)

Chapter 3
Dynamic Programming

Part 2

Algorithm Theory
WS 2012/13

Fabian Kuhn

UNI

FREIBURG



UNI

Dynamic Programming

FREIBURG

,Memoization” for increasing the efficiency of a recursive solution:

* Only the first time a sub-problem is encountered, its solution is
computed and then stored in a table. Each subsequent time that
the subproblem is encountered, the value stored in the table is
simply looked up and returned

(without repeated computation!).

e Computing the solution: For each sub-problem, store how the
value is obtained (according to which recursive rule).

Algorithm Theory, WS 2012/13 Fabian Kuhn 2



Dynamic Programming

UNI

FREIBURG

Dynamic programming / memoization can be applied if

e Optimal solution contains optimal solutions to sub-problems
(recursive structure)

@of sub-problems that need to be considered is small

re uoa,\ow.tuk

Algorithm Theory, WS 2012/13 Fabian Kuhn



UNI

String Matching Problems

FREIBURG

Edit distance:

 For two given string@an efficiently compute the
edit distance D(A, B) (# edit operations to transform 4 into B)

as well as a minimum sequence of edit operations that
transform A into B.

B

e Example: mathematician = multiplication:

m@%i(a@@&“@

1 C

—
_——

Algorithm Theory, WS 2012/13 Fabian Kuhn 4



String Matching Problems

UNI
FREIBURG

Edit distance D(A4, B) (between strings A and B):

ma-them--atimician

multiplicatio--n

Approximate string matching:

For a given text T, a pattern P and a distance d, find all

substrings P’ of T with D(P, P") <d.

Sequence alignment:
Find optimal alignments of DNA / RNA / ... sequences.

GAGCA-CTTGGATTCTCGG
- --CACGTGG-A-ACT- - -

Algorithm Theory, WS 2012/13 Fabian Kuhn 5



Edit Distance

UNI

FREIBURG

Given: Two strings A = a,a, ...a,, and B = by b, ... b,

Goal: Determine the minimum number D (4, B) of edit
operations required to transform A into B

Edit operations:

a) Replace a character from string A by a character from B
b) Delete a character from string A

c) Insert a character from string B into A

—them——at
0 1 cat
\05

Algorithm Theory, WS 2012/13 Fabian Kuhn

o O
-y
I Q
D R



Edit Distance — Cost Model

UNI
I

FREIBURG

Cost for replacing character a by b: c(a,b) = 0

e Captureinsert, delete by allowinga = corb = ¢:
— Cost for deleting character a: c(a, €)
— Cost for inserting character b: c(&, b)

* Triangle inequality:

c(a,c) < c(a,b) +c(b,c)

— each character is changed at most oncel.

1, ifa#b

e Unit cost model: c(a,b) = {O ifq = b

Algorithm Theory, WS 2012/13 Fabian Kuhn 7



Recursive Structure

UNI
FREIBURG

e Optimal “alignment” of strings (unit cost model)
bbcadfagikccm and abbagflrgikacc:

*
I

bc

————

abb -
hs. |

k - ccm
k C C
;v\S M

faj—g
T I g

Q

A
B

—§_Q Q

=

e Consists of optimal “alignments” of sub-strings, e.g.:
-bbcagfa nd —gik-ccm
abb-adfl rgikacc-

e Edit distance between Aim = a1 ..apand By, = by ...by:

D(A,B) = mln{D (A1 k» B1 £’) + D(Ak+1 m» Bes1 n)}

g
b<w, Lewn
Algorithm Theory, WS 2012/13 Fabian Kuhn




Computation of the Edit Distance

UNI
I

FREIBURG

A

let A, = a4 ...ay, By = by ...b, , and

= =z
2&{ = Q(Ak' Bf)

ti,/v\ ¢(D(743 (E)

Algorithm Theory, WS 2012/13 Fabian Kuhn 9



Computation of the Edit Distance

UNI
I

FREIBURG

Three ways of ending an “alighment” between A, and B,:

1. ay isreplaced by by:

Dy ¢y = Dy_1p-1 + c(ag,

by)

2. ay is deleted:

&f = Dy_1p+clag, €)

3. by isinserted:

_l_)ﬁ = Dk,f—l___l_ 6;(8, bg)

Algorithm Theory, WS 2012/13

Fabian Kuhn

ql-‘ - — ak‘(
\”\"r’ - - ke
4 —--%
by —- by,

10



Computing the Edit Distance

|
FRE:BURG

UNI

* Recurrence relation (for k, £ = 1) O q‘.’ qt=é><
(Dy—1,0-1 + c(ay, bp) (Dy—1.0-1
Dy, =min{Dy_1, +c(age) ; =min{ D1, +1
E Dro-1 +c(ebyp) ) Dre-1 +1

Y
unit cost model

* Needtocompute D;;forall0 <i<k,0<j<¢:

Algorithm Theory, WS 2012/13 Fabian Kuhn 11



Recurrence Relation for the Edit Distance

UNI
FREIBURG

Base cases:
Uw.{" cad‘

Dop = D(g,8) =0
D,Q,] = D(E, B]) — DO,j—l + c! g,b. ,

D;oy =D(A;,¢&) =D;_19+ c(a; &)

)
LU

\
~

Recurrence relation:
)
(D141 + c(ay, bp))
Dy_1, +c(age) ;
\Dk,f—l + C(E, bf) y, j

Algorithm Theory, WS 2012/13 Fabian Kuhn

12



Order of solving the subproblems

UNI
I

FREIBURG

o b, b, by b, b,
o
|
|
al -
az - | — - ——"') X X

Algorithm Theory, WS 2012/13 Fabian Kuhn

13



Algorithm for Computing the Edit Distance .

Algorithm Edit-Distance

Input: 2stringsA=a,..a,andB =b;..b,
Output: matrix D = (Dij)

1 D[0,0] :== 0;

2 fori:=1tomdo D[i,0] := i; walie
3forj:=1tondoD|O,j]| = j
4fori:=1tomdo=— rows
5 forj:=1tondo «— cslomns
(D[i —1,j] + 1 \
6 D[i,jl=min{D[ij—-1] +1 ’
D[i—1,j — 1] + c(a;, b;)

Algorithm Theory, WS 2012/13 Fabian Kuhn 14

UNI
FREIBURG



Example it cost
a b C C a
O \ 2113 &4 <
i o
b l@\: l | 2 3\-—»4
G N =
a| 2 l\,g:f’?— 12173 || £
=
b |3 Z ]C"Z-‘?%‘“"Lf -abccaqg
i, 'LA\§ L abd - o
d| 4| 2|2 = ¥
alS ||l 2] 2|2 )ﬁ——@'ss

Algorithm Theory, WS 2012/13 Fabian Kuhn

15



Computing the Edit Operations

UNI
I

FREIBURG

Algorithm Edit-Operations(i, j)
Input: matrix D (already computed)
Output: list of edit operations

1 ifi = 0andj = 0 then return empty list

ifi #0and D[i,j] = D[i —1,j] + 1 then
return Edit-Operations(it — 1,j) o ,delete a;“

2

3

4 elseifj # 0and D[i,j] = D[i,j — 1] + 1 then
5  return Edit-Operations(i,j — 1) o ,insert b;“
6
7/
8

else //D[i,j] =D[i —1,j — 1] + c(ay, b))
if@ then return Edit-Operations(i —1,j — 1)
else return Edit-Operations(i — 1,j — 1) o ,replace a; by b;“

Initial call: Edit-Operations(m,n)

Algorithm Theory, WS 2012/13 Fabian Kuhn

16



Edit Operations

UNI
I

FREIBURG

a b
0 1 2 3
b 1 1 2

Algorithm Theory, WS 2012/13 Fabian Kuhn



Edit Distance: Summary

UNI

FREIBURG

 Edit distance between two strings of length m and n can be
computed inrO (mn)?time.

