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Union-Find Data Structure
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Also known as Disjoint-Set Data Structure...

Manages partition of a set of elements

e set of disjoint sets

Operations:

. Xnake_set(x)gcreate a new set that only contains element x

e find(x): return the set containing x

e union(x,y): merge the two sets containing x and y
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Disjoint-Set Forests
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e Represent each set by a tree

e Representative of a set is the root of the tree
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Disjoint-Set Forests i
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make_set(x): create new one-node tree @

find(x): follow parent point to root
(parent pointer to itself)
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Union-By-Size Heuristic

Union of sets $; and S,:

_——
 Root of trees representing§_1 and 523@ and@ [f KK

e W.lo.g., assume that |S;| = |5, ]
e RootofS; US,: 1y (1, is attached to 7y as a new child)

Theorem: If the union-by-rank heuristic is used, the worst-case
cost of a find-operation is O(logn)

Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn 5



UNI

Union-Find Algorithms

FREIBURG

Recall: m operations, n of the operations are make_set-operations

Linked List with Weighted Union Heuristic:
 make_set: worst-case cost 0(1)
e find : worst-case cost O(1)

e union :amortized worst-case cost O (logn)

Disjoint-Set Forest with Union-By-Size Heuristic:

 make_set: worst-case cost 0(1)

e find : worst-case cost O (logn)
e union :worst-case cost O(logn)

Can we make this faster?
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Path Compression During Find Operation
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1. ifa # a.parent then

2. a.parent = find(a.parent)
3. return a.parent
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Complexity With Path Compression
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PG
When using only path compression (without union-by-rgnk):

m: total number of operations
——3

e f of which are find-operations
==

. ;of which are make_set-operations
- at most n — 1 are union-operations

Total cost: O (? +f- [log2+f/n nD =0(m+ f -logyym, n)
waalio-set AQ;(’«'(S w(» R
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Union-By-Size and Path Compression
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Theorem:

Using the combined upion-by-size and path compression
heuristic, the running time of@disjoint—set (union-find)
operations on n elements (at most n make_set-operations) is

O(m -{a(m, n)),

Where a(m,n) is the inverse of the Ackermann function.
‘\\k ?T&GJ":CQ:
X (M, W) = ¢

(hef. ™ W Qz A
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Ackermann Function and its Inverse
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Ackermann Function: X
2> w)& &ﬁ’

Fork, £ >1, 5
//f# ifk=1,¢/>1
Ak, ) ={A(k—1,2), ifk>1¢=1

A(k — 1,A(k, ¢ —\1}), ifk>1¢>1

Inverse of Ackermann Function:
U ZW 2z |

a(m,n) = min{k > 1| Ak, [™/p]) > log, n}
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Inverse of Ackermann Function
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e a(mn) = min@z 1 |Ask, !mégl) > log, n} |
m =>n = A(k, [m/nj) > A(k 1) = a(m,n) < min{k = 1|A(k,1) > logn}
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