Priority Queue / Heap

- Stores (key,data) pairs (like dictionary)
- But, different set of operations:
- Initialize-Heap: creates new empty heap
- **Is-Empty**: returns true if heap is empty
- **Insert**(*key,data*): inserts (*key,data*)-pair, returns pointer to entry
- **Get-Min**: returns (*key,data*)-pair with minimum *key*
- **Delete-Min**: deletes minimum (*key,data*)-pair
- **Decrease-Key**(*entry*, *newkey*): decreases *key* of *entry* to *newkey*
- Merge: merges two heaps into one

Implementation of Dijkstra's Algorithm

Store nodes in a priority queue, use d(s, v) as keys: (s, v)

- Initialize d(s,s) = 0 and $d(s,v) = \infty$ for all $v \neq s$
- 2. All nodes are unmarked

3. Get unmarked node u which minimizes d(s, u):

4. mark node u

For all $e = \{u, v\} \in E$, $d(s, v) = \min\{d(s, v), d(s, u) + w(e)\}$ for all neighbors of u: decrease-key

6. Until all nodes are marked is-emply

Analysis

Number of priority queue operations for Dijkstra:

• Initialize-Heap: 1

• Is-Empty: |*V*|

• Insert: **V**

• Get-Min: V

• Delete-Min: V

Decrease-Key: |E|

• Merge: 0

Priority Queue Implementation

Implementation as min-heap:

→ complete binary tree,e.g., stored in an array

• Initialize-Heap: **0**(1)

• Is-Empty: O(1)

• Insert: $O(\log n)$

• Get-Min: o(1)

• Delete-Min: $O(\log n)$

• Decrease-Key: $O(\log n)$

• Merge (heaps of size m and $n, m \le n$): $O(m \log n)$

Better Implementation

- Can we do better?
- Cost of Dijkstra with complete binary min-heap implementation:

$$O(|E|\log|V|)$$

- Can be improved if we can make <u>decrease-key</u> cheaper...
- Cost of merging two heaps is expensive
- We will get there in two steps:

Definition: Binomial Tree

Binomial tree B_n of order $n \ (n \ge 0)$:

Binomial Trees

Properties

1. Tree B_n has 2^n nodes

2. Height of tree B_n is n

4. In B_n , there are exactly $\binom{n}{i}$ nodes at depth i

Binomial Coefficients

• Binomial coefficient:

$$\binom{n}{k}$$
: # of k — element — subsets of a set of size n

• Property: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

Pascal triangle:

Number of Nodes at Depth i in B_n

Claim: In B_n , there are exactly $\binom{n}{i}$ nodes at depth i

Binomial Heap

Keys are stored in nodes of binomial trees of different order

n nodes: there is a binomial tree B_i of order i iff bit i of base-2 representation of n is 1.

$$u=21=2^{4}+2^{2}+2^{0}=(10101)_{2}$$
 $B_{1}=2^{1}$

• Min-Heap Property:

Key of node $v \leq$ keys of all nodes in sub-tree of v

Example

- 10 keys: {2, 5, 8, 9, 12, 14, 17, 18, 20, 22, 25}
- Binary representation of n: $(11)_2 = 1011$ \rightarrow trees B_0 , B_1 , and B_3 present

Child-Sibling Representation

Structure of a node:

Link Operation

12

Unite two binomial trees of the same order to one tree:

• Time: **0**(1)

Merge Operation

Merging two binomial heaps:

• For $i = 0, 1, ..., \log n$: If there are 2 or 3 binomial trees B_i : apply link operation to merge 2 trees into one binomial tree B_{i+1}

Example

Operations

Initialize: create empty list of trees

Get minimum of queue: time O(1) (if we maintain a pointer)

Decrease-key at node v:

Set key of node v to new key

Swap with parent until min-heap property is restored

• Time: $O(\log n)$

Insert key x into queue Q:

1. Create queue Q' of size 1 containing only $x \leftarrow \bigcirc(\bigcirc)$

2. Merge Q and $Q' \iff \mathcal{O}(\log n)$ thue

• Time for insert: $O(\log n)$

Operations

Delete-Min Operation:

1. Find tree B_i with minimum root r

get-min O(1)

2. Remove B_i from queue $Q \rightarrow$ queue Q'

4. Merge queues Q' and Q''

need to delate

• Overall time: $O(\log n)$

Delete-Min Example

Complexities Binomial Heap

Initialize-Heap: O(1)

Is-Empty: O(1)

 $O(\log n)$ Insert:

Get-Min: O(1)

Delete-Min: $O(\log n)$ Decrease-Key: $O(\log n)$

Merge (heaps of size m and $n, m \le n$): $O(\log n)$

Distraction is still

O(|E|log|V|)

Can We Do Better?