e Obtain the edit operations:
— for each cell, store which rule(s) apply to fill the cell
— track path backwards from cell (m, n) O(W\-} 10
— can also be used to get all optimal “alignments”

e Unit cost model:
— interesting special case
— each edit operation costs 1

Algorithm Theory, WS 2012/13 Fabian Kuhn

18



UNI

Approximate String Matching

FREIBURG

Given: strings T = t;t, ... tg (text) and P = pyp; - Dy (pattern).

Goal: Find an interval [, s], 1 < r < s < n such that the sub-string
@z t, ...ts is the one with highest similarity to the pattern P:

e

arg min\P (TL? f)l

1srs<ssn
—
s
;Mﬁ\ S
T

Algorithm Theory, WS 2012/13 Fabian Kuhn 19



Approximate String Matching

UNI

FREIBURG

Naive Solution:

foralll <r<s<ndo
compute D(T g, P)

choose the minimum

O( V’LZ'V\- ""\7 —-_O(uguo

Algorithm Theory, WS 2012/13 Fabian Kuhn

20



UNI

Approximate String Matching

A related problem:

* For each position s in the text and each position i in the
pattern compute the minimum edit distance E (i, s) between
P; = p; ...p; and any substring T;. ; of T that ends at position s.

@ ) ,

= 0

\es

s ”
% a\\ 91;— — %\,J\ ) "\'L’Ul' WA m
EG/S-)

Algorithm Theory, WS 2012/13 Fabian Kuhn 21

FREIBURG



Approximate String Matching %&é?;::sw

/
Three ways of ending optimal alignment between Tb‘/and P;:

= Ty
‘-——

b l
1. tyisreplaced by p;: /?\;_\@
- \{L___ ¢
A

Epi =Ep_qi-1+ c(tp,pi)

m—

|

2. tpis deleted: Yz _ _f\\b-l\ it
Ey; =Ep_1; +c(ty, ) ~ e / B
3. p;isinserted: % I*‘ —
Ey; =Epi—1+c(ep;) - T T - ( P,

Algorithm Theory, WS 2012/13 Fabian Kuhn

UNI
I

FREIBURG



Approximate String Matching

|
FRE:BURG

UNI

Recurrence relation (unit cost model):

O X -7
(Ep_1i-1
Epi=min<E,_1; +1
KEb,i—l +1
Base cases: T= » ) r?’

""’E0,0 - O

Ve, Tt

Algorithm Theory, WS 2012/13 Fabian Kuhn

23



Example /"1

P,

UNI
I

FREIBURG

¥ o
}«Q' m a t h e m .a ij c S
¥ | m a
m ([ I
BERRRS ~ ~
u N A\
N
l N
t
N\ \_7
i , 1
f wa 4 P R
P wmnd L E(ff»/%) E(S;O‘D
T$' T'o

Algorithm Theory, WS 2012/13 Fabian Kuhn

24



Approximate String Matching

UNI

FREIBURG

e Optimal matching consists of optimal sub-matchings

mn <L

e Optimal matching can be computed in O (mn) time

e Get matching(s):
— Start from minimum entry/entries in bottom row
— Follow path(s) to top row

e Algorithm to compute E (b, i) identical to edit distance
algorithm, except for the initialization of E (b, 0)

Algorithm Theory, WS 2012/13 Fabian Kuhn

25



Related Problems from Bioinformatics

UNI

FREIBURG

Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid
seguences.

GA-CGGATTAG G
GATCGGAAT -0

Global vs. Local Alighment:
e Global alignment: find optimal alignment of 2 sequences

e Local alignment: find optimal alignment of sequence 1
(patten) with sub-sequence of sequence 2 (text)

Algorithm Theory, WS 2012/13 Fabian Kuhn

26



