UNI

0||r Chapter 4

Data Structures
Fibonacci Heaps, Amortized Analysis

FREIBURG

Algorithm Theory
WS 2012/13

Fabian Kuhn

Fibonacci Heaps

UNI
I

FREIBURG

Lacy-merge variant of binomial heaps:
e Do not merge trees as long as possible...

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the
_min-heap property.

Variables:
e H.min: root of the tree containing the (a) minimum key

* H.rootlist: circular, doubly linked, unordered list containing
the roots of all trees

e H.size: number of nodes currently in H

Algorithm Theory, WS 2012/13 Fabian Kuhn 2

Trees in Fibonacci Heaps

UNI
I

FREIBURG

Structure of a single node v: /‘
parent,
T e key |degree ‘% 1
child/ mark
/

e v.child: points to circular, doubly linked and unordered list of
the children of v

e v.left, v.right: pointers to siblings (in doubly linked list)
e v.mark: will be used later...

Advantages of circular, doubly linked lists:
e Deleting an element takes constant time
e Concatenating two lists takes constant time

Algorithm Theory, WS 2012/13 Fabian Kuhn 3

Example

UNI
I

FREIBURG

N

/N

Algorithm Theory, WS 2012/13

41 50

Figure: Cormen et al., Introduction to Algorithms

Fabian Kuhn

Simple (Lazy) Operations

UNI
I

FREIBURG

Initialize-Heap H:
e H.rootlist := H.min := null

Merge heaps H and H':
e concatenate root lists
e update H.min

rlnsert element e into H:

* create new one-node tree containing e 2> H'

* merge heaps H and H'

L

Get minimum element of H:
e return H.min

Algorithm Theory, WS 2012/13 Fabian Kuhn

Operation Delete-Min

|
FRE:BURG

UNI

Delete the node with minimum key from H and return its element:
\

- TT X O~ — O
e P |
1. @.— H.min; k =3 fo l
2. ifH.size > 0 then L de |
3. remove H. min from H.rootlist;
4. add H.min. child (list) to H.rootlist
5.3 H.Consolidate(); ‘x rane

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. returnm

Algorithm Theory, WS 2012/13 Fabian Kuhn 6

UNI
I

FREIBURG

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node v:
e rank(v): degree of v

T ———

—

Tree T
e rank(T): rank (degree) of root node of T

—

Heap H:
e rank(H): maximum degree of any node in H

Assumption (n: number of nodes in H):

rank(H) < D(n)
—3

— for a known function D (n)

Algorithm Theory, WS 2012/13 Fabian Kuhn 7

Merging Two Trees

UNI
FREIBURG

Given: Heap-ordered trees T, T' with rank(T) = rank(T")

e Assume: min-key of T < min-key of T’

Operation link(T,T'): link
T / \ T'

e Removes tree T' from root list

and adds T’ to child list of T QKQ @KQ

e rank(T) :==rank(T) + 1 .
° T’_mark = false 00 O »O))

<ad Zidul

(J\QS &Mo\vk g[o%

SQ‘I wLo\nL_ ga&

& Qlae

Algorithm Theory, WS 2012/13 Fabian Kuhn 8

Consolidation of Root List

UNI
I

FREIBURG

Array A pointing to find roots with the same rank:

0 1 2 D(n)
Consolidate: -
. _ Time:
fori:= 0to D(n) do Ali] := null; O (|H. rootlist|+D(n))
while H.rootlist # null do \Z(—

T = “delete and return first element of H.rootlist”
while A[rank(T)] # nulldo cest s;? LoQ- ua'm
P= AlrankDL - 6o g f ek) e
Alrank(T)] = null;
T :=link(T,T")
Alrank(T)| =T
Create new H.rootlist and H.min

Algorithm Theory, WS 2012/13 Fabian Kuhn 9

O 0 N O Uk WwhE

Operation Decrease-Key |

|
FRE:BURG

UNI

Te—

Decrease-Key(v, x): (decrease key of node v to new value x)

LA

until =(v.mark) Vv v € H.rootlist;

1. ifx = v.key then return;

2. v.key := x; update H.min;

3. ifv € H.rootlist V x = v.parent. key then return

4. repeat ‘& ?QNM‘] ® waaskod LR

5. parent := v.parent; oo eud a e j
6. (H.cut(v); \ hepard-
7. vV = parent; o

8.

