)

Chapter 4

Data Structures
Fibonacci Heaps, Union Find

Algorithm Theory
WS 2012/13

Fabian Kuhn

UNI
I

FREIBURG

Fibonacci Heaps: Marks

UNI
I

FREIBURG

Cycle of a node:

1. Node v is removed from root list and linked to a node
v.mark = false

2. Child node u of v is cut and added to root list
v.mark = true

3. Second child of v is cut
node v is cut as well and moved to root list

The boolean value v. mark indicates whether node v has lost a
child since the last time v was made the child of another node.

Algorithm Theory, WS 2012/13 Fabian Kuhn 2

Potential Function

|
FRE:BURG

UNI

System state characterized by two parameters:
e R:number of trees (length of H.rootlist)
e M: number of marked nodes that are not in the root list

Potential function:
b =R+ le/{

Example:

e R=7,M=2 2> d=11

Algorithm Theory, WS 2012/13 Fabian Kuhn 3

Actual Time of Operations

UNI

FREIBURG

e Operations: initialize-heap, is-empty, insert, get-min, merge
actual time: 0(1)

— Normalize unit time such that

Linit) tis—empty: Linserts tget—min' tmerge <1

e Operation delete-min:
— Actual time: O(Iength of H.rootlist + D(n))

— Normalize unit time such that
tgel—min < D(n) + length of H.rootlist

e QOperation descrease-key:

— Actual time: O (length of path to next unmarked ancestor)
— Normalize unit time such that

taecr—key < length of path to next unmarked ancestor

Algorithm Theory, WS 2012/13 Fabian Kuhn

Amortized Times

UNI
I

FREIBURG

Assume operation i is of type:

e initialize-heap:
— actual time: t; < 1, potential: ®;_; = ®; =0
— amortized time: a; = t; + ¢; —P;_1 <1

* is-empty, get-min:
— actual time: t; < 1, potential: ®; = ®;_, (heap doesn’t change)
— amortized time: a; = t; + ¢; —P;_1 <1

° merge:
— Actualtime: t; <1
— combined potential of both heaps: ®; = &;_4
— amortized time: a; = t; + ¢; —P;_1 <1

Algorithm Theory, WS 2012/13 Fabian Kuhn 5

Amortized Time of Insert

UNI
I

FREIBURG

Assume that operation i is an insert operation:
e Actualtime:t; <1

 Potential function:

— M remains unchanged (no nodes are marked or unmarked, no marked
nodes are moved to the root list)

— R grows by 1 (one element is added to the root list)

Mi=M;—y, Ri=Rj_1+1
Cbi — cI)i—l + 1

e Amortized time:

=t 4+ P — D <2

Algorithm Theory, WS 2012/13 Fabian Kuhn 6

Amortized Time of Delete-Min

UNI
I

FREIBURG

Assume that operation i is a delete min operation:

Actual time: t; < D(n) + |H. rootltst[

Potential function & =®+ 2M: =t d) dD
* R:changes from H.rootlist to at most D(n) ¥; < 'ch}?;ﬂ
e M: (# of marked nodes that are not in the root list)

— no new marks

— if node v is moved away from root list, v. mark is set to false
— value of M does not change!

M;=M;_;, R, <R;_;+D(n)—|H.rootlist|
O; < P,y +D(n) — [H.rootlist|

Amortized Time:
a,- = ti + (l)i — (Di—l < ZD(n)
"w——\

Algorithm Theory, WS 2012/13 Fabian Kuhn

UNI

Amortized Time of Decrease-Key

FREIBURG

Assume that operation i is a decrease-key operation at node u:

Actual time: t; < length of path to next unmarked ancestor v

Potential function ® = R @

e Assume, node u and nodes uy, ..., U, are moved to root list

— U4, ..., Uy are marked and moved to root list, v. mark is set to true
e > k marked nodes go to root list, < 1 node gets newly marked
e Rgrowsby < k+ 1, M grows by 1 and is decreased by > k

Ri<Ri1+kL1) M <M_,£1)>k

;<P 1+ k+D)-2(k-1) =9, +3—k

Amortized time:

ai=££-+<l>i—<l>i_1 S/](+1+3—/K:4

Algorithm Theory, WS 2012/13 Fabian Kuhn 8

UNI

Complexities Fibonacci Heap

FREIBURG

Initialize-Heap: 0(1)

e Is-Empty: 0(1)
* Insert: 0o(1)
e Get-Min: 0(1)

* Delete-Min: ﬁ—% amortized

e Decrease-Key: 0(1)

e Merge (heaps of sizemandn, m < n): 0(1)

e How large can D(n) get?
s (n) g 0D ZOQ@% A

Algorithm Theory, WS 2012/13 Fabian Kuhn 9

Rank of Children

UNI
FREIBURG

Lemma:

Consider a node v of rank k and let uq, ..., u;be the children of v
in the order in which they were linked to v. Then,

rank(u;) =i — 2.

