
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
Hamid Ghodselahi November 28, 2012

Algorithm Theory, Winter Term 2012/13

Problem Set 4

hand in by Wednesday, December 12, 2012

Exercise 1: Amortized Analysis [12 Points]

You plan to implement a hash table. Because you don’t know how many keys will be inserted into
the hash table and because the number of keys stored in the hash table might change over time, you
want to be able to adapt the size of the hash table to the number of keys stored in the table. Your
implementation should allow two operations insert and delete.

Assume that you already have an efficient implementation for fixed table size s. Your implemen-
tation allows new keys to be inserted efficiently as long as the load of the hash table is less than
3/4. That is, as long as the number of elements in the table is less than 3

4 · s, your implementation
guarantees that an insert operation (which inserts one new key) costs O(1). A delete operation (which
deletes one key) can always be done in O(1) time. To adjust the table size based on the number of
keys stored in the table, you use the available implementation as follows.

Initially, the hash table is empty. When the first element x is inserted into the table, you build an
initial table of fixed size s0 and insert x. Assume that the cost for doing this is O(1). For simplicity,
assume that s0 = 8. Throughout, we will always work with one instance of the available hash table
implementation for a table of sufficiently large size s (using s0 = 8 will guarantee that s will always
be divisible by 8). Operations insert and delete are implemented as follows. Assume that s is the
current table size and n is the current number of keys stored in the table.

insert(x):

• If n < 3
4s, x is inserted into the current table. Recall that this can be done in O(1) time.

• If n = 3
4s, we set up a new hash table of size 2s and move all items from the old table to the

new larger table. Then, x is inserted into the new table. We assume that the time to do this is
O(s).

delete(x):

• If n > 1
8s, x is deleted from the current table. Recall that this can be done in O(1) time.

• If n = 1
8s, we first delete x. If s > 8, we then set up a new hash table of size s/2 and move all

items from the old table to the new smaller table. We assume that the time to do this is O(s).

For simplicity, we normalize time units such that all the above operations that can be done in O(1)
time need time at most 1 and the operations that take O(s) time need time at most s.

a) Use the accounting method (the “bank account method”) to show that the amortized running
times of insert and delete are O(1).

b) Use the potential function method to show that the amortized running times of insert and delete
are O(1).

1



Exercise 2: Union-Find [10 Points]

(a) Show that when implementing a union-find data structure by using disjoint-set forests with the
union-by-size heuristic, the height of each tree is at most O(log n).

Hint: Show that any subtree with k nodes has height at most blog2 kc.

(b) Demonstrate that the above analysis is tight by giving an example execution that creates a tree
of height Θ(log n). Can you even get a tree of height blog2 nc?

Exercise 3: Maximum Flow [8 Points]

Consider a set of mobile computing clients in a certain town who each need to be connected to one
of several possible base stations. We’ll suppose there are n clients, with the position of each client
specified by its (x, y) coordinates in the plane. There are also k base stations; the position of each of
these is specified by (x, y) coordinates as well.

For each client, we wish to connect it to exactly one of the base stations. Our choice of connections
is constrained in the following ways. There is a range parameter r: a client can only be connected to
a base station that is within distance r. There is also a load parameter L: no more than L clients can
be connected to any single base station.

Design a polynomial-time algorithm for the following problem. Given the positions of a set of clients
and a set of base stations, as well as the range and load parameters, decide whether every client can
be connected simultaneously to a base station, subject to the described range and load conditions.

2


