Chapter 8

Coordinated attack

(See also | , §5.1].)
The Two Generals problem was the first widely-known distributed con-
sensus problem, described in 1978 by Jim Gray | , §5.8.3.3.1], although

the same problem previously appeared under a different name [].

The setup of the problem is that we have two generals on opposite sides
of an enemy army, who must choose whether to attack the army or retreat.
If only one general attacks, his troops will be slaughtered. So the generals
need to reach agreement on their strategy.

To complicate matters, the generals can only communicate by sending
messages by (unreliable) carrier pigeon. We also suppose that at some point
each general must make an irrevocable decision to attack or retreat. The
interesting property of the problem is that if carrier pigeons can become
lost, there is no protocol that guarantees agreement in all cases unless the
outcome is predetermined (e.g., the generals always attack no matter what
happens). The essential idea of the proof is that any protocol that does
guarantee agreement can be shortened by deleting the last message; iterating
this process eventually leaves a protocol with no messages.

Adding more generals turns this into the coordinated attack problem,
a variant of consensus; but it doesn’t make things any easier.

8.1 Formal description

To formalize this intuition, suppose that we have n > 2 generals in a
synchronous system with unreliable channels—the set of messages received
in round 7 + 1 is always a subset of the set sent in round 4, but it may be
a proper subset (even the empty set). Each general starts with an input 0

o8

CHAPTER 8. COORDINATED ATTACK 59

(retreat) or 1 (attack) and must output O or 1 after some bounded number
of rounds. The requirements for the protocol are that, in all executions:

Agreement All processes output the same decision (0 or 1).

Validity If all processes have the same input x, and no messages are lost,
all processes produce output z. (If processes start with different inputs
or one or more messages are lost, processes can output 0 or 1 as long
as they all agree.)

Termination All processes terminate in a bounded number of rounds."

Sadly, there is not protocol that satisfies all three conditions. We show
this in the next section.

8.2 Impossibility proof

To show coordinated attack is impossible,” we use an indistinguishability
proof.
The basic idea of an indistinguishability proof is this:

e Execution A is indistinguishable from execution B for some process
p if p sees the same things (messages or operation results) in both
executions.

e If A is indistinguishable from B for p, then because p can’t tell which
of these two possible worlds it is in, it returns the same output in both.

So far, pretty dull. But now let’s consider a chain of hypothetical
executions A = AgA; ... A = B, where each A; is indistinguishable from
A;y1 for some process p;. Suppose also that we are trying to solve an
agreement task, where every process must output the same value. Then since
p; outputs the same value in A; and A;11, every process outputs the same

'Bounded means that there is a fixed upper bound on the length of any execution.
We could also demand merely that all processes terminate in a finite number of rounds.
In general, finite is a weaker requirement than bounded, but if the number of possible
outcomes at each step is finite (as they are in this case), they’re equivalent. The reason
is that if we build a tree of all configurations, each configuration has only finitely many
successors, and the length of each path is finite, then Konig’s lemma (see http://en.
wikipedia.org/wiki/Konig’s_lemma) says that there are only finitely many paths. So we
can take the length of the longest of these paths as our fixed bound. [, Lemma 3.1]

2Without making additional assumptions, always a caveat when discussing impossibility.

http://en.wikipedia.org/wiki/Konig's_lemma
http://en.wikipedia.org/wiki/Konig's_lemma

CHAPTER 8. COORDINATED ATTACK 60

value in A; and A;1,. By induction on k, every process outputs the same
value in A and B, even though A and B may be very different executions.

This gives us a tool for proving impossibility results for agreement: show
that there is a path of indistinguishable executions between two executions
that are supposed to produce different output. Another way to picture this:
consider a graph whose nodes are all possible executions with an edge between
any two indistinguishable executions; then the set of output-0 executions
can’t be adjacent to the set of output-1 executions. If we prove the graph is
connected, we prove the output is the same for all executions.

For coordinated attack, we will show that no protocol satisfies all of
agreement, validity, and termination using an indistinguishability argument.
The key idea is to construct a path between the all-O-input and all-1-input
executions with no message loss via intermediate executions that are indis-
tinguishable to at least one process.

Let’s start with A = Ag being an execution in which all inputs are 1 and
all messages are delivered. We’ll build executions Aj, As, etc., by pruning
messages. Consider A; and let m be some message that is delivered in
the last round in which any message is delivered. Construct A;1; by not
delivering m. Observe that while A; is distinguishable from A;;; by the
recipient of m, on the assumption that n > 2 there is some other process
that can’t tell whether m was delivered or not (the recipient can’t let that
other process know, because no subsequent message it sends are delivered
in either execution). Continue until we reach an execution Ay in which all
inputs are 1 and no messages are sent. Next, let Agy; through Ay, be
obtained by changing one input at a time from 1 to 0; each such execution
is indistinguishable from its predecessor by any process whose input didn’t
change. Finally, construct Ay, through A, by adding back messages
in the reverse process used for Ay through Ag; note that this might not
result in exactly k new messages, because the number of messages might
depend on the inputs. This gets us to an execution Agy,1x in which all
processes have input 0 and no messages are lost. If agreement holds, then
the indistinguishability of adjacent executions to some process means that
the common output in Ay is the same as in Agy, 1. But validity requires
that Ap outputs 1 and Agy,4x outputs 0: so either agreement or validity is
violated in some execution.

CHAPTER 8. COORDINATED ATTACK 61

8.3 Randomized coordinated attack

So we now know that we can’t solve the coordinated attack problem. But
maybe we want to solve it anyway. The solution is to change the problem.