—

Proof:
vV

a// %O v C)/ 7&? mec ramkiy)

u U, U, A /]
Lc T

e (U) 212 o U 5 Gubed o) rauk) 2 (=1

?:\7 W o QY ad =Y work =te
U
// ’ fMEU&Q?o \ Cﬂk (&

b
Faked 21 m&uq>) g b | 0

Algorithm Theory, WS 2012/13 Fabian Kuhn 10

Size of Trees

UNI
I

FREIBURG

Fibonacci Numbers:

FO:O

Lemma:

F1:1

rank k is at least Fj,».

e

Vk = Z:Fk — Fk—l + Fk—Z

A= 0,7, \\2%5‘/815213‘/ il
w@ ala/

In a Fibonacci heap, the size of the sub- tree of a node v with

Pl (u) 2 (-2

Proof:
e Si:minimum size of the sub-tree of a node of rank k
= v rawti=k
S°= l/ --——-*S‘.—Z Yo 7 [\ u,
Zt2 -zl 20 20 <— roul
lskz -5 Se S
224 5,

lte

Algorithm Theory, WS 2012/13

Fabian Kuhn

11

Size of Trees "¢ "

UNI
I

FREIBURG

2
k—2
So =1, S, =2, Vk22:5k22+25i
_ — i=0
e Claim about Fibonacci numbers:
k
ideC}"\Sv\ M
&:__ O ‘('rz =l+q—o =|{ s
?L—Q;F'; :Fk-\-'z - —tkﬂ +¢k - L
=9, + 1+ = F® =1+ ,_éfﬁ v
=0 =o
= —

Algorithm Theory, WS 2012/13 Fabian Kuhn

UNI

Size of Trees

FREIBURG

So=1,8 =2,k z Frsa =1+

E— . \ PO
e Claimoflemma: S, = Fj.» ‘
T

|
&1+
>

;0\(,'&&(4'\‘8"\ B\&\‘,‘, /

bese - &7‘:{' =1 S 221:3: Z \wa"
i / L2

9«&-?-)‘-—7& S‘ 2+ 23 2']— v\'Z.

Algorithm Theory, WS 2012/13 Fabian Kuhn 13

Size of Trees

|
FRE:BURG

UNI

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node v with rank k
is at least Fj, ».

Theorem:
The maximum rank of a node in a Fibonacci heap of size n is at most

LD(n) = 0(log4n:)]

Proof:
e The Fibonacci numbers grow exponentially:

(55

—_

e ForD(n) = k,weneedn = Fj,, nodes.

Algorithm Theory, WS 2012/13 Fabian Kuhn 14

Summary: Binomial and Fibonacci Heaps

UNI

FREIBURG

initialize
insert
get-min
delete-min
decrease-key
merge

is-empty

Algorithm Theory, WS 2012/13

Binomial Heap

0o(1)
O(logn)
0(1)
O(logn)
O(log n)
O(logn)
0(1)

Fabian Kuhn

Fibonacci Heap
0(1)
0(1)
0(1)

O(logn) *
o(1)*
0(1)
0(1)

@ortized timi

(XW\ + I/\J@’aﬂ

15

UNI

Minimum Spanning Trees

FREIBURG

Prim Algorithm:

Start with any node v (v is the initial component)

2. In each step:
Grow the current component by adding the minimum weight
edge e connecting the current component with any other node

Kruskal Algorithm:

1. Start with an empty edge set

2. In each step:
Add minimum weight edge e such that e does not close a cycle

Algorithm Theory, WS 2012/13 Fabian Kuhn 16

UNI

Implementation of Prim Algorithm

FREIBURG

Start at node s, very similar to Dijkstra’s algorithm:
A(5,9)

1. Initialize d(s) = 0andd(v) = oo forallv # s
2. All nodes are unmarked

3. Get unmarked node u which minimizes d(u):

/%(k)-bwfe)
4. Foralle ={u,v} € E,d(v) = mini_d'(v),w(eL

%

5. mark node u

6. Until all nodes are marked

Algorithm Theory, WS 2012/13 Fabian Kuhn 17

Implementation of Prim Algorithm

Implementation with Fibonacci heap:
* Analysis identical to the analysis of Dijkstra’s algorithm:

O (n) insert and delete-min operations

O (m) decrease-key operations

S e

e Runningtime: O(m + nlogn)

