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 No clear definition, but essentially:

In each step make the choice that
looks best at the moment!

 Depending on problem, greedy algorithms can give
— Optimal solutions
— Close to optimal solutions
— No (reasonable) solutions at all

e |f it works, very interesting approach!

— And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)
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Interval Scheduling
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e G@Given: Set of intervals, e.g.
[0,10],[1,3],[1,4],[3,5],[4,7],5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

[0,10] [11,14]
[1,3] [4,7] (:) [7,9] [9,12]
[1,4] [5,8] [8,10] [12,14]
[3,5] [5,12]

o 1 2 3 4 5 6 7 8 9 10 11 12 1

3 14

e @Goal: Select largest possible non-overlapping set of intervals

— Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping

Example: Intervals are room requests; satisfy as many as possible
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e Several possibilities...
Choose first available interval:

[0,10] [11,14]
[1,3] [4,7] [7,9] [9,12]
[1,4] [5,8] [8,10] [12,14]
[3,5] [5,12]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Choose shortest available interval:
[1,7] [8,14]

6,9]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Choose available request with earliest finishing time:

e
o [0,10] [11,14]
13 | i | g8 | A8
/{/ [1,4] [5,8] [8,10] [12,14]

[3,5] 7 [512]

3 14

o 1 2 3 4 5 6 7 8 9 10 11 12 1

R :=set of all requests; S := empty set;
while R is not empty do

choose r € R with smallest finishing time

addrto S

delete all requests from R that are not compatible with r
end // S is the solution
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Earliest Finishing Time is Optimal
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. Le@e the set of intervals of an optimal solution

e Canwe show that$S = 07?
— No...

[0,10] [11,14]
[1,3] [4,7] [7,9] [9,12]
[1,4] [5,8] [8,10] [12,14]
3,5] [5,12]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Greey Solution Alternative Optimal Sol.

e Show that |S| = |O].
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Greedy Stays Ahead
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e Greedy Solution:

lay, b], |a,, by, . [a|5|,b|5|] where b; < a;,4
—_——
e Optimal Solution:

lai, bi], [a3, b3],. [a|0|,b|0|] where b; < a;,
e Assume that b; = oo fori > |S] and b = oo fori > |0]

Claim: Foralli > 1, b; § b;

[0,10] [11,14] 7

[1,3] \ 4, )/? 7,97 [% \v

[1,4] [5,8] ¢ [8,10] [12,14]
3,5] q’ [5,12]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Claim: Foralli = 1, b; < b;

Proof (by induction on i):

FBase: 4, < W e
«
Do et she Hal B =R,
lk\. availa, bo @clcurj O@ . aj\:ﬂ,ﬂv ox'\‘&m} S

l > bk-u i Q"'“:“m“éé%w
'— D
— ; ; — >
b, b 1

Corollary: Earliest finishing time algorithm is optimal.
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Weighted Interval Scheduling
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Weighted version of the problem:
e Each interval has a weight
e Goal: Non-overlapping set with maximum total weight

Earliest finishing time greedy algorithm fails:
e Algorithm needs to look at weights
e Else, the selected sets could be the ones with smallest weight...

Cau‘% be solved u?}w& a Brezokz Q(o&_

No simple greedy algorithm:
 We will see an algorithm using another design technique later.

otvdmm‘\c ?mémwm[u\k
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Interval Partitioning

 Schedule all intervals: Partition intervals into as few as
possible non-overlapping sets of intervals

— Assign intervals to different resources, where each resource needs to
get a non-overlapping set

e Example:
— Intervals are requests to use some room during this time
— Assign all requests to some room such that there are no conflicts

— Use as few rooms as possible

* Assignment to 3 resources:

[1,3] [4,7] [9,12]
[1,4] [5,8] [9,11] [12,14]
[2,4] [5,12]
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Depth of a set of intervals:
e Maximum number passing over a single point in time

e Depth of initial example is 4 (e.g., [0,10],[4,7],[5,8],[5,12]):

[0,10] [11,14]
[1,3] [4,7] [7,9] [9,12]
[1,4] [5,8] [8,10] [12,14]
[3,5] [5,12]
0 1 2 3 5 6 7 8 9 10 11 12 13 14

Lemma: Number of resources needed = depth
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Greedy Algorithm
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Can we achieve a partition into “depth” non-overlapping sets?

 Would mean that the only obstacles to partitioning are local...

Algorithm:
e Assigns labels 1, ... to the sets; same label = non-overlapping

1. sortintervals by starting time: I, [,, ..., I,
2. fori=1tondo

3. assign smallest possible label to I;
(possible label: different from conflicting intervals I;, j < i)

4. end
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Example:

e Labels:

[0,10] [11,14]

[1,3] [4,7] [7,9] [9,12]

[1,4] 58] [8,10] [12,14]
[3,5] [5,12]

o 1 2 3 4 5 6 7 8 9 10 11 12 1

3 14

* Number of labels = depth =4
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Interval Partitioning: Analysis
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Theorem:

a) Let d be the depth of the given set of intervals. The
algorithm assigns a label from 1, ..., d to each

b) Sets with the same label are non-overlapping

Proof:
* b) holds by construction
e Fora):

— Allintervals I;, j < i overlapping with [;, overlap at the beginning of I;

— At most d — 1 such intervals = some label in {1, ..., d} is available.
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