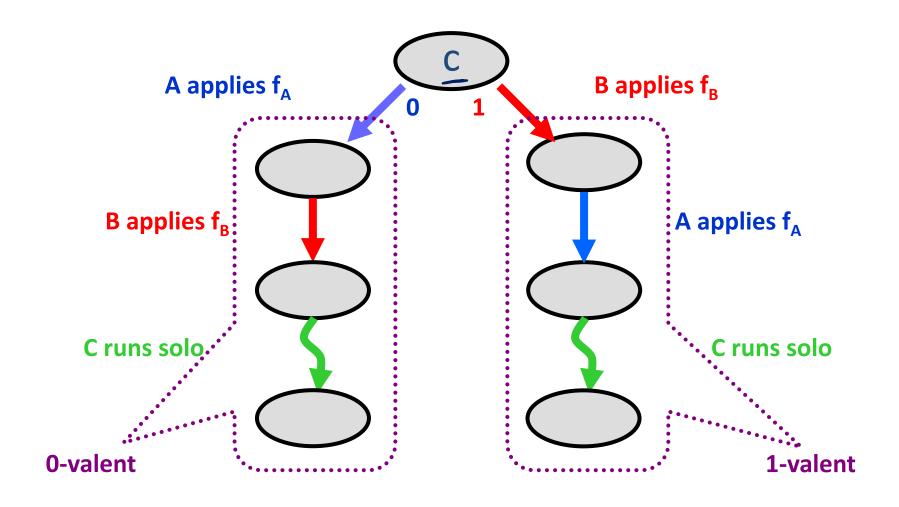
- Overwrite
 - Test&Set , Swap
- Commute
 - Fetch&Inc, Fetch&Add

Proof

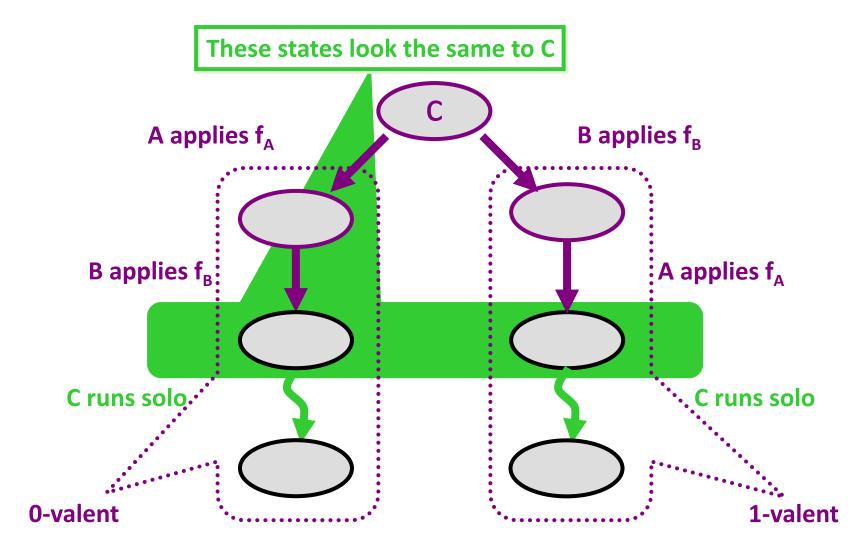
- There are three threads, A, B, and C
- Consider a critical state c:



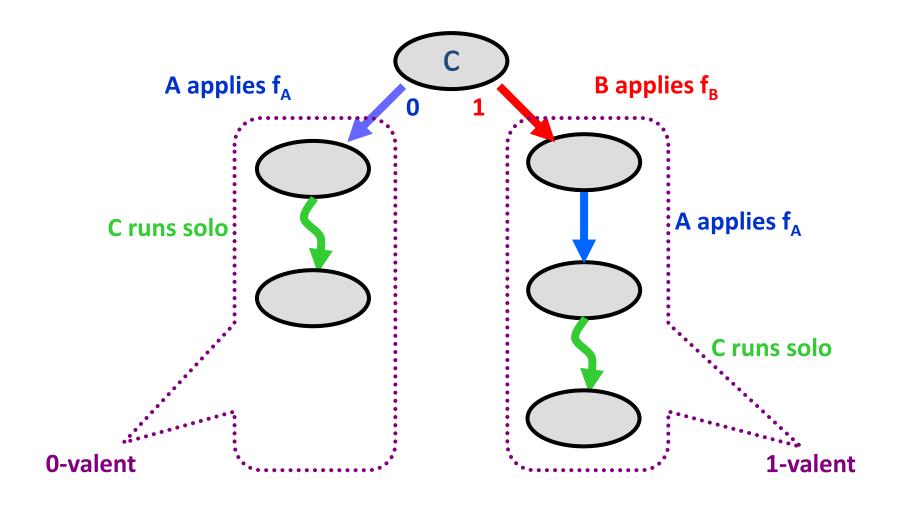
Proof: Maybe the Functions Commute



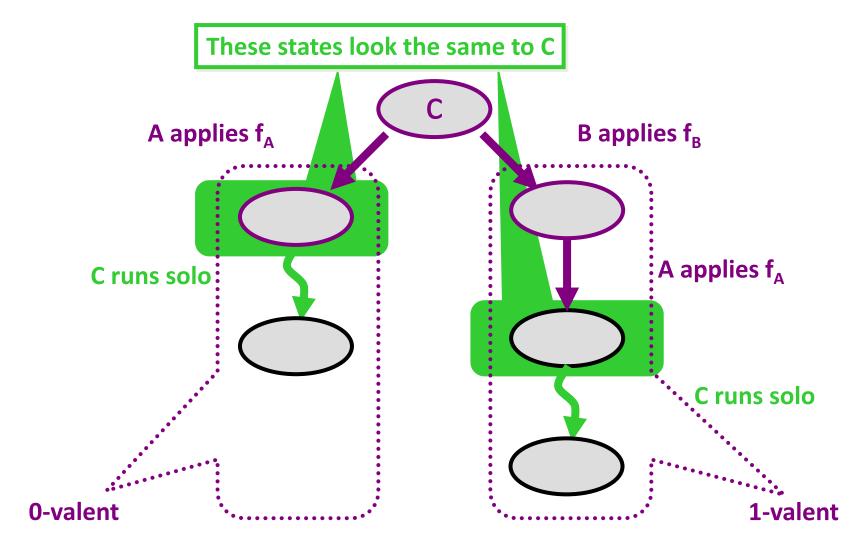
Proof: Maybe the Functions Commute



Proof: Maybe the Functions Overwrite



Proof: Maybe the Functions Overwrite

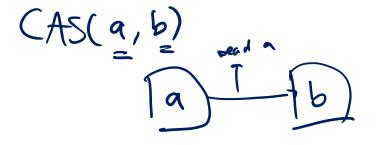


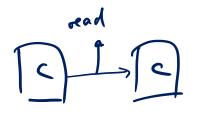
Impact

- Many early machines used these "weak" RMW instructions
 - Test&Set (IBM 360)
 - Fetch&Add (NYU Ultracomputer)
 - Swap
- We now understand their limitations

Consensus with Compare & Swap


```
public class RMWConsensus implements Consensus {
 private RMW r;
                                     Initialized to -1
  public Object decide() {
    int i = Thread.myIndex();
                                     Am I first?
    int j = r.CAS(-1.0)
    if(i == -1)
                                      Yes, return
      return [this.announce[i];
                                      my input
    else
      return [this.announce[j];
                                      No, return
                                     other's input
```





