

Chapter 2 Greedy Algorithms

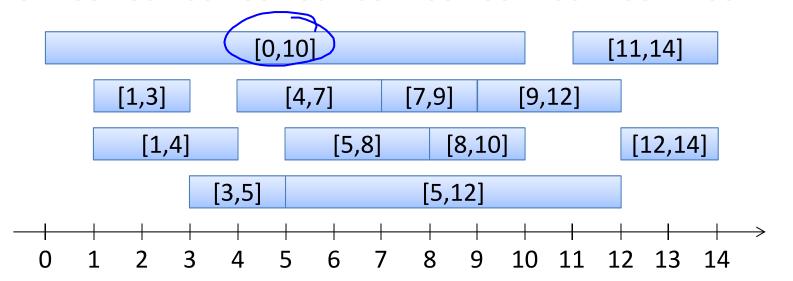
Part 2

Algorithm Theory WS 2012/13

Fabian Kuhn

Interval Scheduling

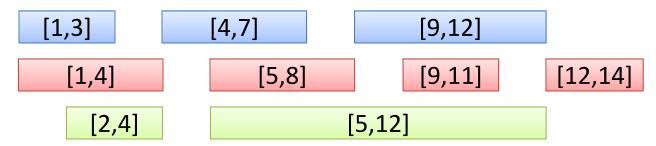
• **Given:** Set of intervals, e.g. [0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]



- Goal: Select largest possible non-overlapping set of intervals
 - Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping
- Example: Intervals are room requests; satisfy as many as possible

Interval Partitioning

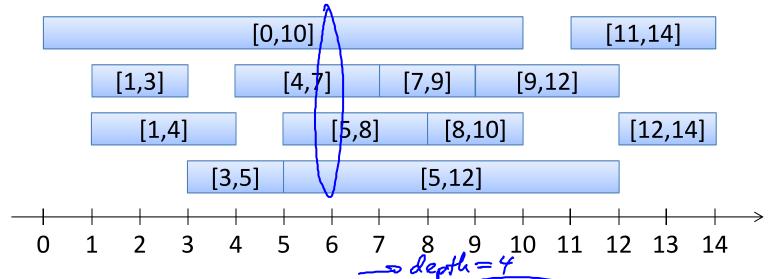
- Schedule all intervals: Partition intervals into as few as possible non-overlapping sets of intervals
 - Assign intervals to different resources, where each resource needs to get a non-overlapping set
- Example:
 - Intervals are requests to use some room during this time
 - Assign all requests to some room such that there are no conflicts
 - Use as few rooms as possible
- Assignment to 3 resources:



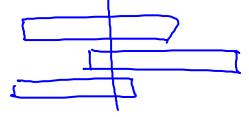
Depth

Depth of a set of intervals:

- Maximum number passing over a single point in time
- Depth of initial example is 4 (e.g., [0,10],[4,7],[5,8],[5,12]):



Lemma: Number of resources needed ≥ depth



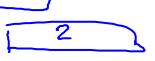
Greedy Algorithm

Can we achieve a partition into "depth" non-overlapping sets?

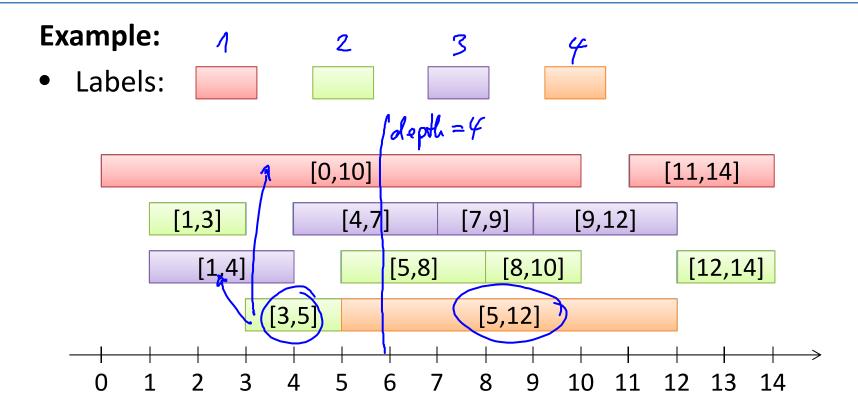
Would mean that the only obstacles to partitioning are local...

