Theoretical Computer Science - Bridging Course Exercise Sheet 3

Due: Tuesday, 7th of May 2024, 12:00 pm

Exercise 1: REs

(a) Let $\Sigma=\{a, b\}$. Let L_{1} be the language defined by the regular expression $a^{*} b^{*} a^{*}$ and L_{2} the language defined by $a^{*} b^{*} b$. Draw a DFA for L_{1} and L_{2}.
(b) Let $\Sigma=\{a, b, c\}$. What language does the following regular expression describe $\left((a \cup c)^{*} b(a \cup c)^{*} b(a \cup c)^{*} b(a \cup c)^{*}\right)^{*}$?
(c) Let $\Sigma=\{a, b\}$. Provide a regular expression that recognizes the following two languages.

- Let language L_{3} contain all strings in which at least one of the symbols a or b occurs an even number of times.
- Let language L_{4} contain all strings of length at least 2 such that a and b are alternating.

Exercise 2: Limits of the Pumping Lemma

Consider the language $L=\left\{c^{m} a^{n} b^{n} \mid m, n \geq 0\right\} \cup\{a, b\}^{*}$ over the alphabet set $\Sigma=\{a, b, c\}$.
(a) Describe in words (not using the pumping lemma), why L can not be a regular language.
(b) Show that, while the property described in the Pumping Lemma is a necessary condition for regularity, it is not sufficient for regularity.
Hint: Use L as counter example, i.e., show that it can be 'pumped' (in the sense of the pumping lemma), but is still not regular.

Exercise 3: Proving Non-regularity

Use the Pumping Lemma to show that the following languages over the alphabet set $\Sigma=\{a, b, c\}$ are not regular.
(a) $L:=\left\{a^{n} c b^{n+2} \mid n \geq 0\right\}$.
(b) $L=\left\{a^{m} \mid m=n^{2}\right.$ for some $\left.n \geq 0\right\}$.

Bonus: $L=\left\{a^{n} b w a^{n} \mid n \geq 1\right.$ and $\left.w \in \Sigma^{*}\right\}$.

Exercise 4: NFA-GNFA-RE

Consider the following NFA:

Give the regular expression defining the language recognized by this NFA by converting it stepwise into an equivalent GNFA with only two nodes. Document your steps.

