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Last Lecture
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Due to technical problems, we have no recordings ®

We discussed 2 problems

e Contention resolution:

We will put the copy of a book chapter on the web
(beginning of Ch. 13 of book Algorithm Design by Kleinberg & Tardos)

 Miller-Rabin primality test:

Use slides, colleagues, wikipedia page
— For the exam, the number-theoretic details are not relevant
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Randomized Quicksort
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Quicksort:

Sp<v % S, >v

function Quick (S: sequence): sequence;

{returns the sorted sequence S}
g’(bmko [ow

begin claoose. @ ui Q/QW{‘

if #S < 1 thenreturn S /

else { choose pivot element v in S;

partition S into S, with elements < v,
and S, with elements > v
return | Quick(S,) |v |Quick(S;)

end;
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Randomized Quicksort Analysis
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Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting n elements:
e Let’s just count the number of comparisons

* |n the partitioning step, all n — 1 non-pivot elements have to be

compared to the pivot (“—::% ]
~__ %

e Number of comparisons:

n — 1 + #comparisons in recursive callsj

e If rank of pivotis r:
recursive calls with/r — 1(andin — r{elements
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Randomized Quicksort Analysis
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Random variables: C=wn-) + C, + <
/@total number of comparisons (for a given array of length n)
. @ rank of first pivot r* —~

. C{), numbe?@%‘c@rr/warlsons for th@ recursive calls

T E[C] =n — 1+ E[C,] + E[C,] =
7 T

Law of Total Expectation:

" /
=E[C] = IP(R =71)-E[C|R =]
Bl I S

! &
— P(R—r) (n—1+E[C,IR =] + E[G,|R = 1))
— g
r=1 Q,[).#(om? e __T _
501'&"‘-6 -1 valueg .- Wer \aWes
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Randomized Quicksort Analysis
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We have seen that:

zIP(R 1) (n—14E[C)R = r] + E[C.|R = r])
—1 k_'_Wf\J \(\)
) s o) Tn-r)
Define:

e T(n): expected number of comparisons when sorting n elements

E[C] =T(n)
E[C/\R=7]=T(r —1)
E[C/IR=r]=Tn—r)

Recursion:
n

T(n)=Z%-(n—1+T(r—1)+T(n—r))

r=1
T(0)=T1)=0
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Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof: o="1N<K 21" LlD=0

T(n)=2%-(n—1+T(r;1)+T(n—r)), T(0) =0

r=1

“.J

: Z (1() + Tln-1-1))

A

1\
=\ "‘E- \(t)
W =
C <2 L) ;.-:ég 2\

e . 4
n~\ + %2&\ £~M~\+K’J‘x24me(x

*

V=
N ¢ . ‘
V'V W\LQ §

n-1 +

ll

/)

N
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Randomized Quicksort Analysis
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Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

—?——ﬁ

Proof:
4 n
T(n)Sn—1+—-j xInx dx
n 1 \‘\
4 .}{&m_f+1> x’Inx x?
T(‘QQU\—HGQ 2 9 4 {Jxlnxdx= > —4}

A}
n

= ZU\EMUQ = TL‘\ 2. ZMQ\AQM)

a——

= -1+ 2wl -1+
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Alternative Analysis

/ 52

%
Arraytosort:[7,3,1,10,14,8,12,9,4,6,5,15,2,13,11]

Viewing quicksort run as a tree°

\0, 4,12 \S‘[&, 0

\

/ \ /
o |y
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Comparisons
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e Comparisons are only between pivot and non-pivot elements

 Every element can only be the pivot once:
— every 2 elements can only be compared once!

e W.l.0.g., assume that the elements to sort are 1,2, ..., n

* Elementsiand j are compared if and only if either i orjis a
pivot before any element h:i < h < j is chosen as pivot
— i.e., iff i is an ancestor of j or j is an ancestor of i

A ——
I‘IJ

¢
\ oD
U

P(comparison betw.i and j) = ; %1
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Counting Comparisons

Random variable for every pair of elements (i, j):

Y. = {1, if there is a comparison between i and j
Y (0, otherwise

R —

M= = BN =

NARL 3!

Number of comparison@

e Whatis E[X]?
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Randomized Quicksort Analysis
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Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.
Proof:

e Linearity of expectation:
For all random variables X4, ..., X,; and all a4, ..., a,, € R,

[zax

¥=2%  EX)- gaxq Zw.
< \45

w=i N)

== S

=\ )~\-H

a,E[X,].
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Randomized Quicksort Analysis
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Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:
n-1n-i+1
E[X] = zz 2 1 z
o 11 é\L
i= 1]1 i+1 o
Wirut e seces: Hm A
- =
— | = Z(V\"l W) —
»H(UD: ZT )('H( ) D
=

B / SIACSMAN
H(m FEPACY — —
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Types of Randomized Algorithms
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Las Vegas Algorithm:
e always a correct solution

* running time is a random variable

 Example: randomized quicksort, contention resolution

Monte Carlo Algorithm:
* probabilistic correctness guarantee (mostly correct)
e fixed (deterministic) running time

 Example: primality test
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Minimum Cut
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Reminder: Given a graph G = (V, E), a cut is a partition (4, B)
of VsuchthatV =AUB,ANB=0,AB+0

Size of the cut (A4, B): # of edges crossing the cut j
 For weighted graphs, total edge weight crossing the cu