Algorithm:

- Assigns labels 1, ... to the sets; same label \rightarrow non-overlapping
- 1. sort intervals by starting time: $I_1, I_2, ..., I_n$
- 2. for i = 1 to n do
- 3. assign smallest possible label to I_i (possible label: different from conflicting intervals I_j , j < i)
- 4. end



Interval Partitioning Algorithm



• Number of labels = depth = 4

Interval Partitioning: Analysis

Theorem:

- a) Let d be the depth of the given set of intervals. The algorithm assigns a label from 1, ..., d to each interval.
- b) Sets with the same label are non-overlapping

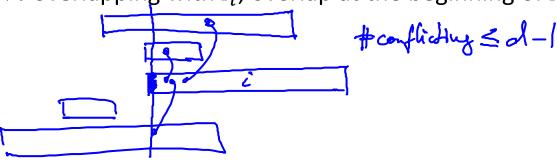
Proof:

b) holds by construction

• For a):

go through intervals by incr. Stording time

- All intervals I_i , j < i overlapping with I_i , overlap at the beginning of I_i



- At most d-1 such intervals \rightarrow some label in $\{1,\dots,d\}$ is available.

Traveling Salesperson Problem (TSP)

Input:

- Set *V* of *n* nodes (points, cities, locations, sites)
- Distance function $d: V \times V \to \mathbb{R}$, i.e., $\underline{d(u,v)}$: dist. from u to v
- Distances usually symmetric, asymm. distances d(μν) > ο
 d(μν) = d(ν,ν)

Solution:

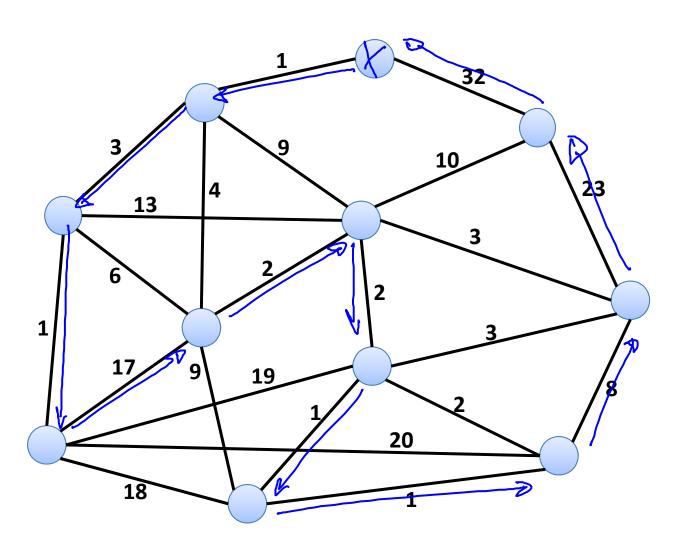
- Ordering/permutation $v_1, v_2, ..., v_n$ of vertices
- Length of TSP path: $\sum_{i=1}^{n-1} d(v_i, v_{i+1}) = d(v_i, v_i) + d(v_i, v_i) + d(v_i, v_i)$
- Length of TSP tour: $d(v_n, v_1) + \sum_{i=1}^{n-1} d(v_i, v_{i+1})$

Goal:

Minimize length of TSP path or TSP tour

NP-hard

Example



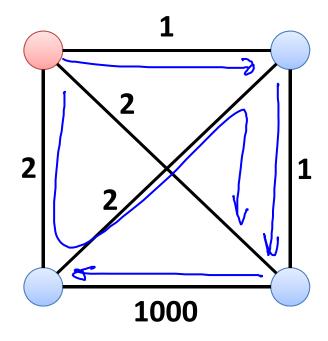
Optimal Tour:

Length: 86

Greedy Algorithm?

Nearest Neighbor (Greedy)

Nearest neighbor can be arbitrarily bad, even for TSP paths



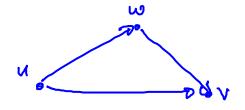
TSP Variants

Asymmetric TSP

- arbitrary non-negative distance/cost function
- most general, nearest neighbor arbitrarily bad
- NP-hard to get within any bound of optimum

Symmetric TSP

- arbitrary non-negative distance/cost function
- nearest neighbor arbitrarily bad
- NP-hard to get within any bound of optimum

