
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
Z. Parsaeian

Theoretical Computer Science - Bridging Course

Sample Solution Exercise Sheet 2
Due: Tuesday, 30th of April 2024, 12:00 pm

Exercise 1: Constructing DFAs, NFAs (2+2+2 Points)

Construct DFAs that recognize the first two languages and an NFA that recognizes the last language.
The alphabet set is Σ = {a, b}.

1. L1 = {w | w has an odd number of a’s and ends with b}.

2. L2 = {w | w is any string except bb and bbb}.

3. L3 = {w | w is any string where at least one of the symbols a or b occurs an even number of times}.

Sample Solution

1.

q0start q1

q2

q3

b

a

a

b

a

b

b

a

2.

q0start q1 q2 q3 q4
b

a

b

a

b

a

a, b

a, b

3.

https://ac.informatik.uni-freiburg.de/parsaeian/

q0start

q1 q2

q3 q4

ϵ

ϵ

a

b

a

b

b

a
b

a

Bonus :
The following DFA accepts the empty language:

start

Σ = {0, 1}

Remark: There’s a difference between the following two languages L1 := ∅ and L2 := {ε}, where the
empty string ε is defined as a string of length |ε| = 0.
The empty language ∅ is a set containing no strings, while L2 = {ε} is a set containing ε, while ε is
just a string but a string containing no symbols. So, L1, L2 are different languages since L2 contains
a string while L1 is empty (0 = |L1| ≠ |L2| = 1).

Exercise 2: Closure of Regular Languages (2+3+2+2 Points)

1. Show that if M is a DFA that recognizes language L, you can construct a new DFA M ′ that
recognizes the complement of L i.e. L̄ := Σ∗ \L. Conclude that the class of regular languages is
closed under complementation.

2. Show by giving an example that if M is an NFA (instead of a DFA) that recognizes language L,
then the same approach you used to construct the new DFA M ′ above doesn’t necessarily yield
a new NFA that recognizes the complement of L. Is the class of languages recognized by NFAs
closed under complementation? Explain your answer.

Let L1 and L2 be regular languages.

3. Show that L1 ∩ L2 is regular by constructing its corresponding DFA.

4. Deduce from parts 1 and 3 that regular languages are closed under the symmetric difference i.e.
L1∆L2 is also regular.

Remark: For parts 1 and 3 there’s no need for drawing state diagrams. Show how a DFA for the
language in the question can be constructed presuming the existence of DFAs for L,L1, and L2.

Sample Solution

1. Let M = (Q,Σ, δ, q0, F) be the DFA recognizing L. We define the DFA M ′ := (Q,Σ, δ, q0, F) by
inverting the set of accepting states of M , i.e. F := Q \ F . We show that M ′ recognizes L.

If w ∈ L, then w /∈ L and so M halts in an non accepting state q when processing w. M ′ will
halt in the same state (because we only changed the set of accepting states), but here q is an
accepting state. Analogously, if w /∈ L, then w ∈ L and so M halts in an accepting state when
processing w. M ′ will again halt in the same state, but here q is a non accepting state. So we
have that M ′ halts in an accepting state when processing w if and only if w ∈ L.
Therefore, if M is a DFA that recognizes language L (so L is a regular language), then we
can construct a new DFA M ′ that recognizes the language L (so L is also regular). Hence, the
class of regular languages is closed under complementation (notice that the class of languages
recognized by DFAs is actually the class of regular languages (Definition 1.16 p. 19)).

2. Consider the NFA given in Exercise 3 below. Consider string “ab”. It is accepted in the original
NFA. (In particular, the NFA can halt in state q2.) However, once you swap the non-accept and
accept states, in the new NFA, this string is still accepted. (In particular, the new NFA can halt
in state q0.)
Yes, since the class of languages recognized by NFAs is actually the class of regular languages (
Corollary 1.40 p.47) and we have just proved, by the previous part, that regular languages are
closed under complementation, hence the class of languages recognized by NFAs is closed under
complementation.

3. For proving the regularity of L1 ∩ L2, we construct the product automaton like done in the
lecture (Theorem 1.25. p. 30) for L1 ∪ L2, with the difference that we set F := F1 × F2 as the
set of accepting states, where F1 and F2 are the sets of accepting states of the DFAs for L1 and L2.

Alternative approach: using De Morgan’s law we obtain: L1 ∩ L2 = (L1 ∪ L2). Thus L1 ∩ L2

is regular, since we already know that regularity is conserved by complementation and a finite
number of unions of regular languages (cf. lecture).

4. We know that the set difference of languages L1 and L2 is defined as L1\L2 = L1 ∩L2 and after
showing that regular languages are closed under intersection and complement in parts 1 and 3
respectively, it follows that regular languages are also closed under set difference.
Finally, we have that the symmetric difference of L1 and L2 is defined as L1∆L2 = (L1 \ L2) ∪
(L2 \L1) and we know from the lecture that regular languages are closed under union. Moreover,
we have just proved that regular languages are also closed under set difference, hence regular
languages are also closed under the symmetric difference.

Exercise 3: NFA to DFA (2+3 Points)

Consider the following NFA.

q0start q1

q2

a, b
b

b

b

b

1. Give a formal description of the NFA by giving the alphabet, state set, transition function, start
state and the set of accept states.

2. Construct a DFA which is equivalent to the above NFA by drawing the corresponding state
diagram.

Bonus question: Explain which language the automaton accepts.

Sample Solution

1. The set of states is Q = {q0, q1, q2}; the alphabet Σ = {a, b}; the starting state is q0; the set of
accept states is F = {q2}; the transition function is shown in the following table.

q0 q1 q2

a {q1} ∅ ∅
b {q0, q1} {q0, q2} {q0}
ϵ ∅ ∅ ∅

2. After performing the algorithm from the lecture, we obtain the following DFA. All transitions
which are not in the picture go to the garbage state ∅.

{q0}start

{q1}

{q0, q1} {q0, q2}

{q0, q1, q2}

b

a

b

a

b

a

b

b

a

Bonus solution: The recognized language contains words of length at least two. Furthermore any
a is immediately followed by a ’b’. The number of b’s after the last a must not be two.