- Binomial heap: insert, delete-min, and decrease-key $cost O(\log n)$
- One of the operations insert or delete-min must cost $\Omega(\log n)$:
 - Heap-Sort:
 Insert n elements into heap, then take out the minimum n times
 - (Comparison-based) sorting costs at least $\Omega(n \log n)$.
- But maybe we can improve <u>decrease-key</u> and one of the other two operations?
- Structure of binomial heap is not flexible:
 - Simplifies analysis, allows to get strong worst-case bounds
 - But, operations almost inherently need at least logarithmic time

Fibonacci Heaps

Lacy-merge variant of binomial heaps:

Do not merge trees as long as possible...

Structure:

A Fibonacci heap \underline{H} consists of a collection of trees satisfying the min-heap property.

Variables:

- H.min: root of the tree containing the (a) minimum key
- <u>H.rootlist</u>: circular, doubly linked, unordered list containing the roots of all trees
- H.size: number of nodes currently in H

Trees in Fibonacci Heaps

- v.child: points to circular, doubly linked and unordered list of the children of v
- v.left, v.right: pointers to siblings (in doubly linked list)
- v.mark: will be used later...

Advantages of circular, doubly linked lists:

- Deleting an element takes constant time
- Concatenating two lists takes constant time

Example

Figure: Cormen et al., Introduction to Algorithms

Simple (Lazy) Operations

Initialize-Heap *H*:

• H.rootlist := H.min := null

Merge heaps H and H':

- concatenate root lists
- update *H.min*

O(1) Line

Insert element *e* into *H*:

- create new one-node tree containing $e \rightarrow H'$
- merge heaps H and H'

Get minimum element of *H*:

• return *H.min*

Operation Delete-Min

Delete the node with minimum key from H and return its element:

```
    m := H.min;
    if H.size > 0 then
    remove <u>H.min</u> from H.rootlist; delete wine
    add H.min.child (list) to H.rootlist were 2 heaps
    H.Consolidate();
    // Repeatedly merge nodes with equal degree in the root list // until degrees of nodes in the root list are distinct. // Determine the element with minimum key
```

6. **return** *m*

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node *v*:

• rank(v): degree of v

Tree T:

• rank(T) rank (degree) of root node of T

Heap H:

• rank(H); maximum degree of any node in H

Assumption (n) number of nodes in H):

$$rank(H) \leq D(n)$$

- for a known function D(n)

Merging Two Trees

Given: Heap-ordered trees T, T' with rank(T) = rank(T')

• Assume: min-key of $T \leqslant$ min-key of T'

Operation link(T, T'):

• Removes tree T' from root list and adds T' to child list of T

- rank(T) := rank(T) + 1
- T'. mark := false

Consolidation of Root List

Array A pointing to find roots with the same rank:

9. Create new *H*. rootlist and *H*. min

Operation Decrease-Key

Decrease-Key(v, x): (decrease key of node v to new value x)

```
    if x ≥ v.key then return;
    v.key := x; update H.min;
    if v ∈ H.rootlist ∨ x ≥ v.parent.key then return
    repeat
    parent := v.parent;
    H.cut(v);
    v := parent;
    until ¬(v.mark) ∨ v ∈ H.rootlist;
    if v ∉ H.rootlist then v.mark := true;
```

Operation Cut(v)

Operation H.cut(v):

- Cuts v's sub-tree from its parent and adds v to rootlist
- 1. if $v \notin H.rootlist$ then
- 2. // cut the link between v and its parent
- 3. rank(v.parent) = rank(v.parent) 1;
- 4. remove v from v. parent. child (list)
- 5. v.parent := null;
- 6. add v to H.rootlist

Decrease-Key Example

Green nodes are marked

Fibonacci Heap Marks

History of a node v:

v is being linked to a node v. mark := false

a child of v is cut v. mark := true

a second child of v is cut \longrightarrow H. cut(v)

• Hence, the boolean value v. mark indicates whether node v has lost a child since the last time v was made the child of another node.

Cost of Delete-Min & Decrease-Key

Delete-Min:

- 1. Delete min. root r and add r. child to H. rootlist time: O(1)
- 2. Consolidate H.rootlisttime: O(length of H.rootlist)
- Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):

- 1. If new key < parent key, cut sub-tree of node v time: O(1)
- 2. Cascading cuts up the tree as long as nodes are marked time: *O*(number of consecutive marked nodes)
- Step 2 can potentially be linear in n

Exercises: Both operations can take $\Theta(n)$ time in the worst case!