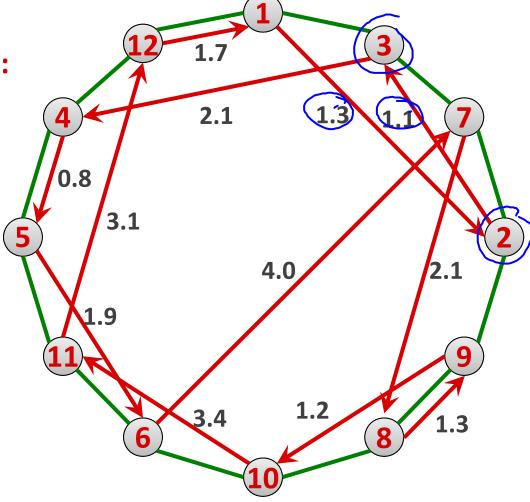


Metric TSP

- distance function defines metric space: symmetric, non-negative, triangle inequality: $d(u,v) \le d(u,w) + d(w,v)$
- possible to get close to optimum (we will later see factor $\frac{3}{2}$)
- what about the nearest neighbor algorithm?

Optimal TSP tour:

Nearest-Neighbor TSP tour:



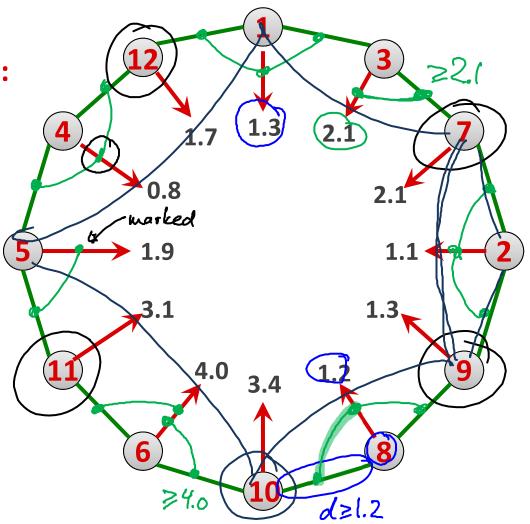
Optimal TSP tour:

Nearest-Neighbor TSP tour:

cost = 24

u green edges

> 1/2 marked red edges



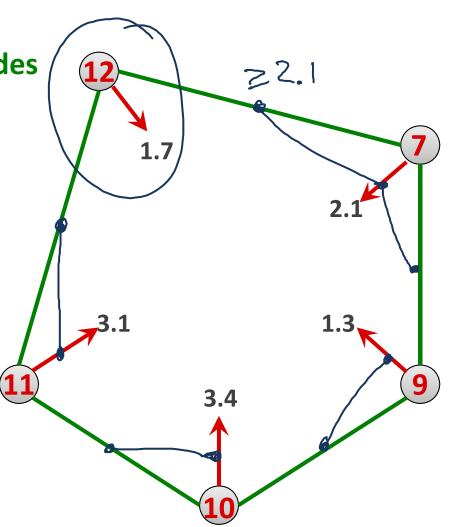
Triangle Inequality:

optimal tour on remaining nodes

 \leq

overall optimal tour

green z marked red



Analysis works in phases:

- In each phase, assign each optimal edge to some greedy edge
 - Cost of greedy edge ≤ cost of optimal edge
- Each greedy edge gets assigned ≤ 2 optimal edges
 - At least half of the greedy edges get assigned
- At end of phase:

Remove points for which greedy edge is assigned Consider optimal solution for remaining points

- Triangle inequality: remaining opt. solution \leq overall opt. sol.
- Cost of greedy edges assigned in each phase ≤ opt. cost
- Number of phases $\leq \log_2 n$
 - +1 for last greedy edge in tour

Assume:

We have shown:

$$\frac{NN}{OPT} \leq 1 + \log_2 n$$

- Example of an approximation algorithm
- We will later see a $\frac{3}{2}$ -approximation algorithm for metric TSP

Back to Scheduling

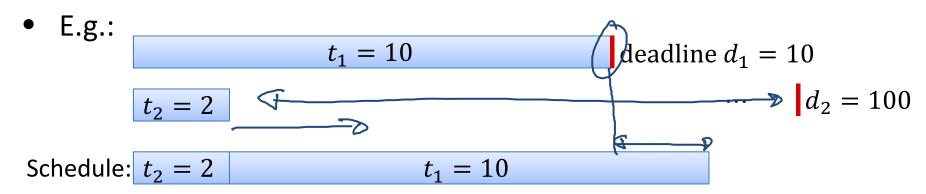
Given: n requests / jobs with deadlines:

- Goal: schedule all jobs with minimum lateness L 13 14
 - Schedule: s(i), f(i): start and finishing times of request iNote: $\underline{f(i)} = s(i) + t_i$
- Lateness $L := \max \left\{ 0, \max_{i} \left\{ f(i) d_{i} \right\} \right\}$
 - largest amount of time by which some job finishes late
- Many other natural objective functions possible...