Randomized coordinated attack is like standard coordinated attack,
but with less coordination. Specifically, we’ll allow the processes to flip
coins to decide what to do, and assume that the communication pattern
(which messages get delivered in each round) is fixed and independent of
the coin-flips. This corresponds to assuming an oblivious adversary that
can’t see what is going on at all or perhaps a content-oblivious adversary
that can only see where messages are being sent but not the contents of the
messages. We'll also relax the agreement property to only hold with some
high probability:

Randomized agreement For any adversary A, the probability that some
process decides 0 and some other process decides 1 given A is at most
€.

Validity and termination are as before.

8.3.1 An algorithm

Here’s an algorithm that gives e = 1/r. (See | , §5.2.2] for details
or [| for the original version.) A simplifying assumption is that network
is complete, although a strongly-connected network with r greater than or
equal to the diameter also works.

e First part: tracking information levels

— Each process tracks its “information level,” initially 0. The state
of a process consists of a vector of (input, information-level) pairs
for all processes in the system. Initially this is (my-input, 0) for
itself and (L, —1) for everybody else.

— Every process sends its entire state to every other process in every
round.

— Upon receiving a message m, process ¢ stores any inputs carried in
m and, for each process j, sets level;[j] to max(level;[j], level,,[j]).
It then sets its own information level to min;(level;[5]) + 1.

e Second part: deciding the output

— Process 1 chooses a random key value uniformly in the range [1,r].

CHAPTER 8. COORDINATED ATTACK 62

— This key is distributed along with level;[1], so that every process
with level;[1] > 0 knows the key.

— A process decides 1 at round r if and only if it knows the key,
its information level is greater than or equal to the key, and all
inputs are 1.

8.3.2 Why it works

Termination Immediate from the algorithm.

Validity e If all inputs are 0, no process sees all 1 inputs (technically
requires an invariant that processes’ non-null views are consistent
with the inputs, but that’s not hard to prove.)

e If all inputs are 1 and no messages are lost, then the information
level of each process after k rounds is k (prove by induction) and
all processes learn the key and all inputs (immediate from first
round). So all processes decide 1.

Randomized Agreement e First prove a lemma: Define level![k] to
be the value of level;[k] after ¢ rounds. Then for all ¢, j, k,¢, (1)
level;[§] < level;[j]'"! and (2) |level;[k]" — level;[k]!| < 1. As

always, the proof is by induction on rounds. Part (1) is easy and
boring so we’ll skip it. For part (2), we have:

— After 0 rounds, level[k] = Ievelg[k] = —1 if neither ¢ nor j
equals k; if one of them is k, we have level?[k] = 0, which is
still close enough.

— After ¢ rounds, consider level![k] — level!![k] and similarly
Ieve|§~ [k]— Ievel;_l [k]. It’s not hard to show that each can jump
by at most 1. If both deltas are +1 or both are 0, there’s
no change in the difference in views and we win from the
induction hypothesis. So the interesting case is when level;[£]
stays the same and level;[k] increases or vice versa.

— There are two ways for level;[£] to increase:

x If 7 # k, then j received a message from some ;' with
Ievelz-,_l[kz] > Ievelz_l[k]. From the induction hypothesis,
Ievelzfl[k] < level! ' [k] + 1 = level{[k]. So we are happy.

« If j = k, then j has Ievelé-[j] = 1+ ming; Ievelz»[k] <
1+ levelf[i] <1+ level’[i]. Again we are happy.

CHAPTER 8. COORDINATED ATTACK 63

e Note that in the preceding, the key value didn’t figure in; so
everybody’s level at round r is independent of the key.

e So now we have that level![i] is in {¢, ¢+ 1}, where ¢ is some fixed
value uncorrelated with the key. The only way to get some process
to decide 1 while others decide 0 is if £ 4+ 1 > key but ¢ < key. (If
¢ = 0, a process at this level doesn’t know key, but it can still
reason that 0 < key since key is in [1,r].) This can only occur if
key = £ + 1, which occurs with probability at most 1/r since key
was chosen uniformly.

8.3.3 Almost-matching lower bound

The bound on the probability of disagreement in the previous algorithm is
almost tight. Varghese and Lynch |] show that no synchronous algorithm
can get a probability of disagreement less than ﬁ, using a stronger validity
condition that requires that the processes output 0 if any input is 0. This is
a natural assumption for database commit, where we don’t want to commit

if any process wants to abort. We restate their result below:

Theorem 8.3.1. For any synchronous algorithm for randomized coordinated
attack that runs in r rounds that satisfies the additional condition that all
non-faulty processes decide 0 if any input is 0, Pr[disagreement] > 1/(r + 1).

Proof. Let € be the bound on the probability of disagreement. Define level’[k]
as in the previous algorithm (whatever the real algorithm is doing). We’ll
show Pr[i decides 1] < e - (level}[i] 4+ 1), by induction on level;[i].

o If level{[i] = 0, the real execution is indistinguishable (to i) from an
execution in which some other process j starts with 0 and receives no
messages at all. In that execution, j must decide 0 or risk violating
the strong validity assumption. So ¢ decides 1 with probability at most
e (from the disagreement bound).

o If level[i] = k > 0, the real execution is indistinguishable (to i) from
an execution in which some other process j only reaches level k — 1
and thereafter receives no messages. From the induction hypothesis,
Pr[j decides 1] < ek in that pruned execution, and so Pr[i decides 1] <
€(k + 1) in the pruned execution. But by indistinguishability, we also
have Pr[i decides 1] < e(k + 1) in the original execution.

Now observe that in the all-1 input execution with no messages lost,
level} [i] = r and Pr[i decides 1] = 1 (by validity). So 1 < €(r + 1), which
implies € > 1/(r + 1). O