Algorithm Theory, WS 2012/13 Fabian Kuhn

UNI
I

FREIBURG

UNI

Kruskal Algorithm

FREIBURG

1 - . 1. Start with an
empty edge set

; o

N 2. In each step:
14 Add minimum
weight edge e

2
7 ’8 ‘ such that e does
16 31 not close a cycle

17 19
12

20

Algorithm Theory, WS 2012/13 Fabian Kuhn 19

UNI

Implementation of Kruskal Algorithm

FREIBURG

1. Go through edges in order of increasing weights

soid edgs M welt Olm Loy

2. For each edge e:
if e does not close a cycle then “C““&!’e doe
natd efficid w3 chek f ¢ closes acode |
O(M oa(w,@
add e to the current solution gros akftw;%
SZO&)Za,
L

Algorithm Theory, WS 2012/13 Fabian Kuhn 20

UNI

‘Union-Find Data Structure_

FREIBURG

Also known as Disjoint-Set Data Structure...

Manages partition of a set of elements
e set of disjoint sets 6

Operations:

 make_set(x): create a new set that only contains element x

—_—

e find(x): return the set containing x
=

e union(x,y): merge the two sets containing x and y

-—

—

Algorithm Theory, WS 2012/13 Fabian Kuhn 21

Implementation of Kruskal Algorithm

UNI
I

FREIBURG

1. Initialization:

For each node v: make_set(v)

n ses

—_—

2. Go through edges in order of increasing weights:
Sort edges by edge weight

3. Foreach edge e = {u, v}:

if find(u) # find(v) then

add e to the current solution

union(u, v)

- —

Algorithm Theory, WS 2012/13

n Mm'u-sfc}' o
?‘mo& oy.
U=l wunrdn 6?‘
e

Fabian Kuhn

22

UNI

Managing Connected Components

FREIBURG

 Union-find data structure can be used more generally to manage
the connected components of a graph

... if edges are added incrementally

 make_set(v) for every node v

e find(v) returns component containing v

e union(u,v) merges the components of u and v
(when an edge is added between the components)

e (Can also be used to manage biconnected components

Algorithm Theory, WS 2012/13 Fabian Kuhn 23

Basic Implementation Properties

UNI
FREIBURG

Representation of sets: %“« A)
e Every set S of the partition is identified with a representative,

by one of its members x € S

Operations:
 make_set(x): x is the representative of the new set {x}

e find(x): return representative of set S, containing x

 union(x,y): unites the sets S, and S,, containing x and y and
returns the new representative of 5, U S,,

Algorithm Theory, WS 2012/13 Fabian Kuhn 24

Observations

UNI
I

FREIBURG

Throughout the discussion of union-find:

. @total number of make_set operations

. @total number of operations (make_set, find, and union)

Clearly:

e MmM=2n

~———

e There are at most n — 1 union operations

Remark:

* We assume that the n make_set operations are the first n
operations

— Does not really matter...

Algorithm Theory, WS 2012/13 Fabian Kuhn 25

Linked List Implementation

UNI
I

FREIBURG

Each set is implemented as a linked list:

e representative: first list element (all nodes point to first elem.)
in addition: pointer to first and last element

— | |
12— 8 —43— 1
4

v | |
—> 9 — 15— 7

i)

e sets: {1,5,8,12,43},{7,9,15}; representatives: 5,9

Algorithm Theory, WS 2012/13 Fabian Kuhn 26

Linked List Implementation

UNI
I

FREIBURG

make_set(x):
* (Create list with one element:

time: 0(1) — > x

find(x):

* Return first list element: ,h| | |

time: 0(1)

>y—>a—>x—>b

Algorithm Theory, WS 2012/13 Fabian Kuhn

27

Linked List Implementation

UNI
FREIBURG

union(x, y):
e Append list of y to list of x:

; | | | § | |
——a— b — x — C U——)d—)e—>y

4
v
v | | | @ w @
——>a—>b—>x—>c—>d—>e—>y

iy

o of Y 27 [
Time: O(length of list of y)

Algorithm Theory, WS 2012/13 Fabian Kuhn 28

Cost of Union (Linked List Implementation)

UNI

Total cost for n — 1 union operations can be 0(n?):

* make_set(x,), make_set(x,), ..., make_set(x,,),
union(x;,,_1, X,), union(x,,_,, X,_1), ..., union(xy, x)

D - - - O
i)—Q&‘“;':D

14243+ .4+ wn-| = @(u'L)

Algorithm Theory, WS 2012/13 Fabian Kuhn 29

FREIBURG

Weighted-Union Heuristic

UNI
FREIBURG

* In a bad execution, average cost per union can be O(n)

 Problem: The longer list is always appended to the shorter one

Idea:
* |n each union operation, append shorter list to longer one!