The Consensus Hierarchy

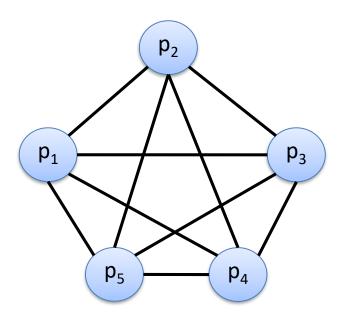
Read/Write Registers

- Test&Set
- Fetch&Inc
- Fetch&Add
- Swap

- CAS
- LL/SC

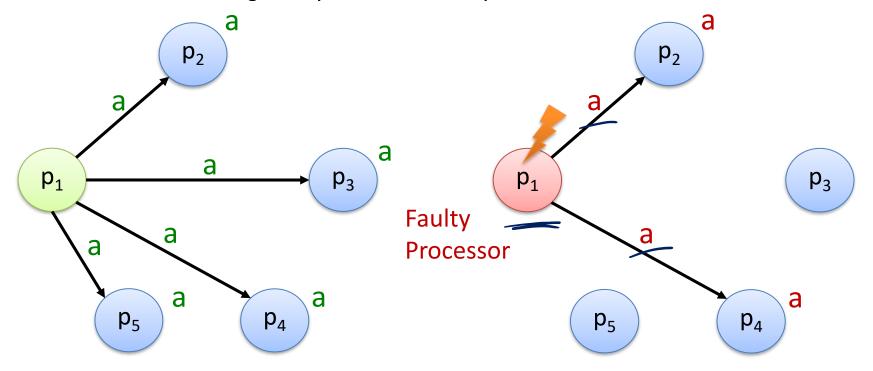
Consensus #4: Synchronous Systems

- One can sometimes tell if a processor had crashed
 - Timeouts
 - Broken TCP connections
- Can one solve consensus at least in synchronous systems?
- Model
 - All communication occurs in synchronous rounds
 - Complete communication graph



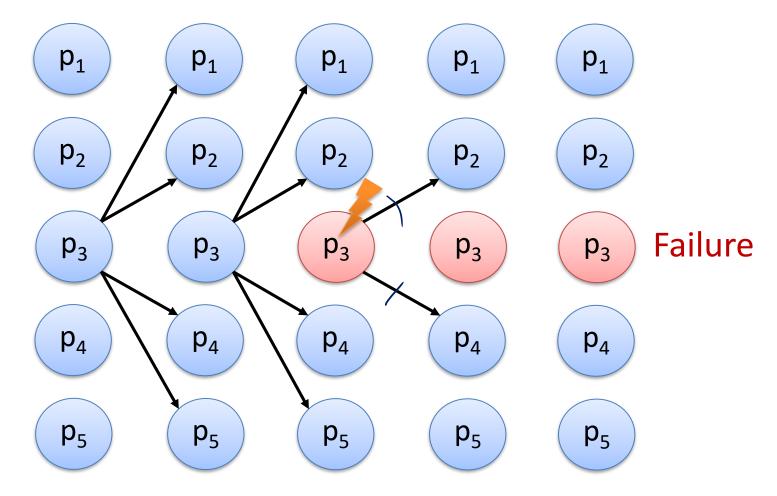
Crash Failures

- Broadcast: Send a message to all nodes in one round
 - At the end of the round everybody receives the message a
 - Every process can broadcast a value in each round
- Crash Failures: A broadcast can fail if a process crashes
 - Some of the messages may be lost, i.e., they are never received



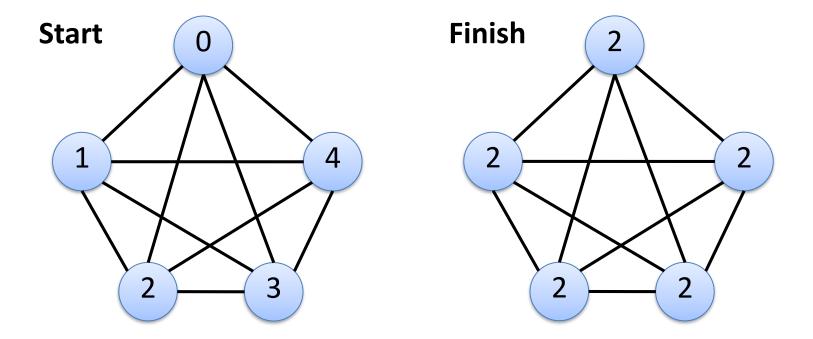
Process disappears after failure

Round 1 Round 2 Round 3 Round 4 Round 5



Consensus Repetition

- Input: everybody has an initial value
- Agreement: everybody must decide on the same value