2 A conn,
Goal: Find a cut of minimal size (i.e., of size A(G)) s b "Zﬁ‘
Maximum-flow based algorithm: < /
* Fix s, compute min s-t-cutforallt # s ' €

. O(m : /1(6)) = 0(mn) per s-t cut
- e ———
e Gives an O(mn/l(G)) = 0(mn?)-algorithm

Best-known deterministic aIg@(itﬂr’ﬁ?(@ (mn + n?logn) = O(lf)
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Edge Contractions

* Inthe following, we consider multi-graphs that can have
multiple edges (but no self-loops)

ok not ok

Contracting edge {u, v}: : @/
e Replace nodes u, v by new node w D?‘é
e Forall edges {u,x} and {v, x}, add an edge {w, x}\'

e Remove self-loops created at node w

contract {u, v}
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Properties of Edge Contractions
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Nodes:
e After contracting {u, v}, the new node represents u and v

e After a series of contractions, each node represents a subset of
the original nodes

(1,2)

(5.(4,6) 5
5
Cuts:
e Assume in the contracted graph,j\g represents nodes S,, C V

e The edges of a node w in a contracted graph are in a one-to-one
correspondence with the edges crossing the cut (S,,,V \ S,,)
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Randomized Contraction Algorithm
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Algorithm: 04
while there are > 2 nodes do %
contract a uniformly random edge S g

return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum
cut with probability at least 1/0 (n?).
 We will show this next.

Theorem: The random contraction algorithm can be implemented
in time 0(n?).

e There are n — 2 contractions, each can be done in time 0(n).

e——————

* You will show this in the exercises.
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Contractions and Cuts
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Lemma: If two original nodes u, v € V are merged into the same
node of the contracted graph, there is a path connecting u and v
in the original graph s.t. all edges on the path are contracted.

Proof:

e Contracting an edge {x, y} merges the node sets represented by
x and y and does not change any of the other node sets.

e The claim the follows by induction on the number of edge
contractions.
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Contractions and Cuts
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Lemma: During the contraction algorithm, the edge connectivity
(i.e., the size of the min. cut) cannot get smaller.

Proof:

e All cutsin a (partially) contracted graph correspond to cuts of
the same size in the original graph G as follows:

— For a node u of the contracted graph, let S,, be the set of original nodes
that have been merged into u (the nodes that u represents)

— Consider a cut (4, B) of the contracted graph

— (A',B") with
—
A’:=‘ ’Su, B’:=‘ |Sv
isacutofG.

— The edges crossing cut (4, B) are in one-to-one correspondence with the
edges crossing cut (4, B).
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Contraction and Cuts @}:@)
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Lemma: The contraction algorithm outputs a cut (4, B) of the input
graph G if and only if it never contracts an edge crossing (4, B).

Proof:

1. If an edge crossing (A4, B) is contracted, a pair of nodes u € A4,
v € V is merged into the same node and the algorithm outputs
a cut different from (4, B).

2. Ifnoedge of (4, B) is contracted, notwonodesu € A, v € B
end up in the same contracted node because every path
connecting u and v in G contains some edge crossing (A,E)

In the end there are only 2 sets = outputis (4, B)
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Getting The Min Cut
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Theorem: The probability that the algorithm outputs a minimum
cutisatleast 2/n(n —1).

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k,

G: has at least kn/2 edges. é/
Proof: z) @

e Min cut has size k = all nodes have degree > k

S ———

— Anode v of degrée < k givesacut ({v},V \ {v}) ofsize < k
2&30) =2w

 Number of edgesm =1/, -3 deg(v)
Y
Z -
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Getting The Min Cut
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Theorem: The probability that the algorithm outputs a minimum
cutisatleast 2/n(n —1).

Proof:
* Consider a fixed min cut (4, B), assume (4, B) has size k

e The algorithm outputs (4, B) iff none of the k edges crossing
(A, B) gets contracted.

e Before contraction i, therearen + 1 — i nodes
2> andthus> (n+ 1 —i)k/2 edges

* If no edge crossing (A4, B) is contracted before, the probability to
ng crossing (A4, B) in step i is at most

(k) 2

(n+1—i)k=n+1—i'
2 ——
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Getting The Min Cut
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Theorem: The probability that the algorithm outputs a minimum
cutisatleast 2/n(n —1).

Proof:

* If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i isat most 2/, ;_;.

e Event &;: edge contracted in step i is not crossing (A4, B)

7z

?<i \ Q(n\ai . W+l —¢
7 \\v\ &l‘s’l E-—‘ CO%JI\/MD

} S
C:.:L | eﬂy ac¢reSs (Af"ﬁ) e
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Getting The Min Cut
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Theorem: The probability that the algorithm outputs a minimum
cutis atleast 2/n(n —1).
2.

Proof: | — e >
¢ P(EpléiN-NE) =%, rﬂ)CQ'\ = n

* No edge crossing (4, B) contracted: event £ = N2 E
o —_——

Ye)=PEN-RE 1) -T(Elene)- ..+ T(En| EunnEls)

-2 (-5 0-5 (-5

—_— P —  ® * . N —T
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Randomized Min Cut Algorithm
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Theorem: If the contraction algorithm is independently repeated
0(n?logn) times, one instance returns a minimum cut w.h.p.

Proof:

e Probability to not get a minimum cut in ¢ - (2) - In n iterations:

1 \¢(2)nn emn 1
(1 — T) <e = F
(2)
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