

Chapter 1 Divide and Conquer

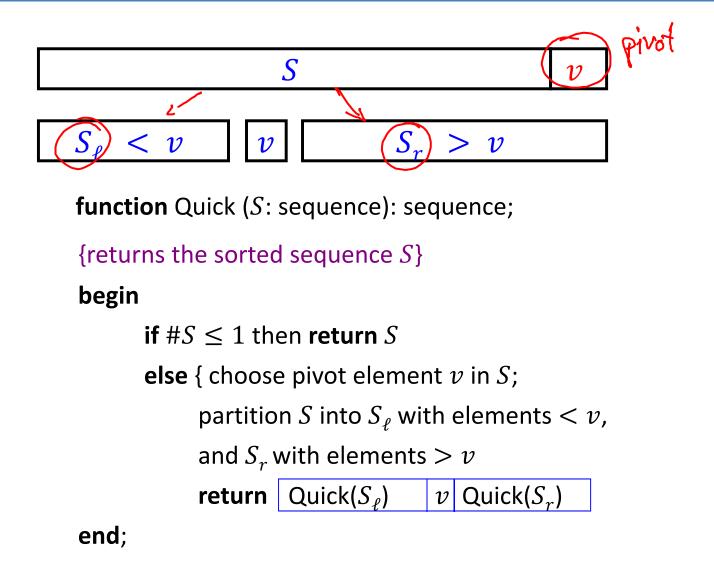
Algorithm Theory WS 2012/13

Fabian Kuhn

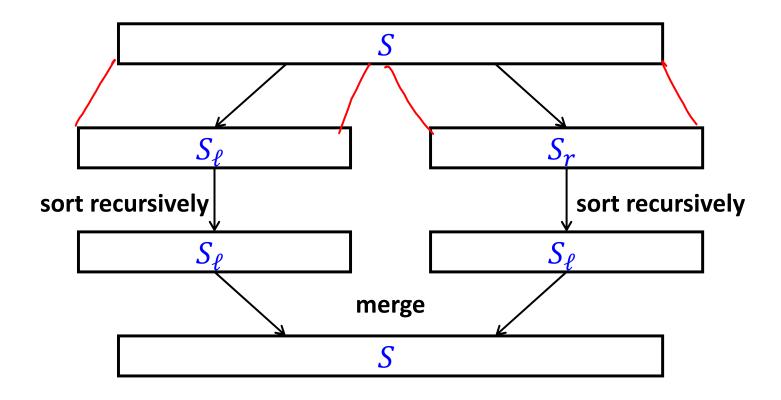
Divide-And-Conquer Principle

- Important algorithm design method
- Examples from Informatik 2:
 - Sorting: Mergesort, Quicksort
 - Binary search can be considered as a divide and conquer algorithm
- Further examples
 - Median
 - Comparison orders
 - Delaunay triangulation / Voronoi diagram
 - Closest pairs
 - Line intersections
 - Integer factorization / FFT
 - ...

Example 1: Quicksort



Example 2: Mergesort



Formulation of the D&C principle

Divide-and-conquer method for solving a problem instance of size n:

1. Divide

 $n \le c$: Solve the problem directly.

n > c: Divide the problem into k subproblems of sizes $n_1, ..., n_k < n$ ($k \ge 2$).

2. Conquer

Solve the k subproblems in the same way (recursively).

3. Combine

Combine the partial solutions to generate a solution for the original instance.

Analysis

Recurrence relation:

max. number of steps necessary for solving an instance of size /

•
$$T(n)$$
 | max. number of steps necessary for solving an instance of steps.

• $T(n) = \begin{cases} a & \text{if } \underline{n \leq c} \\ \underline{T(n_1)} + \cdots + \underline{T(n_k)} & \text{if } \underline{n > c} \end{cases}$

• $T(n) = \begin{cases} a & \text{if } \underline{n \leq c} \\ + \cos t & \text{or divide and combine} \end{cases}$

Special case:
$$\underline{k=2}$$
, $n_1=n_2=n/2$

- cost for divide and combine: DC(n)
- T(1) = a
- T(n) = 2T(n/2) + DC(n)

