

Chapter 3 Dynamic Programming

Part 2

Algorithm Theory WS 2012/13

Fabian Kuhn

Dynamic Programming

"Memoization" for increasing the efficiency of a recursive solution:

• Only the *first time* a sub-problem is encountered, its solution is computed and then stored in a table. Each subsequent time that the subproblem is encountered, the value stored in the table is simply looked up and returned

(without repeated computation!).

 Computing the solution: For each sub-problem, store how the value is obtained (according to which recursive rule).

Dynamic Programming

Dynamic programming / memoization can be applied if

 Optimal solution contains optimal solutions to sub-problems (recursive structure)

• Number of sub-problems that need to be considered is small

String Matching Problems

Edit distance:

- For two given strings A and B efficiently compute the edit distance D(A, B) (# edit operations to transform A into B) as well as a minimum sequence of edit operations that transform A into B.
- Example: mathématician -> multiplication:

String Matching Problems

Edit distance D(A, B) (between strings A and B):

$$ma-them--atician$$

 $multiplicatio--n$

Approximate string matching:

For a given text T, a pattern P and a distance d, find all substrings P' of T with $D(P, P') \le d$.

Sequence alignment:

Find optimal alignments of DNA / RNA / ... sequences.

Edit Distance

Given: Two strings $A=a_1a_2\dots a_m$ and $B=b_1b_2\dots b_n$

Goal: Determine the minimum number D(A, B) of edit operations required to transform A into B

Edit operations:

- a) Replace a character from string A by a character from B
- **b) Delete** a character from string *A*
- c) Insert a character from string B into A

Edit Distance – Cost Model

- Cost for **replacing** character a by b: $c(a, b) \ge 0$
- Capture insert, delete by allowing $a = \underline{\varepsilon}$ or $b = \underline{\varepsilon}$:
 - Cost for **deleting** character $a: c(a, \varepsilon)$
 - Cost for **inserting** character b: $c(\varepsilon, b)$
- Triangle inequality:

$$c(a,c) \le c(a,b) + c(b,c)$$

→ each character is changed at most once!

• Unit cost model: $c(a,b) = \begin{cases} 1, & \text{if } a \neq b \\ 0, & \text{if } a = b \end{cases}$

Recursive Structure

Optimal "alignment" of strings (unit cost model)
 bbcadfagikccm and abbagflrgikacc:

Consists of optimal "alignments" of sub-strings, e.g.:

-bbcagfa and -gik-ccm abb-adfl rgikacc-
$$\mathcal{A}_{ij}$$
= α_{i} ... α_{j}

• Edit distance between $\underline{A_{1,m}} = a_1 \dots a_m$ and $B_{1,n} = b_1 \dots b_n$:

$$D(A,B) = \min_{\substack{k,\ell \\ k < m_{\ell} }} \left\{ \underline{D(A_{1,k},B_{1,\ell})} + \underline{D(A_{k+1,m},B_{\ell+1,n})} \right\}$$

Computation of the Edit Distance

Let
$$A_k \coloneqq \underline{a_1 \dots a_k}$$
 , $B_\ell \coloneqq \underline{b_1 \dots b_\ell}$, and
$$\underline{D_{k,\ell}} \coloneqq \underline{D(A_k,B_\ell)}$$

$$D_{M,N} = D(A, B)$$

Computation of the Edit Distance

Three ways of ending an "alignment" between A_k and B_ℓ :

1. a_k is replaced by b_ℓ :

$$\underline{D_{k,\ell}} = \underline{D_{k-1,\ell-1}} + \underline{c(a_k,b_\ell)}$$

2. a_k is deleted:

$$D_{k,\ell} = D_{k-1,\ell} + \underline{c(a_k, \varepsilon)}$$

3. b_{ℓ} is inserted:

$$\underline{D_{k,\ell}} = \underline{D_{k,\ell-1}} + \underline{c(\varepsilon,b_{\ell})}$$

Computing the Edit Distance

• Recurrence relation (for $k, \ell \geq 1$)

$$D_{k,\ell} = \min \begin{cases} D_{k-1,\ell-1} + c(a_k,b_\ell) \\ D_{k-1,\ell} + c(a_k,\varepsilon) \\ D_{k,\ell-1} + c(\varepsilon,b_\ell) \end{cases} = \min \begin{cases} D_{k-1,\ell-1} + 1 \\ D_{k-1,\ell} + 1 \\ D_{k,\ell-1} + 1 \end{cases}$$
 unit cost model

• Need to compute $D_{i,j}$ for all $0 \le i \le k$, $0 \le j \le \ell$:

Recurrence Relation for the Edit Distance

Base cases:

$$D_{0,0} = D(\varepsilon, \varepsilon) = 0$$

$$D_{0,j} = D(\varepsilon, B_j) = D_{0,j-1} + \underline{c(\varepsilon, b_j)} = 0$$

$$D_{i,0} = D(A_i, \varepsilon) = D_{i-1,0} + \underline{c(a_i, \varepsilon)} = 0$$

