

Chapter 6 Randomization

Algorithm Theory WS 2012/13

Fabian Kuhn

Last Lecture

Due to technical problems, we have no recordings 🕾

We discussed 2 problems

Contention resolution:

We will put the copy of a book chapter on the web (beginning of Ch. 13 of book Algorithm Design by Kleinberg & Tardos)

Miller-Rabin primality test:

Use slides, colleagues, wikipedia page

For the exam, the number-theoretic details are not relevant

Randomized Quicksort

Quicksort:

S

 $S_{\ell} < v$ v $S_r > v$

function Quick (S: sequence): sequence;

{returns the sorted sequence *S*}

begin

if $\#S \leq 1$ then return S

else { choose pivot element v in S;

partition S into S_{ℓ} with elements < v,

and S_r with elements > v

return Quick(S_ℓ) v Quick(S_r)

end;

, choose a uniformly random element

Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting n elements:

- Let's just count the number of comparisons
- In the partitioning step, all n-1 non-pivot elements have to be compared to the pivot
- Number of comparisons:

$$n-1$$
 + #comparisons in recursive calls

• If rank of pivot is r:
recursive calls with r-1 and n-r elements

Random variables:

$$C = N-1 + C_0 + C_r$$

- C; total number of comparisons (for a given array of length n)
- (R) rank of first pivot (C_ℓ, C_r) number of comparisons for the 2 recursive calls

$$\mathbb{E}[C] = n - 1 + \mathbb{E}[C_{\ell}] + \mathbb{E}[C_r]$$

Law of Total Expectation:

$$= \sum_{r=1}^{n} \mathbb{P}(R=r) \cdot \mathbb{E}[C|R=r]$$

$$= \sum_{r=1}^{n} \mathbb{P}(R=r) \cdot (n-1+\mathbb{E}[C_{\ell}|R=r]+\mathbb{E}[C_{r}|R=r])$$

We have seen that:

$$\mathbb{E}[C] = \sum_{r=1}^{n} \mathbb{P}(R=r) \cdot (n-1 + \mathbb{E}[C_{\ell}|R=r] + \mathbb{E}[C_{r}|R=r])$$

$$\mathbb{T}(n-1)$$

Define:

• T(n): expected number of comparisons when sorting n elements

$$\mathbb{E}[C] = T(n)$$

$$\mathbb{E}[C_{\ell}|R = r] = T(r - 1)$$

$$\mathbb{E}[C_r|R = r] = T(n - r)$$

Recursion:

$$T(n) = \sum_{r=1}^{n} \frac{1}{n} \cdot (n-1+T(r-1)+T(n-r))$$

$$T(0) = T(1) = 0$$

Theorem: The expected number of comparisons when sorting nelements using randomized quicksort is $T(n) \leq 2n \ln n$.

Proof:
$$C = T(1) \le 2 \cdot | \cdot l_{n}(1) = 0$$

$$T(n) = \sum_{r=1}^{n} \frac{1}{n} \cdot (n-1+T(r-1)+T(n-r)), \quad T(0) = 0$$

$$= N-1 + \frac{1}{N} \cdot \sum_{i=0}^{n-1} (T(i)+T(n-1-i))$$

$$= N-1 + \frac{2}{N} \cdot \sum_{i=1}^{n-1} T(i)$$

$$\le N-1 + \frac{4}{N} \cdot \sum_{i=1}^{n-1} i l_{n}(i) \le N-1 + \frac{4}{n} \cdot \int_{x} x l_{n} x_{n} dx$$

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \le 2n \ln n$.

$$T(n) \le n - 1 + \frac{4}{n} \cdot \int_{1}^{n} x \ln x \, dx$$

$$T(u) \leq N-1+\frac{4}{N}\left(\frac{u^2 \ln N}{2}-\frac{u^2}{4}+\frac{1}{4}\right)$$

$$= N-1 + 2 u ln(u) - N + \frac{1}{N}$$

$$= 2 u \ln(u) + \frac{1}{u} - 1 \times 2 u \ln(u)$$

$$\int x \ln x \, dx = \frac{x^2 \ln x}{2} - \frac{x^2}{4}$$

Alternative Analysis

Array to sort: [7,3,1,10,14,8,12,9,4,6,5,15,2,13,11]

