Priority Queue / Heap

UNI
I

FREIBURG

e Stores (key,data) pairs (like dictionary)
e But, different set of operations:

e |nitialize-Heap: creates new empty heap

e |s-Empty: returns true if heap is empty

e Insert(key, data): inserts (key,data)-pair, returns pointer to entry
e Get-Min: returns (key,data)-pair with minimum key
 Delete-Min: deletes minimum (key,data)-pair
 Decrease-Key(entry,newkey): decreases key of entry to newkey
e Merge: merges two heaps into one

Algorithm Theory, WS 2012/13 Fabian Kuhn 1

Implementation of Dijkstra’s Algorithm ;

UNI
FREIBURG

Store nodes in a priority queue, use d(s, V) as keys: 6;[\\? £)

1. Initialize d(s,s) = 0and d(s,v) = forallv # s
2. All nodes are unmarked

iV\'\R«C\%&/ mert all wodes v C\H\HA 'tm‘tl‘ﬁ,e% oD

3. Get unmarked node u which minimizes d(s, u):

I —ww
4. mark node u
Aelele-uwim
5. Foralle = {y,v} € E, d(s,v) = min{d(s,v),d(s,u) + w(e)}
%5.4 q&\ V\@}KLE&B 0£ V- XQCF@SQ-E@&

6. Until all nodes are marked - QWM

Algorithm Theory, WS 2012/13 Fabian Kuhn 2

Analysis

Number of priority queue operations for Dijkstra:

e Initialize-Heap: 1

e Is-Empty: V]
* Insert: V]
e Get-Min: V]

e Delete-Min: V]
e Decrease-Key: |E|

e Merge: 0

Algorithm Theory, WS 2012/13 Fabian Kuhn

UNI
I

FREIBURG

Priority Queue Implementation

UNI
I

FREIBURG

Implementation as min-heap: o

7 e ored o anay OO
* Initialize-Heap: 0(1) o o e o
* Is-Empty: 0(1) e @

* |nsert: O(logn)

e Get-Min: 0(1)

e Delete-Min: O(logn)
* Decrease-Key: O(logn)

* Merge (heaps of size mandn, m < n): 0(mlogn)

Algorithm Theory, WS 2012/13 Fabian Kuhn 4

UNI

Better Implementation

FREIBURG

e Can we do better?

e Cost of Dijkstra with complete binary min-heap implementation:

0(E|loglV])

e Can be improved if we can make decrease-key cheaper...

e Cost of merging two heaps is expensive

We will get there in two steps:

(W\Fibonacci heap k

Algorithm Theory, WS 2012/13 Fabian Kuhn 5

Definition: Binomial Tree

UNI
FREIBURG

Binomial tree B,, ofordern (n > 0): 1 \“’tkf}ﬂr

Algorithm Theory, WS 2012/13 Fabian Kuhn 6

Binomial Trees

UNI

FREIBURG

B

B4 B, B3
| i M

Algorithm Theory, WS 2012/13 Fabian Kuhn

Properties

UNI

FREIBURG

1. Tree B,, has 2™ nodes
mduckion o w2 u=0 Vv

O R I AR X

2. Height of tree B, isn

=0 v -
slep: fﬁ/z\g v/

3. Root degree of B, isn _Aggr. -]
=0 %h /
DRp! L\ Sk
“

N

4. In B, there are exactly (’Z) nodes at depth i

Algorithm Theory, WS 2012/13 Fabian Kuhn

Binomial Coefficients

UNI
I

FREIBURG

e Binomial coefficient:

n
(k) : # of k — element — subsets of a set of size n

+ Property: (i) = (2) + (%)

i Pascal triangle:
v 3 subsels Had conbadn ¥ 1
n-| 1 1
(bo) 1 2 1
4 suboeds ool x h3 3 1
(el 14 6 4 1
2 1 5 10 10 5 1