Analysis, Example

Recurrence relation:

$$T(n) = 2 \cdot T(n/2) + (cn^2)$$
 $T(1) = a$

Gues's the solution by repeated substitution:

$$T(n) = 2T(\frac{1}{2}) + cn^{2}$$

$$= 2(2T(\frac{1}{4}) + c \cdot (\frac{1}{2})^{2}) + cn^{2}$$

$$= 4T(\frac{1}{4}) + (c + \frac{c}{2}) \cdot n^{2}$$

$$= 4(2T(\frac{1}{8}) + c \cdot (\frac{1}{4})^{2}) + (c + \frac{c}{2})n^{2}$$

$$= 8 \cdot 7(\frac{1}{8}) + (c + \frac{c}{2} + \frac{c}{4})n^{2}$$

$$= n \cdot T(1) + (c + \frac{c}{2} + \frac{c}{4} + \frac{c}{8} + ...)n^{2} \leq a \cdot n + 2cn^{2}$$

$$= 2(2T(\frac{1}{4}) + c \cdot (\frac{1}{4})^{2}) + cn^{2}$$

$$= 4(2T(\frac{1}{8}) + (c + \frac{c}{2} + \frac{c}{4}) \cdot n^{2}$$

$$= 8 \cdot 7(\frac{1}{8}) + (c + \frac{c}{2} + \frac{c}{4} + \frac{c}{8} + ...)n^{2} \leq a \cdot n + 2cn^{2}$$

$$= 2(2T(\frac{1}{4}) + c \cdot (\frac{1}{4})^{2}) + cn^{2}$$

$$= 4T(\frac{1}{4}) + (c + \frac{c}{2}) \cdot n^{2}$$

$$= 4(2T(\frac{1}{4}) + (c + \frac{c}{4}) \cdot n^{2$$

Analysis, Example

Recurrence relation:

$$T(n) = 2 \cdot T(n/2) + cn^2, \qquad T(1) = a$$

Verify by induction:

| Ind. Base:
$$n=1$$
 | Ind. Step: $T(u) \leq 2(\alpha(\frac{n}{2}) + 2c(\frac{n^2}{2})) + cu^2$
= $a \cdot n + 2c \cdot n^2$

Comparing Orders

 Many web systems maintain user preferences / rankings on things like books, movies, restaurants, ...

Collaborative filtering:

- Predict user taste by comparing rankings of different users.
- If the system finds users with similar tastes, it can make recommendations (e.g., Amazon)
- Core issue: Compare two rankings
 - Intuitively, two rankings (of movies) are more similar, the more pairs are ordered in the same way
 - Label the first user's movies from 1 to n according to ranking
 - Order labels according to second user's ranking
 - How far is this from the ascending order (of the first user)?

Number of Inversions

Formal problem:

Given: array $A = [a_1, a_2, a_3, ..., a_n]$ of distinct elements compare elements, global order $a_i < a_i$

Objective: Compute number of inversions *I*

$$I := \left| \left\{ 0 \le \underline{i} < \underline{j} \le n \mid \underline{a_i} > a_j \right) \right\} \right|$$

Example: A = [4, 1, 5, 2, 7, 10, 6]5 inversions

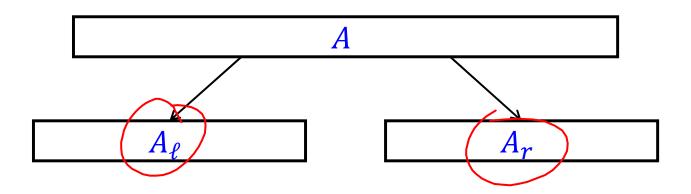
Naive solution:

Naive solution:

Compare all pairs

+ime:
$$\Theta(n^2)$$

Divide and conquer



- 1. Divide array into 2 equal parts A_{ℓ} and A_r
- 2. Recursively compute #inversions in A_ℓ and A_r
- 3. Combine: add #pairs $a_i \in A_\ell$, $a_j \in A_r$ such that $a_i > a_j$

Combine Step

- Pointers i and j, initially pointing to first elements of A_{ℓ} and A_r
- If $a_i < a_i$:
 - $-a_i$ is smallest among the remaining elements
 - No inversion of a_i and one of the remaining elements
 - Do not change count
- If $a_i > a_i$:
 - $-a_i$ is smallest among the remaining elements
 - $-a_i$ is smaller than all remaining elements in A_ℓ
 - Add number of remaining elements in A_{ℓ} to count
- Increment point pointing to smaller element