Viewing quicksort run as a tree:

Comparisons

- Comparisons are only between pivot and non-pivot elements
- Every element can only be the pivot once:
 - → every 2 elements can only be compared once!
- W.l.o.g., assume that the elements to sort are 1,2,...,n
- Elements \underline{i} and \underline{j} are compared if and only if either i or j is a pivot before any element h: i < h < j is chosen as pivot
 - i.e., iff i is an ancestor of j or j is an ancestor of i

$$\mathbb{P}(\text{comparison betw. } i \text{ and } j) = \frac{2}{j-i+1}$$

Counting Comparisons

Random variable for every pair of elements (i, j):

$$X_{ij} = \begin{cases} 1, & \text{if there is a comparison between } i \text{ and } j \\ 0, & \text{otherwise} \end{cases}$$

$$\mathbb{P}(X_{ij} = 1) = \frac{12}{\hat{j} - i + 1} \quad \mathbb{E}[X_{ij}] = \frac{12}{\hat{j} - i + 1}$$

Number of comparisons: X

$$X = \sum_{i < j} X_{ij}$$

• What is $\mathbb{E}[X]$?

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \le 2n \ln n$.

Proof:

Linearity of expectation:

For all random variables $X_1, ..., X_n$ and all $a_1, ..., a_n \in \mathbb{R}$,

$$\mathbb{E}\left[\sum_{i}^{n} a_{i}X_{i}\right] = \sum_{i}^{n} a_{i}\mathbb{E}[X_{i}].$$

$$Y = \underset{i < j}{\leq} X_{i,j} \qquad \mathbb{E}[X] = \underset{i < j}{\leq} \mathbb{E}[X_{i,j}] = \underset{i < j}{\overset{2}{\leq}} \underset{j=i+1}{\overset{n}{\leq}} \frac{2}{j-i+1}$$

$$= \underset{i=1}{\overset{n-1}{\leq}} \underset{j=i+1}{\overset{n}{\leq}} \frac{2}{j-i+1}$$

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \le 2n \ln n$.

$$\mathbb{E}[X] = 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1} = 2 \sum_{i=1}^{n-1} \sum_{k=2}^{n-1} \frac{1}{k}$$

$$= 2 \underbrace{\sum_{i=1}^{n-1} \sum_{k=2}^{n-1} \frac{1}{k}}_{\text{termonic series:}}$$

$$= 2 \underbrace{\sum_{i=1}^{n-1} \sum_{k=2}^{n-1} \frac{1}{k}}_{\text{termonic series:}}$$

$$= 2 \underbrace{(n-i)(H(n)-1)}_{\text{termonic}}$$

$$+ (n) \le 1 + \ln(n)$$

Types of Randomized Algorithms

Las Vegas Algorithm:

- always a correct solution
- running time is a random variable
- Example: randomized quicksort, contention resolution

Monte Carlo Algorithm:

- probabilistic correctness guarantee (mostly correct)
- fixed (deterministic) running time
- **Example:** primality test

Minimum Cut

Reminder: Given a graph G = (V, E), a cut is a partition (A, B)

of V such that $V = A \cup B$, $A \cap B = \emptyset$, $A, B \neq \emptyset$

Size of the cut (A, B): # of edges crossing the cut

For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size $\lambda(G)$)

Maximum-flow based algorithm:

- Fix s, compute min s-t-cut for all $t \neq s$
- $O(m \cdot \underline{\lambda(G)}) = \underline{O(mn)}$ per s-t cut
- Gives an $O(mn\lambda(G)) = O(mn^2)$ -algorithm

Edge Contractions

 In the following, we consider multi-graphs that can have multiple edges (but no self-loops)

Contracting edge $\{u, v\}$:

- Replace nodes u, v by new node w
- For all edges $\{u, x\}$ and $\{v, x\}$, add an edge $\{w, x\}$
- Remove self-loops created at node w

Properties of Edge Contractions

Nodes:

- After contracting $\{u, v\}$, the new node represents u and v
- After a series of contractions, each node represents a subset of the original nodes

- Assume in the contracted graph, \underline{w} represents nodes $S_w \subset V$
- The edges of a node w in a contracted graph are in a one-to-one correspondence with the edges crossing the cut $(S_w, V \setminus S_w)$

Randomized Contraction Algorithm

Algorithm:

while there are > 2 nodes do
contract a uniformly random edge

return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum cut with probability at least $1/O(n^2)$.