Algorithm Theory, WS 2012/13 Fabian Kuhn 9

Number of Nodes at Depth i in B,

UNI

FREIBURG

Claim: In B,,, there are exactly (Tll) nodes at depth i

Algorithm Theory, WS 2012/13 Fabian Kuhn

“0-C3)

10

Binomial Heap

UNI
FREIBURG

e Keys are stored in nodes of binomial trees of different order

n nodes: there is a binomial tree B; o& order [iff
bit i of base-2 representation of nis 1.

u=21 = 27+ £+2°= (Jogop), 1Hl=2
— 3,7 % B

TEe—

-(Min-Heap Property:]

Key of node v < keys of all nodes in sub-tree of v

P Wu-ﬁﬁ]
3“\&‘![(03) s ug
of ¥he
sub dveg_

Algorithm Theory, WS 2012/13 Fabian Kuhn 11

Example

UNI

FREIBURG

(f
e 10keys: {2,5,8,9,12,14,17,18,20,22,25}

e Binary representation of n: (11), = 1011
- trees B, B, and B; present

Algorithm Theory, WS 2012/13 Fabian Kuhn

12

Child-Sibling Representation

UNI

FREIBURG

Structure of a node: & /
parent

Algorithm Theory, WS 2012/13 Fabian Kuhn

13

@ Operation

e Unite two binomial trees of the same order t1g one tree:

Bn@Bn = Bn+1

. o
s 12 15 20 18
-- — | ﬂTo > o
i@ o i@ — .‘///" T 3

25 40 22

BZ BZ T ® >l o o [) o
i
.

Algorithm Theory, WS 2012/13 Fabian Kuhn

14

Merge Operation

UNI
I

FREIBURG

Merging two binomial heaps:

e Fori=0,1,..,logn:
If there are 2 or 3 binomial trees B;: apply link operation to
merge 2 trees into one binomial tree B; 4

Bi1 [lteoll ecoo|

> 1{Olool oo ©0)
- [t ¢
A "0l 00000 0

By, Time:

Algorithm Theory, WS 2012/13 Fabian Kuhn 15

Example

9 ©3 @
B 8 @@@

%ﬁg‘ﬁ

Algorithm Theory, WS 2012/13

Operations

|
FRE:BURG

UNI

Initialize: create empty list of trees

Get minimum of queue: time O(1) (if we maintain a pointer)

Decrease-key at node v: . 2
* Set key of node v to new key ,@Dfuz% 4 ES\
e Swap with parent until min-heap property is restorf lgcg
e Time: O(logn) 2

—— “

Insert key x into queue Q:
1. Create queue Q' of size 1 containing only x=— (O(() R

2. Merge Q and Q' <—— C)(Q"()) P,
e Time forinsert: O(logn)

Algorithm Theory, WS 2012/13 Fabian Kuhn 17

Operations

UNI
FREIBURG

Delete-Min Operation:

_Meed do doloile

1. Find tree B; with minimum root r

SRVPRUN O

2. Remove B; from queue Q > queu // R,

3. Children of r form new queue Q" ’/ R

o ¥,
R N
4. Merge queues Q' and Q" RS
| /PR ©
(B}_v;

e Overall time: O(logn)

Algorithm Theory, WS 2012/13 Fabian Kuhn 18

Delete-Min Example

Sl & ® ¢
'f@bggig
12 @8 @9
- —
@@Z ifi {
goe T L &

& /

Algorithm Theory, WS 2012/13 Fabian Kuhn 19

Complexities Binomial Heap

|
FRE:BURG

UNI

 Initialize-Heap: 0(1)

e Is-Empty: 0(1)

* Insert: O(logn)

* Get-Min: 0(1) v(|

* Delete-Min: O(logn) CD&"‘;{O\ ts6\(2«35\\}\\

* Decrease-Key: O(logn)

e Merge (heaps of sizemandn, m < n)} O(logn)

Algorithm Theory, WS 2012/13 Fabian Kuhn

20

Can We Do Better?