0.

if v € H.rootlist then v.mark := true, 7%
10

Algorithm Theory, WS 2012/13 Fabian Kuhn

Operation Cut(v)

UNI
I

FREIBURG

Operation H. cut(v):
e Cuts v’s sub-tree from its parent and adds v to rootlist

if v & H.rootlist then
// cut the link between v and its parent
rank(v.parent) = rank(v.parent) — 1;
remove v from v.parent. child (list)

v.parent := null;

o U sEwWwhPeE

11

Decrease-Key Example

UNI

FREIBURG

e Green nodes are marked

Algorithm Theory, WS 2012/13 Fabian Kuhn

12

FREIBURG

Fibonacci Heap Marks

UNI

History of a node v:
y /f/"/ei

v is being linked to a node v.mark := false

e =

3;\9
a child of v is cut </—; v.mark = true

a second child of v is cut H.cut(v) ol [nD

e\ Hence, the boolean value v. mark indicates whether node v
has lost a child since the last time v was made the child of

another node.

Algorithm Theory, WS 2012/13 Fabian Kuhn 13

Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

Delete-Min:

1. Delete min. root r and add r. child to H.rootlist
time: 0(1)

2. Consolidate H.rootlist
time: O(length of H.rootlist + D(n))

e Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):

1. If new key < parent key, cut sub-tree of node v
time: 0(1)

2. Cascading cuts up the tree as long as nodes are marked
time: O (number of consecutive marked nodes)

e Step 2 can potentially be linearinn

Exercises: Both operations can take ®(n) time in the worst case!

Algorithm Theory, WS 2012/13 Fabian Kuhn

14

Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

e Cost of delete-min and decrease-key can be O(n)...
.
— Seems a large price to pay to get insert and merge in O(1) time

* Maybe, the operations are efficient most of the time?

— It seems to require a lot of operations to get a long rootlist and thus,
an expensive consolidate operation

— In each decrease-key operation, at most one node gets marked:
We need a lot of decrease-key operations to get an expensive
decrease-key operation

e Can we show that the average cost per operation is small?

e Wecan—> requires{amortized analysi
L~~~

Algorithm Theory, WS 2012/13 Fabian Kuhn

15

Amortization

UNI
I

FREIBURG

Consider sequence 04, 05, ..., 0,, of n operations
(typically performed on some data structure D)

@execution time of operation o;

l =ty + t, + --- + t,,: total execution time

 The execution time of a single operation might

vary within a large range (e.g., t; € [1,0(i)])

e The worst case overall execution time might still be small

—> average execution time per operation might be small in
the worst case, even if single operations can be expensive

—

\

L L awerdiied exee. Puwg &Q can a?@ml\lw\

v
= |

Algorithm Theory, WS 2012/13 Fabian Kuhn 16

UNI

Analysis of Algorithms

FREIBURG

e Best case

o Worst case (sl erec. Hug o{ Qun oPem)r:su\

: oty pical
* Average case | ;. comgleity { = gghes’ erecudion

P

.MZed wo@
\ -

What it the average cost of an operation
in a worst case sequence of operations?

Algorithm Theory, WS 2012/13 Fabian Kuhn 17

Example: Binary Counter

UNI

FREIBURG

Incrementing a binary counter: determine the bit flip cost:

Operation Counter Value Cost
00000 +
1 00001)
2 00010 3
3 00011% @
4 00100 3
5 00101 1 —
6 00110 2
7 00111 jp—
8 01000 L4/
9 01001] <=—
10 01010 2
11 01011] =—
12 01100 3
13 01101 1
Algorithm Theory, WS 2012/13 Fabian Kuhn

18

Accounting Method

UNI

Observation:
* Each increment flips exactly one O into a 1

0010001111 = 0010010000

Idea:
e Have a bank account (with initial amount 0)

e Paying x to the bank account costs x

 Take “money” from account to pay for expensive operations

Applied to binary counter:
e Flip from 0to 1: pay 1 to bank account (cost: 2)
e Flip from 1 to 0: take 1 from bank account (cost: 0) S—

e Amount on bank account = number of ones
- We always have enough “money” to pay!

Algorithm Theory, WS 2012/13 Fabian Kuhn 19

FREIBURG

Accounting Method

UNI
FREIBURG

Op.

Counter

P =
(0 1

(cosy

To Bank

From Bank

Credit

00000

<9
o)
(o
n)
o)
(7]
N

00001

00010

00011

RN T NS gy

00100

00101

00110

00111

01000

O 00 N|ooju | b W N -

01001

[HEY
o

01010

_|[olWQl~Ig ™o -0

=F

©)

1

2

1
—

1

2
=
—

Algorithm Theory, WS 2012/13

=

Fabian Kuhn

IS

@/\)-WNN—-N\N

20

Potential Function Method

UNI

FREIBURG

* Most generic and elegant way to do amortized analysis!

