)

Chapter 1
Divide and Conquer

Algorithm Theory
WS 2012/13

Fabian Kuhn

UNI

FREIBURG

Divide-And-Conquer Principle

UNI
FREIBURG

e |Important algorithm design method

e Examples from Informatik 2:
e Sorting: Mergesort, Quicksort
e Binary search can be considered as a divide and conquer algorithm

e Further examples
e Median
e Comparison orders
e Delaunay triangulation / Voronoi diagram
e Closest pairs
e Line intersections
e |nteger factorization / FFT

Algorithm Theory, WS 2012/13 Fabian Kuhn 2

Example 1: Quicksort

S (a ?1\/0“(
-
@ <v |[v (S) > v

N’

function Quick (S: sequence): sequence;

{returns the sorted sequence S}
begin
if #5 < 1 thenreturn §
else { choose pivot element v in §;
partition S into S, with elements < v,
and S, with elements > v
return | Quick(S,) v| Quick(S,)

end;

Algorithm Theory, WS 2012/13 Fabian Kuhn

UNI
I

FREIBURG

Example 2: Mergesort

FREIBURG

2
=
/ S
S S,
sort recursively sort recursively
\ \
Sy Sy
\ merge /
S
Algorithm Theory, WS 2012/13 Fabian Kuhn 4

UNI
I

FREIBURG

Formulation of the D&C principle

Divide-and-conquer method for solving a
problem instance of siz

n < c: Solve the problem directly. @M&gor't
n> c: Divide the problem int ubproblems of Qa

sizesny, ..., nk@n (k = 2).

Solve the k subproblems in the same way
(recursively).

3.Combine -~

Combine the partial solutions to generate a solution \
(W\esg/e

for the original instance.
Algorithm Theory, WS 2012/13 Fabian Kuhn 5

Analysis

UNI

FREIBURG

Recurrence relation:
o @ max. number of steps necessary for solving an instance of size L

@ ifn<c
. T(n)={T(n1)+---+T§nkg ifn>c
+ cost for djvid and combine
(de M A

Special case: k=2,n, =n, @

* cost for divide and combine: DC(n)
e T(1)=a
e T(n) =2T(n/2) +DC(n)

Algorithm Theory, WS 2012/13 Fabian Kuhn

Analysis, Example

UNI

FREIBURG

Recurrence relation:

T(n) =2-T(n/2)+@ T(1) =a
——
he solution by repeated substitution:

T =ZTHAE) & e
=2 (2T + < (%5‘“} Few
= 4T(Vg) + (cx &y
= 4 (2T + (Y + (1 30
=& 4 (€4 5+ TV

l

= V\'—TD +(<+ -‘rcf-tg% £ O\V\-\-Z_cv\

2 =
< Zc

Algorithm Theory, WS 2012/13 Fabian Kuhn

Analysis, Example

|
FRE:BURG

UNI

Recurrence relation:

T(n) =2-Tn/2) + cn?, T(1)=a

Verify by induction:
Ciness: TOE au + 2au®

\v\oﬂ.%s@. n=\ v
\nd. %%q‘)'. T < Z(OL(”,@ s Zc@ >3r W

— &AW A ZCV\Z’

R

Algorithm Theory, WS 2012/13 Fabian Kuhn

UNI

Comparing Orders

FREIBURG

e Many web systems maintain user preferences / rankings on
things like books, movies, restaurants, ...

e Collaborative filtering:
— Predict user taste by comparing rankings of different users.

— If the system finds users with similar tastes, it can make
recommendations (e.g., Amazon)

e Coreissue: Compare two rankings

— Intuitively, two rankings (of movies) are more similar, the more pairs are
ordered in the same way

— Label the first user’s movies from 1 to n according to ranking
— Order labels according to second user’s ranking
— How far is this from the ascending order (of the first user)?

Algorithm Theory, WS 2012/13 Fabian Kuhn 9

Number of Inversions

UNI
I

FREIBURG

Formal problem:
e Given:array A = |aq, a,, as, ..., a, | of distinct elements

LOmpare dws/ 71054(scdes a; < ay

 Objective: Compute number of inversions |

I:=|{0Si<an|ai>aj)}|
e Example:A=[4 ,1,5,2,7,10, 6 |
_~

S hvgsAdus

 Naive solution:
C@W\?@Nl al\ ?m’ws

Ywmer OC ")

Algorithm Theory, WS 2012/13 Fabian Kuhn

10

Divide and conquer

UNI
I

FREIBURG

<

(4,)

(A,)