Greedy Algorithm?

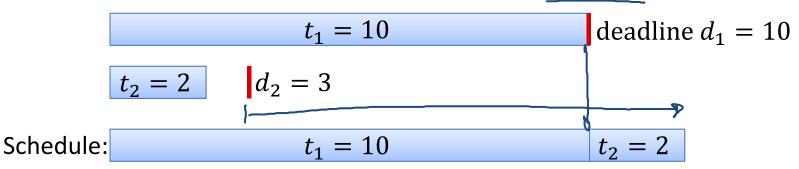
Schedule jobs in order of increasing length?

• Ignores deadlines: seems too simplistic...



Schedule by increasing slack time?

• Should be concerned about slack time: $d_i - t_i$



Greedy Algorithm

Schedule by earliest deadline?

- Schedule in increasing order of d_i
- Ignores lengths of jobs: too simplistic?
- Earliest deadline is optimal!

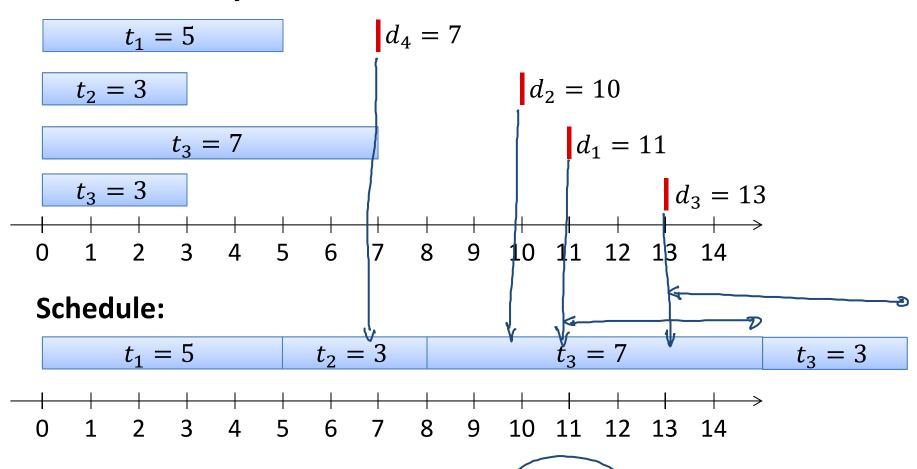
Algorithm:

- Assume jobs are reordered such that $d_1 \le d_2 \le \cdots \le d_n$
- Start/finishing times:
 - First job starts at time s(1) = 0
 - Duration of job *i* is t_i : $f(i) = \underline{s(i)} + t_i$
 - No gaps between jobs: s(i+1) = f(i)

(idle time: gaps in a schedule → alg. gives schedule with no idle time)

Example

Jobs ordered by deadline:

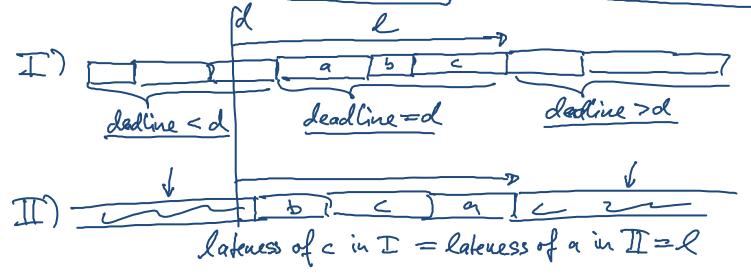


Lateness: job 1: 0, job 2: 0, job 3: 4, job 4: 5

Basic Facts

- 1. There is an optimal schedule with no idle time
 - Can just schedule jobs earlier...

2. Inversion: Job i scheduled before job j if $d_i > d_j$ Schedules with no inversions, have the same maximum lateness



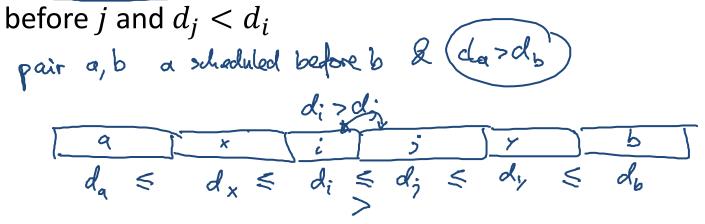
Earliest Deadline is Optimal

Theorem:

There is an optimal schedule \mathcal{O} with no inversions and no idle time.