— But, also more abstract than the others...

e State of data structure / system: S € § (state space)

Potential function ®:$ — R,

e QOperation i:

— @ actual cost of operation i
@ state after execution of operation i (Sj: initial state)

— @; := D(S;): potential after exec. of operation i
— a;: amortized cost of operation i:

a; =t +P; —P;_4

B

Algorithm Theory, WS 2012/13 Fabian Kuhn

21

Potential Function Method

UNI

Operation i: o/
actual cost: t; amortized cost:\ai =t + d; — CI)i_lJ
Overall cost: i o if = T
AT
r=Y o o(Ya) oo,
i=1 i —
Sre—— V_—:'é—-
—
{E al + (bi-; B Cb(
Z"L = al +Cbb —/g
—
+ ql + RS
+ O + @, "/gs

+ Q ¢, -0,
E——

Algorithm Theory, WS 2012/13 Fabian Kuhn

22

FREIBURG

Binary Counter: Potential Method

UNI
I

FREIBURG

 Potential function:

&: number of ones in current counter

/———-

Actual cost t;:

Clearly, ®y = 0and ®; = 0 foralli =0

= 1flipfromOtol «=— < —

= t; — 1flipsfrom1to 0 «— &’T(b
{ t

_"‘f""(‘é;'-—/‘)

D

.

Amortized cost: a; = t; + &; — D;_4

Algorithm Theory, WS 2012/13 Fabian Kuhn

Potential difference: ®; —®;_; =1-(t; - 1) =2—-¢;

= 2

. ——3

23

Back to Fibonacci Heaps

UNI

* Worst-case cost of a single delete-min or decrease-key
operation is Q(n)

e Can we prove a small worst-case amortized cost for
delete-min and decrease-key operations?

Remark:
e Data structure that allows operations Oy, ..., Oy,

—

e We say that operation_O_p'has amortized cost a,, if for every

execution the total time is
1

where n,, is the number of operations of type O,

Algorithm Theory, WS 2012/13 Fabian Kuhn 24

FREIBURG

Amortized Cost of Fibonacci Heaps

UNI
I

FREIBURG

Initialize-heap, is-empty, get-min, insert, and merge
have worst-case cost O(1)

Delete-min has amortized cost O(logn)
Decrease-key has amortized cost O(1)

Starting with an empty heap, any sequence of n operations
with at most n; delete-min operations has total cost (time)

/
T=0n+n,logn).

We will now need the marks...

/
Cost for Dijkstra: O(|E| + |V|log |V])

K‘E'.- <:v.sa.\l w{ Aaecn ('417 0(/)

Algorithm Theory, WS 2012/13 Fabian Kuhn

25

UNI

Fibonacci Heaps: Marks

FREIBURG

Cycle of a node:

1. Node v is removed from root list and linked to a node
v.mark = false

2. Child node u of v is cut and added to root list
v.mark = true

3. Second child of v is cut
node v is cut as well and moved to root list

—

The boolean value v. mark indicates whether node v has lost a
child since the last time v was made the child of another node.

26
Algorithm Theory, WS 2012/13 Fabian Kuhn Winter term 11/12 26

Potential Function

|
FRE:BURG

UNI

System state characterized by two parameters:
e R:number of trees (length of H.rootlist)
* M: number of marked nodes that are not in the root list

Potential function: p/
d =R+2M

Example:

e R=7,M=2 2> d=11

Algorithm Theory, WS 2012/13 Fabian Kuhn 27

Actual Time of Operations

UNI

FREIBURG

e Operations: initialize-heap, is-empty, insert, get-min, merge
actual time: O0(1)

— Normalize unit time such that
<1

e

Linit) tis—empty: Linserts tget—min' tmerge

e Operation delete-min:
— Actual time: O(Iength of H.rootlist + D(n))

— Normalize unit time such that
tagel—min < D(n) + length of H.rootlist

e QOperation descrease-key:
— Actual time: O (length of path to next unmarked ancestor)
— Normalize unit time such that /—#‘ca/s

v
taecr—key < length of path to next unmarked ancestor

Algorithm Theory, WS 2012/13 Fabian Kuhn

28

Amortized Times

UNI
FREIBURG

Assume operation i is of type:

e initialize-heap:
— actual time: t; < 1, potential: ®;_; = ®; =0
— amortized time: a; = t; + ¢; —P;_1 <1

* is-empty, get-min:
— actual time: t; < 1, potential: ®; = ®;_, (heap doesn’t change)
— amortized time: a; = t; + ¢; —P;_1 <1

° merge:
— Actualtime: t; <1
— combined potential of both heaps: ®; = &;_4
— amortized time: a; = t; + ¢; —P;_1 <1

Algorithm Theory, WS 2012/13 Fabian Kuhn 29

Amortized Time of Insert

UNI
FREIBURG

Assume that operation i is an insert operation:

e Actualtime:t; <1 6-—-0— ©—o

/1
 Potential function: Q)i=?-j+iﬂ;