UNI
FREIBURG

e Binomial heap:
insert, delete-min, and decrease-key cost(0 (logn)

e One of the operations insert or delete-min must cost (L(logn):

— Heap-Sort:
Insert n elements into heap, then take out the minimum n times

— (Comparison-based) sorting costs at Ieast\ﬂ(n logn). \

e But maybe we can improve decrease-key and one of the other
two operations? B

e Structure of binomial heap is not flexible:
P ——

— Simplifies analysis, allows to get strong worst-case bounds

— But, operations almost inherentlx“need at least logarithmic time

25 e 2

Algorithm Theory, WS 2012/13 Fabian Kuhn 21

Fibonacci Heaps

UNI
I

FREIBURG

ﬁacy-mergéjvariant of binomial heaps:

e Do not merge trees as long as possible...

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the
~min-heap property.

Variables:
e H.min: root of the tree containing the (a) minimum key

e H.rootlist: circular, doubly linked, unordered list containing
the roots of all trees

e H.size: number of nodes currently in H

Algorithm Theory, WS 2012/13 Fabian Kuhn 22

Trees in Fibonacci Heaps

UNI
I

FREIBURG

Structure of a single node v: /‘

4

'_" key | degree __'

/

e v.child: points to circular, doubly linked and unordered list of
the children of v

e v.left, v.right: pointers to siblings (in doubly linked list)
e v.mark: will be used later...

Advantages of circular, doubly linked lists:
e Deleting an element takes constant time
e Concatenating two lists takes constant time

Algorithm Theory, WS 2012/13 Fabian Kuhn 23

Example

UNI

FREIBURG

H.min

Y

t(:).:’(- ’()1 17 <—
Ul -

Algorithm Theory, WS 2012/13

N\

). (52 (38 30). 46

©:

41 %35 I;

Figure: Cormen et al., Introduction to Algorithms

Fabian Kuhn

24

Simple (Lazy) Operations

UNI
FREIBURG

Initialize-Heap H:
e H.rootlist := H.min := null

Merge heaps H and H':

e concatenate root lists C(/“)]’D
g

e update H.min

Insert element e into H:
* create new one-node tree containing e 2> H'
* merge heaps H and H'

Get minimum element of H:
e return H.min

Algorithm Theory, WS 2012/13 Fabian Kuhn 25

Operation Delete-Min

|
FRE:BURG

UNI

Delete the node with minimum key from H and return its element:

: £:=‘H.min;}

1
2. ifH.size > 0 then

3. remove H.min from H.rootlist; dolole ot
4

5

add H.min. child (list) to H.rootlist weye Z laaps
: *H. Consolidate(); \

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. returnm

Algorithm Theory, WS 2012/13 Fabian Kuhn 26

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node v:
e rank(v): dLegree of1j

——

Tree T
o .rank(T) | rank (degree) of root node of T

Heap H:
e \rank(H)ymaximum degree of any node in H

Assumption (1) number of nodes in H):
rank(H) < D(n)

—_—— -
— for a known function D (n)

Algorithm Theory, WS 2012/13 Fabian Kuhn

|
FRE:BURG

UNI

UNI

Merging Two Trees

FREIBURG

Given: Heap-ordered trees T, T' with rank(T) = rank(T")

e Assume: min-key of T < min-key of T’

Operation link(T,T'): link
T /

e Removes tree T' from root list

and adds T to child list of T QKQ

e rank(T) :==rank(T) + 1

. l’.mark := false
rook .,%'T‘

Algorithm Theory, WS 2012/13 Fabian Kuhn 28

Consolidation of Root List

UNI
I

FREIBURG

Array A pointing to find roots with the same rank:
0 1 2 T \ \ D(n))
Consolidate: — ﬁ; -

--fl'lme:

fori := 0to D(n) do Ali] := null; DO (|H. rootlist|+D(n))
while H.rootlist # null do LQQM

1.

2.