Proof:

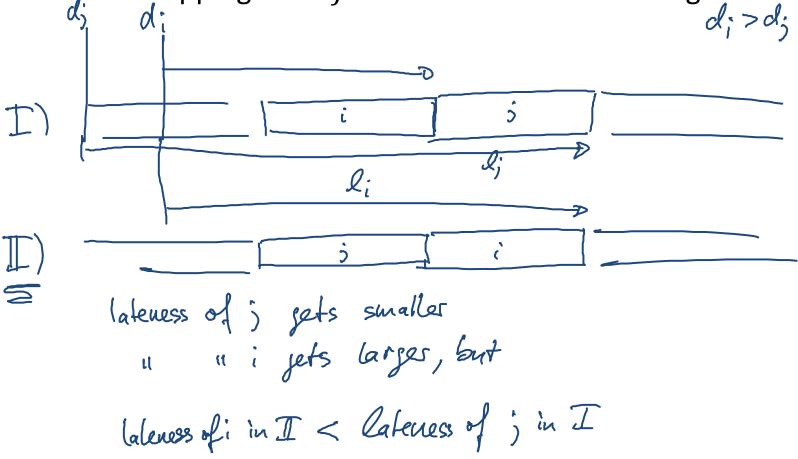
- Consider optimal schedule O' with no idle time
- If O' has inversions, \exists pair (i,j), s.t. i is scheduled immediately



- Claim: Swapping *i* and *j* gives schedule with
 - Less inversions
 - 2. Maximum lateness no larger than in \mathcal{O}'

Earliest Deadline is Optimal

Claim: Swapping i and j: maximum lateness no larger than in O'



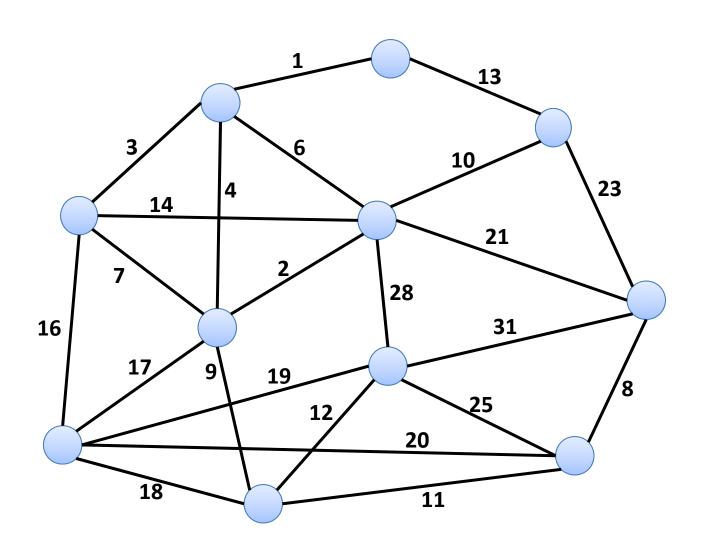
Exchange Argument

- "General" approach that often works to analyze greedy algorithms
- Start with any solution
- Define basic exchange step that allows to transform solution into a new solution that is not worse
- Show that exchange step move solution closer to the solution produced by the greedy algorithm
- Number of exchange steps to reach greedy solution should be finite...

Another Exchange Argument Example

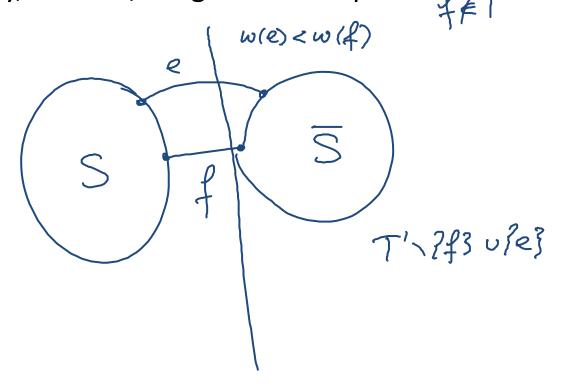
- Minimum spanning tree (MST) problem
 - Classic graph-theoretic optimization problem
- Given: weighted graph
- Goal: spanning tree with min. total weight
- Several greedy algorithms work
- Kruskal's algorithm:
 - Start with empty edge set
 - As long as we do not have a spanning tree:
 add minimum weight edge that doesn't close a cycle

Kruskal Algorithm: Example



Kruskal is Optimal

- Basic exchange step: swap to edges to get from tree T to tree T'
 - Swap out edge not in Kruskal tree, swap in edge in Kruskal tree
 - Swapping does not increase total weight
- For simplicity, assume, weights are unique:



Matroids

Same, but more abstract...

