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Exercise 1: Linear-Time Contention Resolution [6 Points]

In class, we looked at the following simple contention resolution problem. There are n processes that
need to access a shared resource. Time is divided into time slots and in each time slot, a process ¢ can
access the resource if and only if ¢ is the only process trying to access the resource. We have shown
that if each process independently tries to access the resource with probability 1/n in each time slot,
by time O(nlogn), all processes can access the resource at least once with high probability. The goal
of the exercise is to improve the algorithm and to get an O(n) time algorithm under the following
assumptions.

e As in the lecture, all the processes know n (the number of processes). In the algorithm of the
lecture, this is needed because the probability 1/n for accessing the channel depends on n.

e If a process tries to access the resource in a time slot, the process afterwards knows whether the
access was successful or not.

Give a randomized algorithm which guarantees that with probability at leat 1 — 1/n, during the first
O(n) time slots, each of the n processes can access the channel once.

Hint: You can make use of the following fact. Consider a time interval consisting of at least e?k time
slots. During the time interval, there are at most k processes trying to access the channel and in each
time slot, each of the at most k processes tries to access the channel with probability 1/k. Then, with
probability at least 1 —e ™", at the end of the interval, at most k/2 of the processes have not succeeded
to access the channel.

Exercise 2: Randomized Quicksort [8 Points]

One way to improve the Randomized Quicksort procedure is to partition around a pivot that is chosen
more carefully than by picking a random element from the subarray. One common approach is the
median-of-3 method: choose the pivot as the median (middle element) of a set of 3 elements randomly
selected from the subarray. For this problem, let us assume that the elements in the input array A [1..n]
are distinct and that n > 3. We denote the sorted output array by A’[1..n]. Using the median-of-3
method to choose the pivot element z, define p; := P(x = A’[i]), i.e., p; is the probability that the
element of rank ¢ is chosen as pivot.

1. Give an exact formula for p; as a function of n and i for i = 2,3, ...,n—1. (Note that p; = p, = 0)

2. By what amount have we increased the likelihood of choosing the pivot as x = A’ H”THH, the
median of A[l..n], compared with the ordinary implementation? Assume that n — oo, and give
the limiting ratio of these probabilities.

3. Argue intuitively that in the running time of quicksort, the median-of-3 method affects only the
constant factor (compared to usual randomized quicksort variant discussed in the lecture).



Exercise 3: Running Time of the Contraction Algorithm [8 Points]

We have discussed the randomized contraction algorithm for the minimum cut problem in the lecture.
When analyzing the algorithm, we have assumed that each contraction on a graph with n nodes can
be done in time O(n). Show that this is indeed possible. That is, give an appropriate (simple) data
structure to store the current multi-graph G and an algorithm that contracts a uniformly random
edge in time linear in the number of nodes of G.

Exercise 4: Randomized Minimum s-t Cuts? [8 Points]

Consider adapting the min-cut algorithm (Contraction Algorithm) to the problem of finding an s-t
min-cut in an undirected graph. In this problem, we are given an undirected graph G = (V| E)
together with two distinguished nodes s € V and t € V. An s-t cut is a partition AUB =V of V
such that s € A and t € B. The size of a cut (A, B) is the number of edges u,v for which u € A and
v € B; we seek an s-t cut of minimum size. As the algorithm proceeds, the vertex s may get merged
into a new vertex as the result of an edge being contracted; we call this vertex the s-vertex (initially
s itself). Similarly, we have a t-vertex. As we run the contraction algorithm, we ensure that we never
contract an edge between the s-vertex and the t-vertex (this guarantees that in the end, we get an s-t
cut).

(a) Show that there are graphs (not multi-graphs) in which the probability that this algorithm finds
a minimum s-¢ cut is exponentially small.

(b) How large can the number of minimum s-¢ cuts in an instance be?



