)

Chapter 4

Data Structures
Union Find

Algorithm Theory
WS 2012/13

Fabian Kuhn

UNI
I

FREIBURG

Union-Find Data Structure

UNI
FREIBURG

Also known as Disjoint-Set Data Structure...

Manages partition of a set of elements

e set of disjoint sets

Operations:

. Xnake_set(x)gcreate a new set that only contains element x

e find(x): return the set containing x

e union(x,y): merge the two sets containing x and y

Algorithm Theory, WS 2012/13 Fabian Kuhn 2

Disjoint-Set Forests

UNI

FREIBURG

N\ @ @
OO (@) (s) ()
(9

e Represent each set by a tree

e Representative of a set is the root of the tree

Algorithm Theory, WS 2012/13 Fabian Kuhn

@

Disjoint-Set Forests i

UNI
FREIBURG

make_set(x): create new one-node tree @

find(x): follow parent point to root
(parent pointer to itself)

Algorithm Theory, WS 2012/13 Fabian Kuhn 4

UNI
I

FREIBURG

Union-By-Size Heuristic

Union of sets $; and S,:

_——
 Root of trees representing§_1 and 523@ and@ [f KK

e W.lo.g., assume that |S;| = |5,]
e RootofS; US,: 1y (1, is attached to 7y as a new child)

Theorem: If the union-by-rank heuristic is used, the worst-case
cost of a find-operation is O(logn)

Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn 5

UNI

Union-Find Algorithms

FREIBURG

Recall: m operations, n of the operations are make_set-operations

Linked List with Weighted Union Heuristic:
 make_set: worst-case cost 0(1)
e find : worst-case cost O(1)

e union :amortized worst-case cost O (logn)

Disjoint-Set Forest with Union-By-Size Heuristic:

 make_set: worst-case cost 0(1)

e find : worst-case cost O (logn)
e union :worst-case cost O(logn)

Can we make this faster?

Algorithm Theory, WS 2012/13 Fabian Kuhn 6

Path Compression During Find Operation

UNI
I

FREIBURG

1. ifa # a.parent then

2. a.parent = find(a.parent)
3. return a.parent

Algorithm Theory, WS 2012/13 Fabian Kuhn 7

Complexity With Path Compression

) Y
a.92nd

UNI
FREIBURG

PG
When using only path compression (without union-by-rgnk):

m: total number of operations
——3

e f of which are find-operations
==

. ;of which are make_set-operations
- at most n — 1 are union-operations

Total cost: O (? +f- [log2+f/n nD =0(m+ f -logyym, n)
waalio-set AQ;(’«'(S w(» R

Wuipw
%

Algorithm Theory, WS 2012/13 Fabian Kuhn 8

Union-By-Size and Path Compression

UNI
FREIBURG

Theorem:

Using the combined upion-by-size and path compression
heuristic, the running time of@disjoint—set (union-find)
operations on n elements (at most n make_set-operations) is

O(m -{a(m, n)),

Where a(m,n) is the inverse of the Ackermann function.
‘\\k ?T&GJ":CQ:
X (M, W) = ¢

(hef. ™ W Qz A
Algorithm Theory, WS 2012/13 Fabian Kuhn

G aa&rew,l‘? Sfov\f(vd,

Ackermann Function and its Inverse

UNI

FREIBURG

Ackermann Function: X
2> w)& &ﬁ’

Fork, £ >1, 5
//f# ifk=1,¢/>1
Ak,) ={A(k—1,2), ifk>1¢=1

A(k — 1,A(k, ¢ —\1}), ifk>1¢>1

Inverse of Ackermann Function:
U ZW 2z |

a(m,n) = min{k > 1| Ak, [™/p]) > log, n}

Algorithm Theory, WS 2012/13 Fabian Kuhn

10

Inverse of Ackermann Function

UNI
I

FREIBURG

e a(mn) = min@z 1 |Ask, !mégl) > log, n} |
m =>n = A(k, [m/nj) > A(k 1) = a(m,n) < min{k = 1|A(k,1) > logn}
« AL P) =2, A(k A(k, 1) = A(k — 1,2),
Ak,) = A(k -1 “1,A(k, £ — 1))
ACLD) =2, A2, N)=A0)=4
A3D= A(2 2= AL AQN)=ANN =2 T=(¢
A N= AR = AL, A =A2,10) = A(| A@QsN)=2

A(2,11) %)
Ay 1= ACl, AQ0) =7 A= 2 ’/

A1)

2
2

2 (s$%¢C

A(L{/D““‘ZZ %2“—2 22 = Z

= —_

\ a0 3oo
& adoms \n obs. wiels A O < 7 °

Algorithm Theory, WS 2012/13 Fabian Kuhn 11