 Validity conditon: If everybody starts with the same value, everybody must decide on that value

A Simple Consensus Algorithm

Each process:

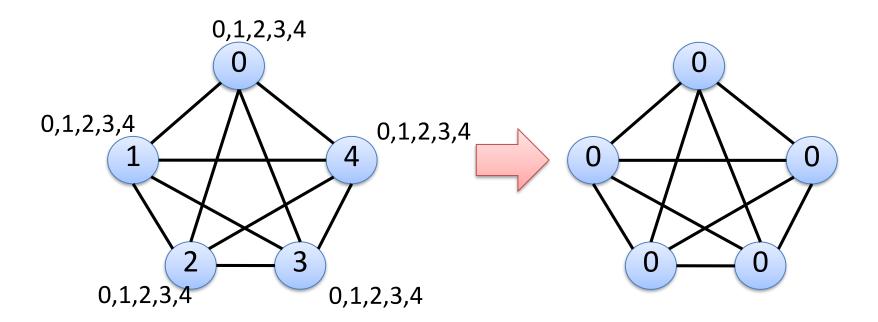
- 1. Broadcast own value
- 2. Decide on the minimum of all received values

Including the own value

Note than only one round is needed!

Execution Without Failures

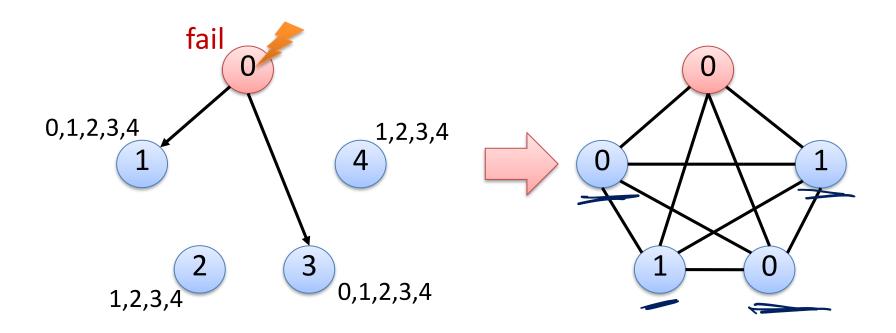
- Broadcast values and decide on minimum → Consensus!
- Validity condition is satisfied: If everybody starts with the same initial value, everybody sticks to that value (minimum)



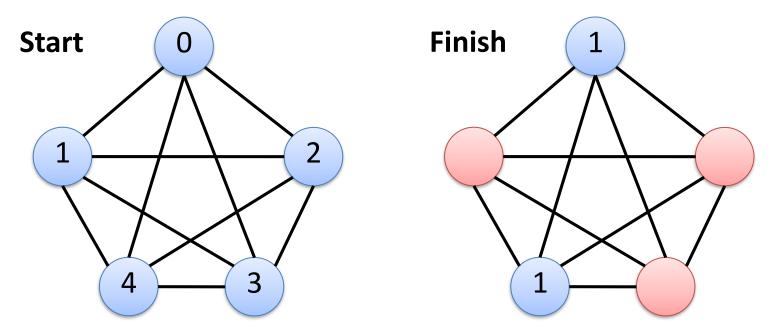
Execution With Failures

- The failed processor doesn't broadcast its value to all processors
- Decide on minimum

 No consensus!



- If an algorithm solves consensus for f failed processes, we say it is an f-resilient consensus algorithm
- Example: The input and output of a 3-resilient consensus alg.