3 @:z “delete and return first element of H.rootlist”
4 while A[rank(T)] # null do

5. T' = Alrank(T)];
6

7

8

9

Alrank(T)] == null;=—
@;: link(T,T") Ny vamk

Create new H.rootlist and H. min

Algorithm Theory, WS 2012/13 Fabian Kuhn 29

Consolidate Example

Algorithm Theory, WS 2012/13 Fabian Kuhn

30

Consolidate Example

link

Algorithm Theory, WS 2012/13 Fabian Kuhn

19 @

31

Consolidate Example

Algorithm Theory, WS 2012/13 Fabian Kuhn

32

Consolidate Example

link

Algorithm Theory, WS 2012/13 Fabian Kuhn

33

Consolidate Example

Algorithm Theory, WS 2012/13 Fabian Kuhn

34

Consolidate Example

Algorithm Theory, WS 2012/13 Fabian Kuhn

35

Operation Decrease-Key

|
FRE:BURG

UNI

Decrease-Key(v, x): (decrease key of node v to new value x)

if x = v. key then return;
v.key = x; update H. min,
if v € H.rootlist V x = v.parent. key then return
repeat
parent := v.parent;
H.cut(v);
v = parent;
until =(v.mark) Vv v € H.rootlist;

O 0 N O Uk WwhNhE

if v € H.rootlist then v.mark = true;

Algorithm Theory, WS 2012/13 Fabian Kuhn 36

Operation Cut(v)

UNI
I

FREIBURG

Operation H. cut(v):
e Cuts v’s sub-tree from its parent and adds v to rootlist

if v & H.rootlist then
// cut the link between v and its parent
rank(v.parent) = rank(v.parent) — 1;
remove v from v.parent. child (list)
v.parent := null;
add v to H.rootlist

o U sEwWwhPeE

Algorithm Theory, WS 2012/13 Fabian Kuhn 37

Decrease-Key Example

UNI

FREIBURG

e Green nodes are marked

Algorithm Theory, WS 2012/13 Fabian Kuhn

38

Fibonacci Heap Marks

UNI

FREIBURG

History of a node v:
v is being linked to a node v.mark := false

a child of v is cut v.mark = true

a second child of v is cut H.cut(v)

* Hence, the boolean value v. mark indicates whether node v
has lost a child since the last time v was made the child of

another node.

Algorithm Theory, WS 2012/13 Fabian Kuhn 39

Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

Delete-Min:

1. Delete min. root r and add r. child to H.rootlist
time: 0(1)

2. Consolidate H.rootlist
time: O(length of H.rootlist)

e Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):

1. If new key < parent key, cut sub-tree of node v
time: 0(1)

2. Cascading cuts up the tree as long as nodes are marked
time: O (number of consecutive marked nodes)

e Step 2 can potentially be linearinn

Exercises: Both operations can take ®(n) time in the worst case!

Algorithm Theory, WS 2012/13 Fabian Kuhn

40

Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

e Cost of delete-min and decrease-key can be O(n)...
— Seems a large price to pay to get insert and merge in O(1) time

 Maybe, the operations are efficient most of the time?

— It seems to require a lot of operations to get a long rootlist and thus,
an expensive consolidate operation

— In each decrease-key operation, at most one node gets marked:
We need a lot of decrease-key operations to get an expensive
decrease-key operation

e Can we show that the average cost per operation is small?

 We can =2 requires amortized analysis

Algorithm Theory, WS 2012/13 Fabian Kuhn

41

Amortization

UNI
I

FREIBURG

e Consider sequence 04, 05, ..., 0,, of n operations
(typically performed on some data structure D)

e ;: execution time of operation o;
e T:=1ty+t, + -+ t,: total execution time

 The execution time of a single operation might

vary within a large range (e.g., t; € [1,0(i)])

e The worst case overall execution time might still be small

—> average execution time per operation might be small in
the worst case, even if single operations can be expensive

Algorithm Theory, WS 2012/13 Fabian Kuhn 42

Analysis of Algorithms

UNI
I

FREIBURG

e Best case

e \Worst case

* Average case

e Amortized worst case

What it the average cost of an operation
in a worst case sequence of operations?