Cost for union of setsﬂSj_C andiyz O(mini 1S, |, |53|})

Theorem: The overall cost of m operations of which at most n are
make_set operations is O(m + nlogn).

Algorithm Theory, WS 2012/13 Fabian Kuhn 30

Weighted-Union Heuristic

|
FRE:BURG

UNI

Theorem: The overall cost of m operations of which at most n
are make_set operationsis O(m + nlogn).

Proof: m

wake_cel, A ops. ces] OU)
’\'bla(Unisu Cost = O(J»U #257(WCQ;‘M &70"""5"3/) Lot
=On - fpoe e ?’*“};Gi@
mfle_:kfe&?\{chwﬁ ag V's Feﬁw\r&f

DD bpden 2

W
7/7 ;Bké(bgl/\

Algorithm Theory, WS 2012/13 Fabian Kuhn 31

Disjoint-Set Forests

UNI
I

FREIBURG

(& @ (@

e Represent each set by a tree

e Representative of a set is the root of the tree

Algorithm Theory, WS 2012/13 Fabian Kuhn 32

Disjoint-Set Forests

UNI

FREIBURG

make_set(x): create new one-node tree @
duwe)

find(x): follow parent point to root
(parent pointer to itself)

"\"MQ‘ 0(0(0‘7”«0" ™ iu \‘LS f(*\ez)

Bad Sequence

UNI
FREIBURG

Bad sequence leads to tree(s) of depth ©(n)

 make_set(x,), make_set(xz):.. , make_set(x,,),
union(xy, x,), union(xy, x3), ..., union(x¢, x,,)

R — 3

,’ Unton oud Frud <can cof @G“)

Algorithm Theory, WS 2012/13 Fabian Kuhn 34

FREIBURG

Union-By-Size Heuristic

UNI

Union of sets $; and S,:
* Root of trees representing S; and S,: r; and

e W.lo.g., assume that |S;| = |5,]
e RootofS; US,: 7 (1, is attached tor; as a W p_fgl,;\
' S2

Theorem: If the union-by-rank heuristic is used, the worst-case
cost of a find-operation is O(logn)

Proof: Slhou ot o(Qrotc\ a{ eack. heg = Aoy

Algorithm Theory, WS 2012/13 Fabian Kuhn 35

Union-Find Algorithms

UNI
I

FREIBURG

Recall: m operations, n of the operations are make_set-operations

Linked List with Weighted Union Heuristic:
* make_set: worst-case cost 0(1) // auerl ced Oloy)
e find : worst-case cost O(1)

e union :amortized worst-case cost O (logn)

Disjoint-Set Forest with Union-By-Size Heuristic:

 make_set: worst-case cost 0(1)

e find : worst-case cost O (logn)

e union :worst-case cost O(logn)

-

—

Can we make this faster?

Q—

Algorithm Theory, WS 2012/13 Fabian Kuhn 36

Path Compression During Find Operation

UNI
I

FREIBURG

1. ifa # a.parent then

2. a.parent = find(a.parent)
3. return a.parent

Algorithm Theory, WS 2012/13 Fabian Kuhn 37

Complexity With Path Compression

When using only path compression (without union-by-rank):
m: total number of operations

e f of which are find-operations

 n of which are make_set-operations
- at most n — 1 are union-operations

Total cost: O (n +f- [log2+f/n nD =0(m+ f -logyym, n)

Algorithm Theory, WS 2012/13 Fabian Kuhn

UNI
I

FREIBURG

Union-By-Size and Path Compression

UNI

FREIBURG

Theorem:

Using the combined union-by-size and path compression
heuristic, the running time of m disjoint-set (union-find)
operations on n elements (at most n make_set-operations) is

O(m - a(m,n)),

Where a(m,n) is the inverse of the Ackermann function.

Algorithm Theory, WS 2012/13 Fabian Kuhn

39

Ackermann Function and its Inverse

UNI

FREIBURG

Ackermann Function:

Fork,f > 1,

(2¢, ifk=1,¢>1
Ak, 0) ={ Ak —1,2), ifk>1¢=1
A(k—1,A(k,¢t-1)), ifk>1¢>1

Inverse of Ackermann Function:

a(m,n) = min{k > 1| A(k,|"/5]) > log, n}

Algorithm Theory, WS 2012/13 Fabian Kuhn

40

Inverse of Ackermann Function

|
FRE:BURG

UNI

* a(mn) =minfk = 1| A(k, [""/n]) > log, n}
m=>n= Ak, |™/n]) = A(k,1) = a(m,n) < min{k > 1|A(k, 1) > logn}

e A(1,%)=2¢ A(k,1)=Ak—1,2),
A(k,£) = A(k — 1,A(k, ¢ — 1))

Algorithm Theory, WS 2012/13 Fabian Kuhn 41

