

Chapter 4 Data Structures Fibonacci Heaps, Amortized Analysis

Algorithm Theory WS 2012/13

Fabian Kuhn

Fibonacci Heaps

Lacy-merge variant of binomial heaps:

Do not merge trees as long as possible...

Structure:

A Fibonacci heap *H* consists of a <u>collection of trees</u> satisfying the min-heap property.

Variables:

- *H.min*: root of the tree containing the (a) minimum key
- H.rootlist: circular, doubly linked, unordered list containing the roots of all trees
- *H. size*: number of nodes currently in *H*

Trees in Fibonacci Heaps

- v.child: points to circular, doubly linked and unordered list of the children of v
- v.left, v.right: pointers to siblings (in doubly linked list)
- v.mark: will be used later...

Advantages of circular, doubly linked lists:

- Deleting an element takes constant time
- Concatenating two lists takes constant time

Example

Simple (Lazy) Operations

Initialize-Heap H:

• H.rootlist := H.min := null

Merge heaps H and H':

- concatenate root lists
- update *H.min*

Insert element *e* into *H*:

- create new one-node tree containing $e \rightarrow H'$
- merge heaps H and H'

Get minimum element of *H*:

• return *H.min*

Operation Delete-Min

Delete the node with minimum key from H and return its element:

- 1. $(m) = \underline{H.min}$;
- 2. if H.size > 0 then

- 3. remove H.min from H.rootlist;
- 4. add *H.min. child* (list) to *H.rootlist*
- 5. H. Consolidate();

rank

- // Repeatedly merge nodes with equal degree in the root list
- // until degrees of nodes in the root list are distinct.
- // Determine the element with minimum key
- 6. return m

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node *v*:

• rank(v): degree of v

Tree T:

• rank(T): rank (degree) of root node of T

Heap H:

• rank(H): maximum degree of any node in H

Assumption (n: number of nodes in H):

$$rank(H) \leq D(n)$$

- for a known function D(n)

Merging Two Trees

Given: Heap-ordered trees T, T' with rank(T) = rank(T')

• Assume: min-key of T < min-key of T'

Operation link(T, T'):

 Removes tree T' from root list and adds T' to child list of T

- rank(T) := rank(T) + 1
- T'.mark := false

each node has wark flag

Consolidation of Root List

Array A pointing to find roots with the same rank:

Consolidate:

- 1. for i := 0 to D(n) do A[i] := null;
- 2. while $H.rootlist \neq null do$
- 3. T := "delete and return first element of H. rootlist"

Time:

 $\Theta(|H.rootlist|+D(n))$

O(length of root list + D(W)

- 4. while $A[rank(T)] \neq \text{null do}$ cost of del-min
- 5. $T' \coloneqq A[rank(T)];$
- 6. A[rank(T)] := null;
- 7. T := link(T, T')
- 8. A[rank(T)] := T
- 9. Create new *H*. rootlist and *H*. min

Operation Decrease-Key

Decrease-Key(v, x): (decrease key of node v to new value x)

- 1. if $x \ge v$. key then return;
- 2. v.key := x; update H.min;

- 4. repeat
- 5. parent = v.parent;
- 6. H.cut(v);
- 7. v = parent;
- 8. $until \neg (v.mark) \lor v \in H.rootlist;$
- 9. if $v \notin H.rootlist$ then v.mark := true;

Operation Cut(v)

Operation H.cut(v):

- Cuts v's sub-tree from its parent and adds v to rootlist
- 1. if $v \notin H.rootlist$ then
- 2. // cut the link between v and its parent
- 3. rank(v.parent) = rank(v.parent) 1;
- 4. remove *v* from *v*. *parent*. *child* (list)
- 5. v.parent := null;
- 6. add v to H. rootlist

Decrease-Key Example

Green nodes are marked

Fibonacci Heap Marks

History of a node v:

v is being linked to a node

v.mark = false

a child of v is cut

v.mark = true

a second child of v is cut

H.cut(v)

Hence, the boolean value v. mark indicates whether node v has lost a child since the last time v was made the child of another node.