Refined validity condition:

All processes decide on a value that is available initially

Each process:

Round 1:

Broadcast own value

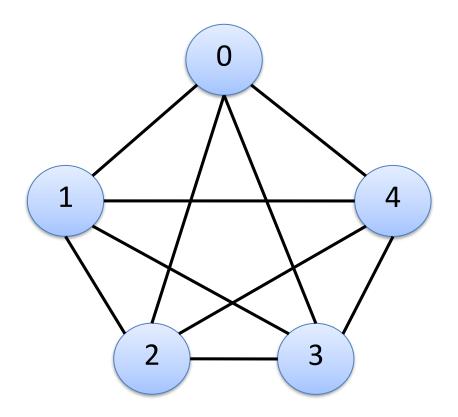
Round 2 to round f + 1:

Broadcast the minimum of the received values unless it has been sent before

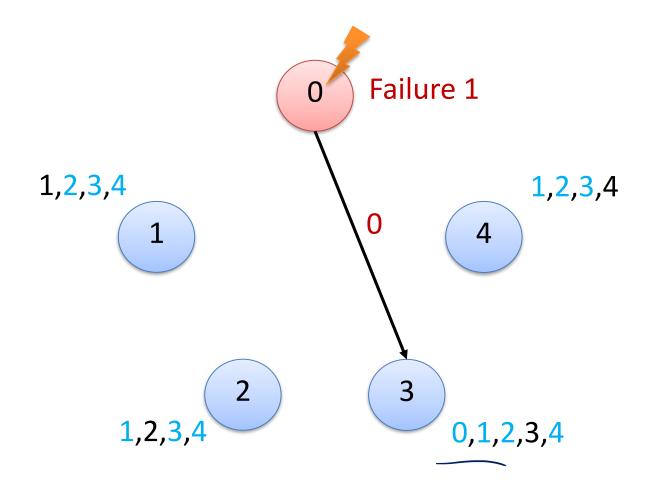
End of round f + 1:

Decide on the minimum value received

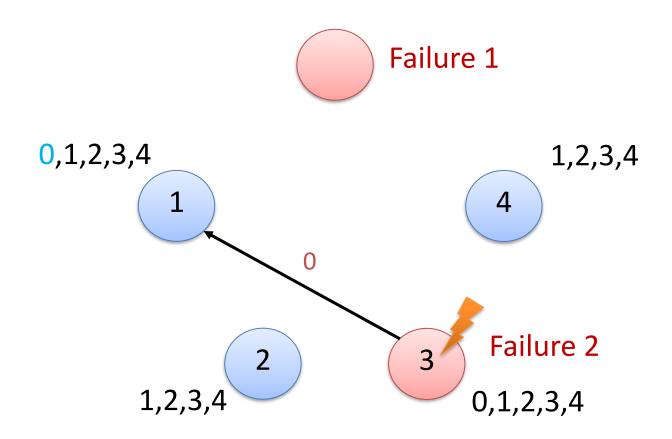
• Example: f = 2 failures, f + 1 = 3 rounds needed



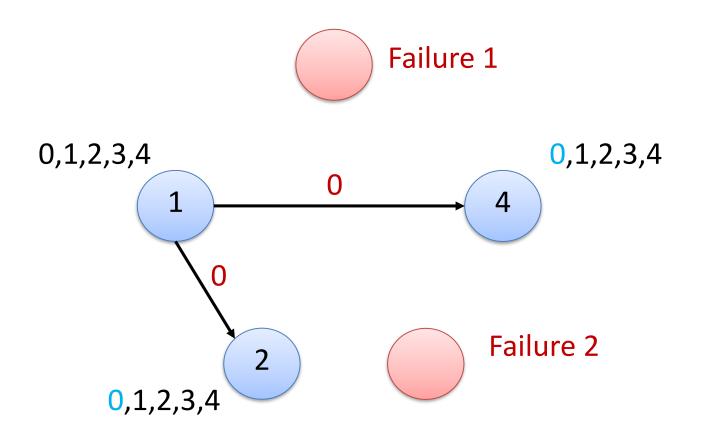
Round 1: Broadcast all values to everybody