— M remains unchanged (no nodes are marked or unmarked, no marked
nodes are moved to the root list)

— R grows by 1 (one element is added to the root list)

VML' — M,'_JJ & — Ri—l + 1
P =9, +1 '

e Amortized time:

Algorithm Theory, WS 2012/13 Fabian Kuhn 30

Amortized Time of Delete-Min

UNI
FREIBURG

Assume that operation i is a delete-min operation:

S NA—
Actual time: t; < D(n) + |H.rootlist|

a——

Potential function ® = R + 2M:
* R:changes from H.rootlist to at most D(n)
e M: (# of marked nodes that are not in the root list)

— no new marks

— if node v is moved away from root list, v. mark is set to false

- value of M does not change! S/ Q_ y

M M;_1, R; <R;_1 +D(n) — |H. 'rootllstl\
D, <D +\D(n) — |H. rootllstlx

H . W . (s W~ Y.
Amortized Time: D”;H“’* DO [coeblind |

a; = ti + (Di — (Di—l < ZD(n)

Algorithm Theory, WS 2012/13 Fabian Kuhn 31

Amortized Time of Decrease-Key

UNI

Assume that operation i is a decrease-key operation at node u:

Actual time: t; < length of path to next unmarked ancestor v
w.(ov
Potential function ® = R + 2 M. %-.;}5_“,“4 j;=£+/

e Assume, node u and nodes u;, ..., U, are moved to root list

— U4, ..., Uy are marked and moved to root list, v. mark is set to true

e > k marked 'r}odes go to root list, < 1 node gets newly marked
B ¢ =M~k . M=t +
e Rgrowsby<k+ 1, M grows by 1 andis detreased by = k

\R; <R +k+1) | MiSMi_%;;B
q)lgq)l—1+(k+1)_££k_1): i_1+-3~'_k

—

Amortized time:
ai=ti+¢i—¢i_1Sk+1+3—k=4

Algorithm Theory, WS 2012/13 Fabian Kuhn 32

FREIBURG

Complexitiesﬁibona@q Heap

Initialize-Heap: 0(1)

e Is-Empty: 0(1)
* Insert: 0o(1)
e Get-Min: 0(1)

* Delete-Min: 0(D(n)) i
——‘> amortized
e Decrease-Key: 0(1)

e Merge (heaps of sizemandn, m < n): 0(1)

* How large can D(n) get'.-: <D0 :D('QBV N

UNI
I

FREIBURG

Algorithm Theory, WS 2012/13 Fabian Kuhn

UNI

Rank of Children

FREIBURG

Lemma:

Consider a node v of rank k and let uq, ..., u;be the children of v
in the order in which they were linked to v. Then,

rank(u;) > i — 2.

Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn 34

Size of Trees

UNI
I

FREIBURG

Fibonacci Numbers:
FO — O, F1

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with

rank k is at least Fj,».

Proof:

1,

Vk > Z:Fk — Fk—l + Fk—Z

e Si:minimum size of the sub-tree of a node of rank k

Algorithm Theory, WS 2012/13

Fabian Kuhn

35

Size of Trees

UNI
I

FREIBURG

S, =2, Vk22:5k22+25i

e (Claim about Fibonacci numbers:

Algorithm Theory, WS 2012/13

k
VkZO:Fk+2 :1+ZFL

Fabian Kuhn

1=0

k-2

1=0

36

Size of Trees

UNI

FREIBURG

k—2
So=1,5=2Vk=>2:5, =2+ ZSi,
i=0
e Claimoflemma: S, = Fj.»

Algorithm Theory, WS 2012/13 Fabian Kuhn

k
Ferz=1+) F,
=0

37

Size of Trees

UNI
FREIBURG

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node v with rank k
is at least Fj, ».

Theorem:
The maximum rank of a node in a Fibonacci heap of size n is at most

D(n) = 0(logn).
Proof:
e The Fibonacci numbers grow exponentially:

1 (/1445 [1-v5)\"
e ((50) -(50)

e ForD(n) = k, we need n > Fj., nodes.

Algorithm Theory, WS 2012/13 Fabian Kuhn 38

Summary: Binomial and Fibonacci Heaps

UNI
I

FREIBURG

initialize
insert
get-min
delete-min
decrease-key
merge

is-empty

Algorithm Theory, WS 2012/13

Binomial Heap

0o(1)
O(logn)
0(1)
O(logn)
O(log n)
O(logn)
0(1)

Fabian Kuhn

Fibonacci Heap

0(1)
0(1)
0(1)
O(logn) *
o(1)*
0(1)
0(1)

k o o
amortized time

39