Cost of Delete-Min & Decrease-Key

Delete-Min:

- 1. Delete min. root r and add r. child to H. rootlist time: O(1)
- 2. Consolidate H.rootlist time: O(length of <math>H.rootlist + D(n))
- Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):

- 1. If new key < parent key, cut sub-tree of node v time: O(1)
- 2. Cascading cuts up the tree as long as nodes are marked time: O(number of consecutive marked nodes)
- Step 2 can potentially be linear in n

Exercises: Both operations can take $\Theta(n)$ time in the worst case!

Cost of Delete-Min & Decrease-Key

- Cost of delete-min and decrease-key can be $\Theta(n)$...
 - Seems a large price to pay to get insert and merge in O(1) time
- Maybe, the operations are efficient most of the time?
 - It seems to require a lot of operations to get a long rootlist and thus,
 an expensive consolidate operation
 - In each decrease-key operation, at most one node gets marked:
 We need a lot of decrease-key operations to get an expensive decrease-key operation
- Can we show that the average cost per operation is small?
- We can → requires amortized analysis

Amortization

- Consider sequence $o_1, o_2, ..., o_n$ of n operations (typically performed on some data structure D)
- (t_i) execution time of operation o_i
- $\underline{T} \coloneqq t_1 + t_2 + \dots + t_n$: total execution time
- The execution time of a single operation might vary within a large range (e.g., $t_i \in [1, O(i)]$)
- The worst case overall execution time might still be small
 - The worst case, even if single operations can be expensive anothed exec. Thus of an operation

Analysis of Algorithms

Best case

· Worst case worst ever time of an operation

· Average case hard complexity of a typical execution

Amortized worst case

What it the <u>average cost of an operation</u> in a <u>worst case sequence of operations?</u>

Example: Binary Counter

Incrementing a binary counter: determine the bit flip cost:

Operation	Counter Value	Cost	
	00000		
1	00001 5	1	
2	000 10	2	
3	00011	1	
4	00 100	3	
5	0010 <mark>1</mark>	1 ~	
6	001 10	2	
7	0011 <mark>1</mark>	1	
8	0 1000	4	
9	0100 1	1 <	
10	010 10	2	
11	0101 1	1 4	
12	01 100	3	
13	0110 1	1	

Accounting Method

Observation:

• Each increment flips exactly one 0 into a 1

$$0010001111 \Rightarrow 0010010000$$

Idea:

- Have a bank account (with initial amount 0)
- Paying x to the bank account costs x
- Take "money" from account to pay for expensive operations

Applied to binary counter:

- Flip from 0 to 1: pay 1 to bank account (cost: 2)
- Flip from 1 to 0: take 1 from bank account (cost: 0) ←
- Amount on bank account = number of ones
 - → We always have enough "money" to pay!

Accounting Method

Op.	Counter	Cost	To Bank	From Bank	(Net Cost)	Credit
	00000					
1	00001	1	1	0	2	l
2	00010	2	_	1	2	1
3	00011	1	1	0	2	2
4	00100	3		2	2	1
5	00101	1	1	0	2	2
6	00110	2	(ſ	2	2
7	00111	1	1	0	2	3
8	01000	4	(3	2	1
9	01001	1	(0	2	2
10	01010	2	1	1	2	(2)
		5			2 \$	

Potential Function Method

- Most generic and elegant way to do amortized analysis!
 - But, also more abstract than the others...
- State of data structure / system: $S \in \mathcal{S}$ (state space)

Potential function $\Phi: \mathcal{S} \to \mathbb{R}_{\geq 0}$

Operation i:

- $-(t_i)$ actual cost of operation i
- $-(S_i)$ state after execution of operation i (S_0 : initial state)
- $-\Phi_i := \Phi(S_i)$: potential after exec. of operation i
- a_i : amortized cost of operation i:

$$a_i \coloneqq \underline{t_i} + \underline{\Phi_i} - \underline{\Phi_{i-1}}$$

Potential Function Method

Operation *i*:

actual cost: t_i amortized cost: $a_i = t_i + \Phi_i - \Phi_{i-1}$

Overall cost:

$$T := \sum_{i=1}^{n} t_i = \left(\sum_{i=1}^{n} a_i\right) + \underbrace{\Phi_0 - \Phi_n}_{i=1}$$

$$t_i = a_i + \phi_{i-1} - \phi_i$$

Binary Counter: Potential Method

Potential function:

Φ: number of ones in current counter

- Clearly, $\Phi_0 = 0$ and $\Phi_i \ge 0$ for all $i \ge 0$
- Actual cost t_i :

• 1 flip from 0 to 1
•
$$t_i - 1$$
 flips from 1 to 0
• $\phi_i = \phi_{i-1} + 1 - (t_i - 1)$

- Potential difference: $\Phi_i \Phi_{i-1} = 1 (t_i 1) = 2 t_i$
- Amortized cost: $a_i = t_i + \Phi_i \Phi_{i-1} = 2$

Back to Fibonacci Heaps

- Worst-case cost of a single delete-min or decrease-key operation is $\Omega(n)$
- Can we prove a small worst-case amortized cost for delete-min and decrease-key operations?

Remark:

- Data structure that allows operations O_1 , ..., O_k
- We say that operation O_p has amortized cost a_p if for every execution the total time is

$$\underline{T} \leq \sum_{p=1}^{k} n_p \cdot a_p, \qquad \underline{a_i = t_i + t_i - t_{i-1}}$$

where n_p is the number of operations of type O_p

Amortized Cost of Fibonacci Heaps

- Initialize-heap, is-empty, get-min, insert, and merge have worst-case cost O(1)
- **Delete-min** has amortized cost $O(\log n)$
- **Decrease-key** has amortized cost O(1)
- Starting with an empty heap, any sequence of n operations with at most n_d delete-min operations has total cost (time)

$$T = O(n + n_d \log n).$$

- We will now need the marks...
- Cost for Dijkstra: $O(|E| + |V| \log |V|)$

Fibonacci Heaps: Marks

Cycle of a node:

1. Node v is removed from root list and linked to a node

$$v.mark = false$$

2. Child node *u* of *v* is cut and added to root list

$$v.mark = true$$

3. Second child of *v* is cut

node v is cut as well and moved to root list

The boolean value v. mark indicates whether node v has lost a child since the last time v was made the child of another node.

Potential Function

System state characterized by two parameters:

- R: number of trees (length of H.rootlist)
- M: number of marked nodes that are not in the root list

Potential function:

$$\Phi \coloneqq R + 2M$$

Example:

•
$$R = 7, M = 2 \rightarrow \Phi = 11$$

Actual Time of Operations

• Operations: initialize-heap, is-empty, insert, get-min, merge

```
actual time: O(1)
```

Normalize unit time such that

$$t_{init}, t_{is-empty}, t_{insert}, t_{get-min}, t_{merge} \leq 1$$

- Operation *delete-min*:
 - Actual time: O(length of H.rootlist + D(n))
 - Normalize unit time such that

$$t_{del-min} \le D(n) + \text{length of } H.rootlist$$

- Operation descrease-key:
 - Actual time: O(length of path to next unmarked ancestor)
 - Normalize unit time such that $t_{decr-key} \leq \underline{length} \ of \ path \ to \ next \ unmarked \ ancestor$

Amortized Times

Assume operation i is of type:

• initialize-heap:

- actual time: $t_i \leq 1$, potential: $\Phi_{i-1} = \Phi_i = 0$
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

is-empty, get-min:

- actual time: $t_i \leq 1$, potential: $\Phi_i = \Phi_{i-1}$ (heap doesn't change)
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

• merge:

- Actual time: $t_i \leq 1$
- combined potential of both heaps: $\Phi_i = \Phi_{i-1}$
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

Amortized Time of Insert

Assume that operation *i* is an *insert* operation:

$$\phi_i = P_i + 2 N_i$$

- M remains unchanged (no nodes are marked or unmarked, no marked nodes are moved to the root list)
- R grows by 1 (one element is added to the root list)

$$M_i = M_{i-1},$$
 $R_i = R_{i-1} + 1$ $\Phi_i = \Phi_{i-1} + 1$

Amortized time:

$$a_i = \underline{t_i} + \underline{\Phi_i - \Phi_{i-1}} \leq 2$$

Amortized Time of Delete-Min

Assume that operation i is a *delete-min* operation:

Actual time: $t_i \leq D(n) + |H.rootlist|$

Potential function $\Phi = R + 2M$:

- R: changes from H. rootlist to at most D(n)
- M: (# of marked nodes that are not in the root list)
 - no new marks
 - if node v is moved away from root list, v. mark is set to false \rightarrow value of M does not change!

$$\underbrace{M_i \leq M_{i-1}, \quad R_i \leq R_{i-1} + D(n) - |H.rootlist|}_{\Phi_i \leq \Phi_{i-1} + D(n) - |H.rootlist|},$$

Amortized Time:

$$a_i = \underbrace{t_i}_{l} + \Phi_i - \Phi_{i-1} \leq \underline{2D(n)}$$

Amortized Time of Decrease-Key

Assume that operation i is a decrease-key operation at node u:

Actual time: $t_i \leq \text{length of path to next unmarked ancestor } v$

Potential function $\Phi = R + 2M$:

- Assume, node u and nodes u_1, \dots, u_k are moved to root list
 - $-u_1, ..., u_k$ are marked and moved to root list, v mark is set to true
- $\geq k$ marked nodes go to root list, ≤ 1 node gets newly marked R grows by $\leq k + 1$, M grows by 1 and is decreased by $\geq k$

$$R_i \le R_{i-1} + k + 1,$$
 $M_i \le M_{i-1} + 1 - k$
 $\Phi_i \le \Phi_{i-1} + (k+1) - 2(k-1) = \Phi_{i-1} + 3 - k$

Amortized time:

$$a_i = \underline{t_i} + \Phi_i - \Phi_{i-1} \le \underline{k+1} + 3 - \underline{k} = 4$$

Complexities Fibonacci Heap

• Initialize-Heap: **0**(1)

• Is-Empty: **0**(1)

• Insert: O(1)

• Get-Min: **0**(1)

• Delete-Min: O(D(n))

• Decrease-Key: O(1)

amortized

• Merge (heaps of size m and $n, m \le n$): O(1)

• How large can D(n) get?

Da)=O(leg u)

Rank of Children

Lemma:

Consider a node v of rank k and let u_1, \dots, u_k be the children of v in the order in which they were linked to v. Then,

$$rank(u_i) \geq i - 2$$
.

Proof:

Fibonacci Numbers:

$$F_0 = 0$$
, $F_1 = 1$, $\forall k \ge 2$: $F_k = F_{k-1} + F_{k-2}$

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank k is at least F_{k+2} .

Proof:

• S_k : minimum size of the sub-tree of a node of rank k

$$S_0 = 1$$
, $S_1 = 2$, $\forall k \ge 2 : S_k \ge 2 + \sum_{i=0}^{k-2} S_i$

Claim about Fibonacci numbers:

$$\forall k \ge 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_i$$

$$S_0 = 1, S_1 = 2, \forall k \ge 2: S_k \ge 2 + \sum_{i=0}^{k-2} S_i, \qquad F_{k+2} = 1 + \sum_{i=0}^{k} F_i$$

• Claim of lemma: $S_k \ge F_{k+2}$

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank k is at least F_{k+2} .

Theorem:

The maximum rank of a node in a Fibonacci heap of size n is at most

$$D(n) = O(\log n).$$

Proof:

The Fibonacci numbers grow exponentially:

$$F_k = \frac{1}{\sqrt{5}} \cdot \left(\left(\frac{1 + \sqrt{5}}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right)$$

• For $D(n) \ge k$, we need $n \ge F_{k+2}$ nodes.

Summary: Binomial and Fibonacci Heaps

	Binomial Heap	Fibonacci Heap
initialize	O (1)	O (1)
insert	$O(\log n)$	O (1)
get-min	0 (1)	O (1)
delete-min	$O(\log n)$	$O(\log n)$ *
decrease-key	$O(\log n)$	O (1) *
merge	$O(\log n)$	0 (1)
is-empty	0(1)	0 (1)

^{*} amortized time