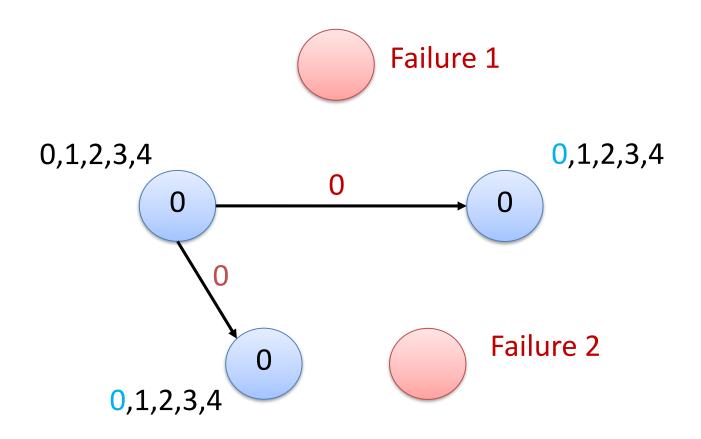
Round 2: Broadcast all new values to everybody



Round 3: Broadcast all new values to everybody



Decide on minimum → Consensus!



Analysis

• If there are f failures and f+1 rounds, then there is a round with no failed process

Example: 5 failures, 6 rounds: 6 No failure

Analysis

- At the end of the round with no failure
 - Every (non faulty) process knows about all the values of all the other participating processes
 - This knowledge doesn't change until the end of the algorithm
- Therefore, everybody will decide on the same value
- However, as we don't know the exact position of this round, we have to let the algorithm execute for f+1 rounds
- Validity: When all processes start with the same input value, then consensus is that value

Theorem

Theorem

If at most $f \le n-2$ of n nodes of a synchronous message passing system can crash, at least f+1 rounds are needed to solve consensus.

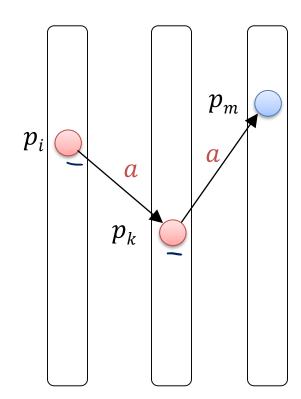
Proof idea:

- Show that f rounds are not enough if $n \ge f + 2$
- Before proving the theorem, we consider a

"worst-case scenario": In each round one of the processes fails

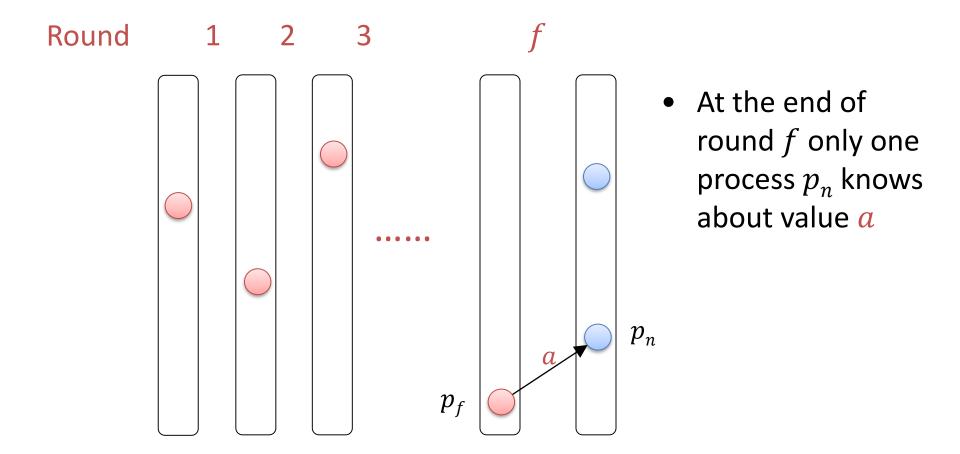
Lower Bound on Rounds: Intuition

Round 1 2



- Before process p_i fails, it sends its value a only to one process p_k
- Before process p_k fails, it sends its value a to only one process p_m

Lower Bound on Rounds: Intuition



Lower Bound on Rounds: Intuition