Cost of Delete-Min & Decrease-Key

- Cost of delete-min and decrease-key can be $\Theta(n)$...
 - Seems a large price to pay to get insert and merge in O(1) time
- Maybe, the operations are efficient most of the time?
 - It seems to require a lot of operations to get a long rootlist and thus,
 an expensive consolidate operation
 - In each decrease-key operation, at most one node gets marked:
 We need a lot of decrease-key operations to get an expensive decrease-key operation
- Can we show that the average cost per operation is small?
- We can → requires amortized analysis

Amortization

- Consider sequence $o_1, o_2, ..., o_n$ of n operations (typically performed on some data structure D)
- t_i : execution time of operation o_i
- $T := t_1 + t_2 + \cdots + t_n$: total execution time
- The execution time of a single operation might vary within a large range (e.g., $t_i \in [1, O(i)]$)
- The worst case overall execution time might still be small
 - → average execution time per operation might be small in the worst case, even if single operations can be expensive

Analysis of Algorithms

- Best case
- Worst case
- Average case
- Amortized worst case

What it the average cost of an operation in a worst case sequence of operations?

Example: Binary Counter

Incrementing a binary counter: determine the bit flip cost:

Operation	Counter Value	Cost	
	00000		
1	0000 1	1	
2	000 10	2	
3	0001 <mark>1</mark>	1	
4	00 100	3	
5	0010 <mark>1</mark>	1	
6	001 10	2	
7	0011 <mark>1</mark>	1	
8	0 1000	4	
9	0100 <mark>1</mark>	1	
10	010 10	2	
11	0101 <mark>1</mark>	1	
12	01 100	3	
13	0110 1	1	

Accounting Method

Observation:

Each increment flips exactly one 0 into a 1

 $00100011111 \Rightarrow 0010010000$

Idea:

- Have a bank account (with initial amount 0)
- Paying x to the bank account costs x
- Take "money" from account to pay for expensive operations

Applied to binary counter:

- Flip from 0 to 1: pay 1 to bank account (cost: 2)
- Flip from 1 to 0: take 1 from bank account (cost: 0)
- Amount on bank account = number of ones
 - → We always have enough "money" to pay!

Accounting Method

Op.	Counter	Cost	To Bank	From Bank	Net Cost	Credit
	00000					
1	00001	1				
2	00010	2				
3	00011	1				
4	00100	3				
5	00101	1				
6	00110	2				
7	00111	1				
8	01000	4				
9	01001	1				
10	01010	2				

Potential Function Method

- Most generic and elegant way to do amortized analysis!
 - But, also more abstract than the others...
- State of data structure / system: $S \in S$ (state space)

Potential function $\Phi: \mathcal{S} \to \mathbb{R}_{\geq 0}$

Operation i:

- $-t_i$: actual cost of operation i
- S_i : state after execution of operation i (S_0 : initial state)
- $-\Phi_i := \Phi(S_i)$: potential after exec. of operation i
- a_i : amortized cost of operation i:

$$a_i \coloneqq t_i + \Phi_i - \Phi_{i-1}$$

Potential Function Method

Operation *i*:

actual cost: t_i amortized cost: $a_i = t_i + \Phi_i - \Phi_{i-1}$

Overall cost:

$$T \coloneqq \sum_{i=1}^{n} t_i = \left(\sum_{i=1}^{n} a_i\right) + \Phi_0 - \Phi_n$$

Binary Counter: Potential Method

Potential function:

Φ: number of ones in current counter

- Clearly, $\Phi_0 = 0$ and $\Phi_i \ge 0$ for all $i \ge 0$
- Actual cost t_i :
 - 1 flip from 0 to 1
 - $t_i 1$ flips from 1 to 0
- Potential difference: $\Phi_i \Phi_{i-1} = 1 (t_i 1) = 2 t_i$
- Amortized cost: $a_i = t_i + \Phi_i \Phi_{i-1} = 2$

Back to Fibonacci Heaps

- Worst-case cost of a single delete-min or decrease-key operation is $\Omega(n)$
- Can we prove a small worst-case amortized cost for delete-min and decrease-key operations?

Remark:

- Data structure that allows operations O_1, \dots, O_k
- We say that operation O_p has amortized cost a_p if for every execution the total time is

$$T \le \sum_{p=1}^{\kappa} n_p \cdot a_p \,,$$

where n_p is the number of operations of type O_p

Amortized Cost of Fibonacci Heaps

- Initialize-heap, is-empty, get-min, insert, and merge have worst-case cost O(1)
- Delete-min has amortized cost $O(\log n)$
- Decrease-key has amortized cost O(1)
- Starting with an empty heap, any sequence of n operations with at most n_d delete-min operations has total cost (time)

$$T = O(n + n_d \log n).$$

• Cost for Dijkstra: $O(|E| + |V| \log |V|)$