Recurrence relation:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Order of solving the subproblems

Algorithm for Computing the Edit Distance

Algorithm *Edit-Distance*

Input: 2 strings $A = a_1 \dots a_m$ and $B = b_1 \dots b_n$

Output: matrix $D = (D_{ii})$

$$1 D[0,0] \coloneqq 0;$$
 $2 \text{ for } i \coloneqq 1 \text{ to } m \text{ do } D[i,0] \coloneqq i;$
 $3 \text{ for } j \coloneqq 1 \text{ to } n \text{ do } D[0,j] \coloneqq j;$

3 for
$$j := 1$$
 to n do $D[0, j] := j$;

4 for
$$i := 1$$
 to m do \longrightarrow $rows$

5 for
$$j := 1$$
 to n do \leftarrow columns

6
$$D[i,j] := \min \begin{cases} D[i-1,j] + 1 \\ D[i,j-1] + 1 \\ D[i-1,j-1] + c(a_i,b_j) \end{cases}$$
;

Computing the Edit Operations


```
Algorithm Edit-Operations(i, j)
Input: matrix D (already computed)
Output: list of edit operations
1 if i = 0 and j = 0 then return empty list
2 if i \neq 0 and D[i,j] = D[i-1,j] + 1 then
     return Edit-Operations (i-1,j) \circ "delete a_i"
  else if j \neq 0 and D[i,j] = D[i,j-1] + 1 then
     return Edit-Operations(i, j - 1) \circ "insert b_j"
5
  else //D[i,j] = D[i-1,j-1] + c(a_i,b_i)
     if a_i = b_i then return Edit-Operations (i-1, j-1)
     else return Edit-Operations(i-1, j-1) \circ  "replace a_i by b_i"
Initial call: Edit-Operations(m,n)
```

Edit Operations

		a	b	<u>c</u>	<u>c</u>	a
	0	1	2	3	4	5
b	1	1	1	2	3	4
a	2	1	2	2	3	3
b	3	2	1	2	3	4
d	4	3	2	2	3	4
a	5	4	3	3	3	3

Edit Distance: Summary

• Edit distance between two strings of length \underline{m} and \underline{n} can be computed in O(mn) time.

- Obtain the edit operations:
 - for each cell, store which rule(s) apply to fill the cell
 - track path backwards from cell (m, n)

 $\bigcirc(M+N)$

- can also be used to get all optimal "alignments"
- Unit cost model:
 - interesting special case
 - each edit operation costs 1

Given: strings $T = t_1 t_2 \dots t_n$ (text) and $P = p_1 p_2 \dots p_n$ (pattern).

Goal: Find an interval [r, s], $1 \le r \le s \le n$ such that the sub-string $T_{r,s} = t_r \dots t_s$ is the one with highest similarity to the pattern P:

Naive Solution:

for all
$$1 \le r \le s \le n$$
 do compute $D(T_{r,s}, P)$ choose the minimum

$$O(n^2 \cdot n \cdot m) = O(n^3 m)$$

A related problem:

• For each position s in the text and each position i in the pattern compute the minimum edit distance E(i,s) between $P_i = p_1 \dots p_i$ and any substring $T_{r,s}$ of T that ends at position s.

S from previous slide

Three ways of ending optimal alignment between T_b^{ν} and P_i :

1. t_b is replaced by p_i :

$$E_{b,i} = \underline{E_{b-1,i-1}} + \underline{c(t_b, p_i)}$$

2. t_b is deleted:

$$E_{b,i} = E_{b-1,i} + c(t_b, \varepsilon)$$

3. p_i is inserted:

$$E_{b,i} = E_{b,i-1} + c(\varepsilon, p_i)$$

Recurrence relation (unit cost model):

$$E_{b,i} = \min \begin{cases} E_{b-1,i-1} + 1 \\ E_{b-1,i} + 1 \\ E_{b,i-1} + 1 \end{cases}$$

Base cases:

$$E_{0,0} = 0$$

$$E_{0,i} = 0$$

$$E_{i,0} = 0$$

Optimal matching consists of optimal sub-matchings

w << n

- Optimal matching can be computed in O(mn) time
- Get matching(s):
 - Start from minimum entry/entries in bottom row
 - Follow path(s) to top row
- Algorithm to compute E(b,i) identical to edit distance algorithm, except for the initialization of E(b,0)

Related Problems from Bioinformatics

Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid sequences.

Global vs. Local Alignment:

- Global alignment: find optimal alignment of 2 sequences
- Local alignment: find optimal alignment of sequence 1
 (patter) with sub-sequence of sequence 2 (text)