Algorithm Theory, WS 2012/13 Fabian Kuhn 43

Example: Binary Counter

UNI

FREIBURG

Incrementing a binary counter: determine the bit flip cost:

Operation Counter Value Cost
00000
1 00001 1
2 00010 2
3 00011 1
4 00100 3
5 00101 1
6 00110 2
7 00111 1
8 01000 4
9 01001 1
10 01010 2
11 01011 1
12 01100 3
13 01101 1
Algorithm Theory, WS 2012/13 Fabian Kuhn

44

Accounting Method

UNI

Observation:
e Eachincrement flips exactlyoneOintoal

0010001111 = 0010010000

Idea:

e Have a bank account (with initial amount 0)

e Paying x to the bank account costs x

 Take “money” from account to pay for expensive operations

Applied to binary counter:
e Flip from 0to 1: pay 1 to bank account (cost: 2)
e Flip from 1 to O: take 1 from bank account (cost: 0)

e Amount on bank account = number of ones
- We always have enough “money” to pay!

Algorithm Theory, WS 2012/13 Fabian Kuhn 45

FREIBURG

Accounting Method

UNI

FREIBURG

Op.

Counter

Cost

To Bank

From Bank

Net Cost

Credit

00000

00001

00010

00011

00100

00101

00110

00111

01000

O 00 N|ooju | b W N -

01001

[HEY
o

01010

N (R, D RPINFRP WL N R

Algorithm Theory, WS 2012/13

Fabian Kuhn

46

Potential Function Method

UNI

FREIBURG

e Most generic and elegant way to do amortized analysis!

— But, also more abstract than the others...

e State of data structure / system: S € § (state space)

Potential function ®: S —» R,

e QOperation i:
— t;: actual cost of operation i
— §;: state after execution of operation i (Sy: initial state)
— @; := P(S;): potential after exec. of operation i
— a;: amortized cost of operation i:

a; =t +®; —P;_4

Algorithm Theory, WS 2012/13 Fabian Kuhn

47

Potential Function Method

|
FREIBURG

=
=
Operation i:
actual cost: t; amortized cost: a; = t; + ®; — D;_4

Overall cost:

n n

Pyt (Ya)+o0-o,

i=1 i

Algorithm Theory, WS 2012/13 Fabian Kuhn 48

Binary Counter: Potential Method

UNI
I

FREIBURG

e Potential function:
®: number of ones in current counter

Clearly, ®y = 0and ®; = Oforalli =0

e Actual cost t;:
= 1 flipfromOto1l
= ¢; — 1flipsfrom1toO

Potential difference: ®; — ;1 =1—-(t; — 1) =2 — t;

Amortized cost: a; = t; + ; —D;_; = 2

Algorithm Theory, WS 2012/13 Fabian Kuhn

49

Back to Fibonacci Heaps

UNI

 Worst-case cost of a single delete-min or decrease-key
operation is Q(n)

e Can we prove a small worst-case amortized cost for
delete-min and decrease-key operations?

Remark:
e Data structure that allows operations Oy, ..., Oy,

* We say that operation 0, has amortized cost a,, if for every
execution the total time is

k
TSan-ap,
p=1

where n,, is the number of operations of type 0,

Algorithm Theory, WS 2012/13 Fabian Kuhn 50

FREIBURG

Amortized Cost of Fibonacci Heaps

UNI
I

FREIBURG

Initialize-heap, is-empty, get-min, insert, and merge
have worst-case cost O(1)

Delete-min has amortized cost O (logn)
Decrease-key has amortized cost O(1)

Starting with an empty heap, any sequence of n operations
with at most n; delete-min operations has total cost (time)

T =0n+nzlogn).

Cost for Dijkstra: O(|E| + |V|log |V])

Algorithm Theory, WS 2012/13 Fabian Kuhn

51