Matroid: pair (E, I)

- *E*: set, called the ground set
- I: finite family of finite subsets of E (i.e., $\underline{I} \subseteq 2^E$), System called independent sets

(E, I) needs to satisfy 3 properties:

- 1. Empty set is independent, i.e., $\emptyset \in I$ (implies that $I \neq \emptyset$)
- **Hereditary property**: For all $\underline{A} \subseteq I$ and all $A' \subseteq A$,

if
$$A \in I$$
, then also $A' \in I$

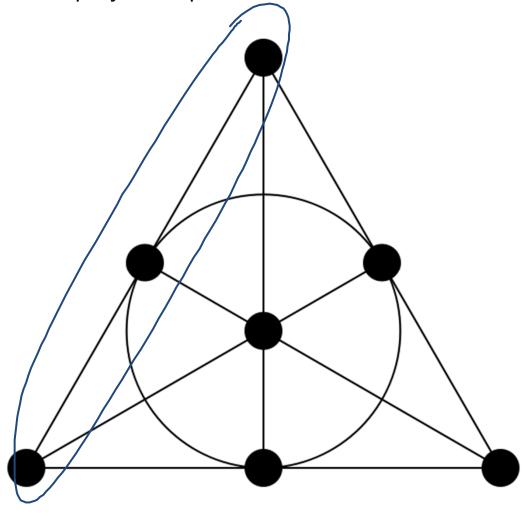
3. Augmentation / Independent set exchange property: If $A, B \in I$ and |A| > |B|, there exists $x \in A \setminus B$ such that

Fabian Kuhn

$$A, \mathcal{B} \subseteq E \qquad \mathbf{B}' := \underline{B \cup \{x\}} \in I$$

Example

- Fano matroid:
 - Smallest finite projective plane of order 2...



Matroids and Greedy Algorithms

Weighted matroid: each $e \in E$ has a weight $\underline{w(e)} > 0$

Goal: find maximum weight independent set

Greedy algorithm:

- 1. Start with $S = \emptyset$
- 2. Add max. weight $e \in E \setminus S$ to S such that $S \cup \{e\} \in I$

Claim: greedy algorithm computes optimal solution

Greedy is Optimal

• *S*: greedy solution

I: any other solution

$$S = \{x_1, x_1, \dots, x_s\} \qquad \omega(x_1) \ge \omega(x_2) \ge \dots$$

$$I = \{y_1, y_2, \dots, y_1\} \qquad \omega(y_1) \ge \omega(y_2) \ge \dots$$

$$Contrad: \qquad \omega(S) < \omega(I)$$

$$- |S| \ge |II|: \qquad is |S| < |F| \implies \exists x \in I \setminus S, e.d. Su(x_3) \in I$$

$$- |Suallow| = |x_1, \dots, x_k| < \omega(y_k)$$

$$S' = \{x_1, \dots, x_{k-1}\}, \quad I' = \{y_1, \dots, y_k\}$$

$$excl. prop. \qquad \forall i \qquad \omega(y_i) > \omega(x_k)$$

$$qrady |code | art |y_i| before |x_k|$$

Matroids: Examples

Forests of a graph G = (V, E):

- forest F: subgraph with no cycles (i.e., $F \subseteq E$)
- \mathcal{F} : set of all forests \rightarrow (E,\mathcal{F}) is a matroid
- Greedy algorithm gives maximum weight forest (equivalent to MST problem)

Bicircular matroid of a graph G = (V, E):

- \mathcal{B} : set of edges such that every connected subset has ≤ 1 cycle
- (E,\mathcal{B}) is a matroid \rightarrow greedy gives max. weight such subgraph

Linearly independent vectors:

- Vector space V, E: finite set of vectors, I: sets of lin. indep. vect.
- Fano matroid can be defined like that

Greedoid

- Matroids can be generalized even more
- Relax hereditary property:

Replace
$$A' \subseteq A \subseteq I \implies A' \in I$$

by $\emptyset \neq A \subseteq I \implies \exists a \in A, \text{ s. t. } A \setminus \{a\} \in I$

- Exchange property holds as before
- Under certain conditions on the weights, greedy is optimal for computing the max. weight $A \in I$ of a greedoid.
 - Additional conditions automatically satisfied by hereditary property
- More general than matroids