N

N

1. Divide array into 2 equal parts A, and A,

2. Recursively compute #inversions in A, and A,

3. Combine: add #pairs a; € Ap, a; € A, such that a; > q;

Algorithm Theory, WS 2012/13

Fabian Kuhn

s Ay (ay (@) A

11

Combine Step

UNI
FREIBURG

e Assume A, and A, are sorted
(

N A—

M) A, AUA 0] A
\ 15 ./)
Lo i » j

e Pointers i and j, initially pointing to first elements of A, and A,

e Ifa; <a;:
— a; is smallest among the remaining elements

ion of a; and one of the remaining elements

— Noinv

i Ifal- > CljZ

— a; is smallest among the remaining elements

— a; is smaller than all remaining elements in A,

— Add number of remaining elements in A, to count

* |Increment point? pointing to smaller element

Algorithm Theory, WS 2012/13

Fabian Kuhn

12

Combine Step

UNI

FREIBURG

 Need sub-sequences in sorted order
e Then, combine step is like merging in merge sort

e Idea: Solve sorting and #inversions at the same time!

1. Partition A into two equal parts A, and A,
2. Recursively compute #inversions and sort A, and A,

cost 2R

3. Merge A, and A, to sorted sequence, at the same time, compute
number of inversions between elements a; in A, and a; in 4,

e, O(W)

Algorithm Theory, WS 2012/13 Fabian Kuhn

13

Analysis, Example

UNI
FREIBURG

Recurrence relation:

Tm)=2-T(n/2)+c-n,

Repeated substitution:

)= 2 V(M) ewn

= Z(2TCUg) - ') A au= FT(Me) + 2ey

—_—

= 23 V(M) ¥ Zcw

l

= C-\/\~£®‘h(\fq

Algorithm Theory, WS 2012/13

Fabian Kuhn

r)=c

14

Analysis, Example

UNI
FREIBURG

Recurrence relation:

T(n) =2 -\T(n/Z)J@ T(1) =c

Verify by induction:

Gamess + VW) < C‘V\@l‘)@\/\ ‘”7
sy w=l V7

. 3@\3‘. T < ZC% <,Q®b GAZ}\W + CA

Algorithm Theory, WS 2012/13 Fabian Kuhn 15

Geometric divide-and-conquer

Closest Pair Problem: Given a set S of n points, find a pair of
points with the smallest distance.

Naive solution:
CW\{X«N al ?ﬂ\“g
= Bwg OG)

Algorithm Theory, WS 2012/13 Fabian Kuhn

UNI
I

FREIBURG

Divide-and-conquer solution

UNI
FREIBURG

1. Divide: Divide S into two equal sized set@uno@

2. Conquer: .= mindist(S,) @ mmdlst(Sr
3. Combine: d,, = min{d(ps, pr) | Pe € S, € Sr}

return min{d,, d,, d,,}

@ @

e gi 5S¢ bhsechion Cina, Sr -

Algorithm Theory, WS 2012/13 Fabian Kuhn 17

Divide-and-conquer solution

UNI
I

FREIBURG

1. Divide: Divide S into two equal sized sets S, und S,.
2. Conquer: d, = mindist(S,) d, = mlndlst(Sr

3. Combine: d,, = min{d(ps, pr) | Pe € S, € Sr}
return min{d,, d,., d,, }

Computation of d,,.:

o \ °*

S ey
d ='m/ir.1{d€, ay |+ |° .
Lo . \F .

S, rFure S,

Algorithm Theory, WS 2012/13 Fabian Kuhn 18

Merge step

UNI
I

FREIBURG

1. Consider only points within distance d of the bisection line,
in the order of increasing y-coordinates.

2. For each point p consider all points g within y-distance at
most d

3. There are at most 7 such points.

®

Algorithm Theory, WS 2012/13 Fabian Kuhn 19

UNI
FREIBURG

Combine step

d = min{d,, dr}

Algorithm Theory, WS 2012/13 Fabian Kuhn 20

UNI

Implementation

FREIBURG

e |nitially sort the points in S in order of increasing x-coordinates
%o: \?anké%ou‘w\%
 While computing closest pair, also sort S according to y-coord.
— Partition S intnd@, solve and sort sub-problems recursively
sz{- cez ,dr Serled SQ y Sv (i \/—coord.)
— Merge to get sorted S according to y-coordinates

cesy Ofn)

— Center points: points within x-distance d = min{d,, d,.} of center

— Go through center points in S in order of incr. y-coordinates

‘e 'l o\)qmn (\"\rw\q r%rf Comb ine !, CI”D

\ *
’)
0

\
T \

Algorithm Theory, WS 2012/13 Fabian Kuhn 21

Running Time

UNI
FREIBURG

Recurrence relation:

Tn)=2-T(n/2)+c-n,

T(1) =a

Solution:

e Same as for computing number of number of inversions,
merge sort (and many others...

Algorithm Theory, WS 2012/13

N
T(n) =0(n-logn)

Fabian Kuhn

——

22