Combine Step

- Need sub-sequences in sorted order
- Then, combine step is like merging in merge sort
- Idea: Solve sorting and #inversions at the same time!
 - 1. Partition A into two equal parts A_{ℓ} and A_r
 - 2. Recursively compute #inversions and sort A_{ℓ} and A_r

$$\cos^2 2.7(^{4}/_{2})$$

3. Merge A_{ℓ} and A_r to sorted sequence, at the same time, compute number of inversions between elements a_i in A_{ℓ} and a_j in A_r

Analysis, Example

Recurrence relation:

$$\underline{T(n)} = \underline{2 \cdot T(n/2)} + c \cdot n, \qquad T(1) = c$$

Repeated substitution:

$$T(u) = 2T(\frac{1}{2}) + cu$$

$$= 2(2T(\frac{1}{4}) + \frac{c}{2}) + cu = 4T(\frac{1}{4}) + 2cu$$

$$= 8T(\frac{1}{8}) + 3cu$$

$$\vdots$$

$$= c \cdot u - \log_2(u)$$

Analysis, Example

Recurrence relation:

$$T(n) = 2 \cdot T(n/2) + (c \cdot n) \qquad T(1) = c$$

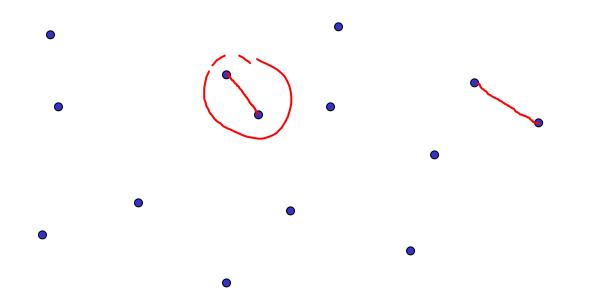
Verify by induction:

Gness:
$$T(n) \leq c \cdot n(\log n + 1)$$

Rase: $n = 1$
 $lnd. Step: T(n) \leq 2c \cdot \frac{n}{2}(\log(\frac{n}{2}) + 1) + cn$
 $= c \cdot n(\log n) + cn$
 $= c \cdot n(\log n + 1)$

Geometric divide-and-conquer

Closest Pair Problem: Given a set <u>S of n points</u>, find a pair of points with the smallest distance.



Naive solution:

compare all pairs

- or time
$$\Theta(n^2)$$

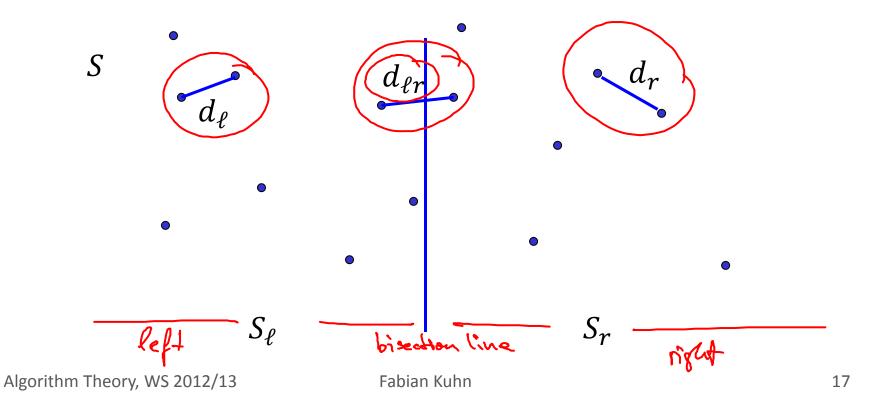
Divide-and-conquer solution

1. Divide: Divide S into two equal sized sets S_{ℓ} und S_r .

2. Conquer: d_{ℓ} = mindist(S_{ℓ}) d_{r} = mindist(S_{ℓ})

3. Combine: $d_{\ell r} = \min\{d(p_{\ell}, p_r) \mid p_{\ell} \in S_{\ell}, p_r \in S_r\}$

return $\min\{d_{\ell}, d_{r}, d_{\ell r}\}$



Divide-and-conquer solution

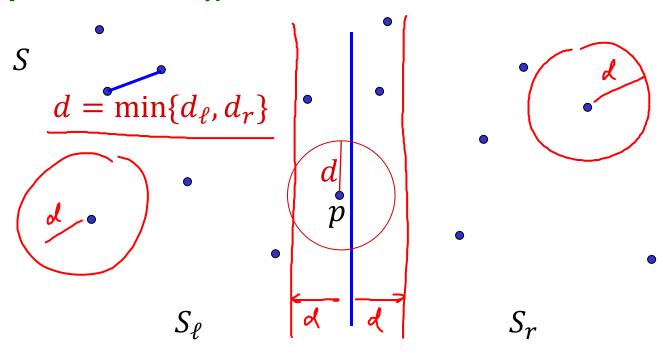
1. Divide: Divide S into two equal sized sets S_{ℓ} und S_r .

2. Conquer: $d_{\ell} = \text{mindist}(S_{\ell})$ $d_{r} = \text{mindist}(S_{\ell})$

3. Combine: $d_{\ell r} = \min\{d(p_{\ell}, p_r) \mid p_{\ell} \in S_{\ell}, p_r \in S_r\}$

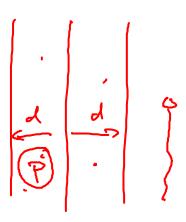
return $\min\{d_{\ell}, d_{r}, d_{\ell r}\}$

Computation of $d_{\ell r}$:

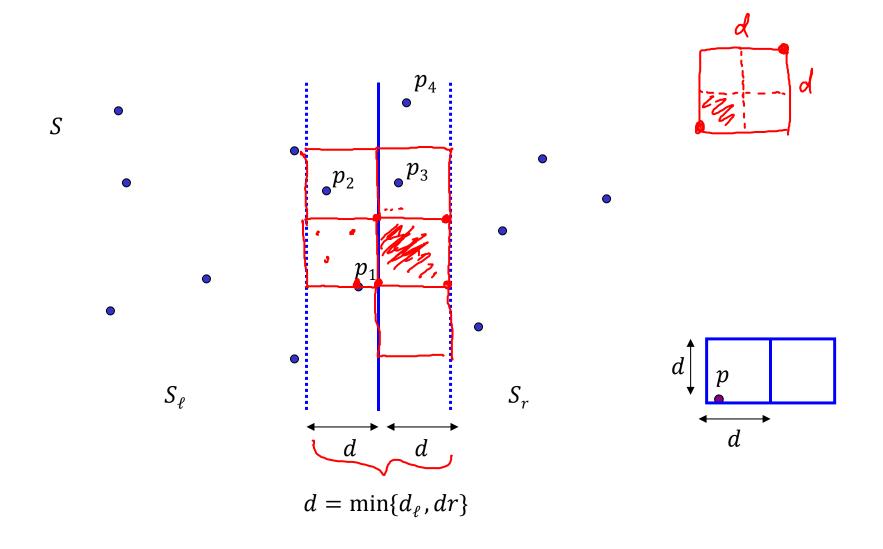


Merge step

- 1. Consider only points within distance d of the bisection line, in the order of increasing y-coordinates.
- 2. For each point p consider all points q within y-distance at most d
- 3. There are at most 7 such points.



Combine step



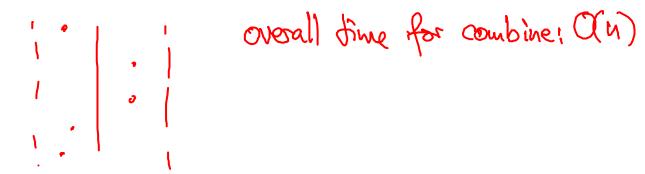
Implementation

• Initially sort the points in S in order of increasing x-coordinates

- While computing closest pair, also sort S according to y-coord.
 - Partition S into S_{ℓ} and S_{ℓ} , solve and sort sub-problems recursively

— Merge to get sorted S according to y-coordinates

- Center points: points within x-distance $d = \min\{d_{\ell}, d_r\}$ of center
- Go through center points in S in order of incr. y-coordinates



Running Time

Recurrence relation:

$$T(n) = 2 \cdot T(n/2) + c \cdot n, \qquad T(1) = a$$

Solution:

 Same as for computing number of number of inversions, merge sort (and many others...)

$$T(n) = O(n \cdot \log n)$$