We will show this next.

Theorem: The random contraction algorithm can be implemented in time $O(n^2)$.

- There are n-2 contractions, each can be done in time O(n).
- You will show this in the exercises.

Contractions and Cuts

Lemma: If two original nodes $u, v \in V$ are merged into the same node of the contracted graph, there is a path connecting u and v in the original graph s.t. all edges on the path are contracted.

- Contracting an edge $\{x, y\}$ merges the node sets represented by x and y and does not change any of the other node sets.
- The claim the follows by induction on the number of edge contractions.

Contractions and Cuts

Lemma: During the contraction algorithm, the edge connectivity (i.e., the size of the min. cut) cannot get smaller.

Proof:

- All cuts in a (partially) contracted graph correspond to cuts of the same size in the original graph G as follows:
 - For a node u of the contracted graph, let S_u be the set of original nodes that have been merged into u (the nodes that u represents)
 - Consider a cut (A, B) of the contracted graph
 - -(A',B') with

is a cut of G.

- The edges crossing cut (A, B) are in one-to-one correspondence with the edges crossing cut (A', B').

Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (A, B) of the input graph G if and only if it never contracts an edge crossing (A, B).

Proof:

- 1. If an edge crossing (A, B) is contracted, a pair of nodes $u \in A$, $v \in V$ is merged into the same node and the algorithm outputs a cut different from (A, B).
- 2. If no edge of (A, B) is contracted, no two nodes $u \in A$, $v \in B$ end up in the same contracted node because every path connecting u and v in G contains some edge crossing (A, B)

In the end there are only 2 sets \rightarrow output is (A, B)

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k,

G has at least kn/2 edges.

- Min cut has size $k \Longrightarrow$ all nodes have degree $\ge k$
 - A node v of degree < k gives a cut $(\{v\}, V \setminus \{v\})$ of size < k
- Number of edges $m = \frac{1}{2} \cdot \sum_{v} \deg(v)$

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the \underline{k} edges crossing (A, B) gets contracted.
- Before contraction i, there are n+1-i nodes \rightarrow and thus $\geq (n+1-i)k/2$ edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$\frac{k}{\frac{(n+1-i)k}{2}} = \frac{2}{n+1-i}.$$

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most $^2/_{n+1-i}$.
- Event \mathcal{E}_i : edge contracted in step i is **not** crossing (A, B)

P(
$$\mathcal{E}_{i}$$
 | \mathcal{E}_{i} | \mathcal{E}_{i-1} | $\mathcal{E}_{$

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

- Proof: $|-\frac{2}{u-i}|$ $\mathbb{P}(\mathcal{E}_{i+1}|\mathcal{E}_1 \cap \cdots \cap \mathcal{E}_i) = \frac{2}{u-i}$
- No edge crossing (A, B) contracted: event $\mathcal{E} = \bigcap_{i=1}^{n-2} \mathcal{E}_i$

$$P(\mathcal{E}) = P(\mathcal{E}_{1}) \cdot P(\mathcal{E}_{2} | \mathcal{E}_{1}) \cdot P(\mathcal{E}_{3} | \mathcal{E}_{1} \wedge \mathcal{E}_{2}) \cdot \dots \cdot P(\mathcal{E}_{n-2} | \mathcal{E}_{1} \wedge \dots \wedge \mathcal{E}_{n-3})$$

$$= \frac{n-2}{n} \cdot (1 - \frac{2}{n-1}) (1 - \frac{2}{n-2}) \cdot \dots \cdot (1 - \frac{2}{3})$$

$$= \frac{n-2}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-3}{n-$$

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is independently repeated $O(n^2 \log n)$ times, one instance returns a minimum cut w.h.p.

Proof:

• Probability to not get a minimum cut in $c \cdot \binom{n}{2} \cdot \ln n$ iterations:

$$\left(1 - \frac{1}{\binom{n}{2}}\right)^{c \cdot \binom{n}{2} \cdot \ln n} < e^{-c \ln n} = \frac{1}{n^c}$$