

Chapter 6 Randomization

Algorithm Theory WS 2012/13

Fabian Kuhn

Edge Contractions

 In the following, we consider multi-graphs that can have multiple edges (but no self-loops)

Contracting edge $\{u, v\}$:

- Replace nodes u, v by new node w
- For all edges $\{u, x\}$ and $\{v, x\}$, add an edge $\{w, x\}$
- Remove self-loops created at node w

Randomized Contraction Algorithm

Algorithm:

while there are > 2 nodes do contract a uniformly random edge

return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum cut with probability at least 2/n(n-1).

We showed this last week.

Theorem: The random contraction algorithm can be implemented in time $O(n^2)$.

- There are n-2 contractions, each can be done in time O(n).
- You will show this in the exercises.

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O(n^2 \log n)$ times, one of the $O(n^2 \log n)$ instances returns a min. cut w.h.p.

Proof:

• Probability to not get a minimum cut in $c \cdot {n \choose 2} \cdot \ln n$ iterations:

$$\left(1 - \frac{1}{\binom{n}{2}}\right)^{\frac{c \cdot \binom{n}{2} \cdot \ln n}{2}} < \underline{e^{-c \ln n}} = \frac{1}{\underline{n^c}}$$

Corollary: The contraction algorithm allows to compute a minimum cut in $O(n^4 \log n)$ time w.h.p.

• Each instance can be implemented in $O(n^2)$ time. (O(n) time per contraction)

Can We Do Better?

• Time $O(n^4 \log n)$ is not very spectacular, a simple max flow based implementation has time $O(n^4)$.

However, we will see that the contraction algorithm is nevertheless very interesting because:

- The algorithm can be improved to beat every known deterministic algorithm.
- 1. It allows to obtain strong statements about the distribution of cuts in graphs.

Better Randomized Algorithm

Recall:

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.
- Throughout the algorithm, the edge connectivity is at least k and therefore each node has degree $\geq k$ \longrightarrow $\#edges \geq \frac{k \cdot \#undes}{2}$
- Before contraction i, there are n+1-i nodes and thus at least (n+1-i)k/2 edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$\frac{\frac{k}{(n+1-i)k}}{\frac{2}{2}} = \frac{2}{n+1-i}.$$

Improving the Contraction Algorithm

• For a specific min cut (A, B), if (A, B) survives the first i contractions,

$$\mathbb{P}(\text{edge crossing } (A, B) \text{ in contraction } \underline{i+1}) \leq \frac{2}{n-i}.$$

- Observation: The probability only gets large for large i
- Idea: The early steps are much safer than the late steps.
 Maybe we can repeat the late steps more often than the early ones.

maybe we can get a better success prob. with less work

Safe Contraction Phase

Lemma: A given min cut (A, B) of an n-node graph G survives the first $n - \left[\frac{n}{\sqrt{2}} + 1 \right]$ contractions, with probability $> \frac{1}{2}$.

Proof:

- Event \mathcal{E}_i : cut (A, B) survives contraction i
- $P(\mathcal{E}_{i+1}|\mathcal{E}_{i} n\mathcal{E}_{i}) \geq 1 \frac{2}{n-i}$ $= \frac{n-i-2}{n-i}$ • Probability that (A, B) survives the first n - t contractions:

$$\frac{1-\frac{2}{n}(1-\frac{2}{n-1})}{\prod_{k=1}^{n}(1-\frac{2}{n-1})} = \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-1} \cdot \frac{t-1}{t+1}$$

$$\frac{1}{n(\xi_1)} \quad \frac{1}{n(\xi_1|\xi_1)} \quad \frac{1}{n(\xi_1|\xi_1,n-n)} \cdot \frac{1}{n-1} \cdot \frac{t-1}{n(n-1)}$$

$$\frac{1}{n(\xi_1)} \quad \frac{1}{n(\xi_1|\xi_1)} \quad \frac{1}{n(\xi_1|\xi_1,n-n)} \cdot \frac{1}{n(n-1)}$$

$$\frac{1}{n(\xi_1)} \quad \frac{1}{n(\xi_1|\xi_1)} \quad \frac{1}{n(\xi_1|\xi_1,n-n)} \cdot \frac{1}{n(\eta_1-1)}$$

$$\frac{1}{n(\eta_1-1)} \cdot \frac{1}{n(\eta_1-1)} \cdot \frac{1}{n(\eta_1-1)} \cdot \frac{1}{n(\eta_1-1)}$$

Better Randomized Algorithm

Let's simplify a bit:

- Pretend that $n/\sqrt{2}$ is an integer (for all n we will need it).
- Assume that a given min cut survives the first $n n/\sqrt{2}$ contractions with probability $\geq 1/2$.

contract(G, t):

• Starting with \underline{n} -node graph G, perform $\underline{n-t}$ edge contractions such that the new graph has t nodes.

mincut(G):

- 1. $X_1 := \min(\operatorname{contract}(G, n/\sqrt{2}));$
- 2. $X_2 := \operatorname{mincut}\left(\operatorname{contract}(G, n/\sqrt{2})\right);$ $\frac{4}{6} \frac{2}{2}$
- 3. **return** min{ X_1, X_2 };

Success Probability

mincut(G):

$$-1.$$
 $X_1 = mincut \left(contract(G, n/\sqrt{2}) \right);$

$$\rightarrow$$
2. $X_2 := \min \left(\operatorname{contract} \left(G, n / \sqrt{2} \right) \right);$

3. **return** min{
$$X_1, X_2$$
};

P(n): probability that the above algorithm returns a min cut when applied to a graph with n nodes.

• Probability that
$$X_1$$
 is a min cut $\geq \frac{1}{2} \cdot P(\frac{1}{2})$

Recursion:

Recursion:
$$\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \frac{P(\sqrt{2})}{\sqrt{2}} \right) = 1 - \left(1 - \frac{P(\sqrt{2})}{\sqrt{2}} + \frac{1}{4} \cdot \frac{P(\sqrt{2})}{\sqrt{2}} \right) = \frac{P(\sqrt{2})}{\sqrt{2}} = \frac{1}{4} \frac{P(\sqrt{2})}{\sqrt{2}} = \frac{P(\sqrt{2})}{\sqrt{2}} = \frac{1}{4} \frac{P(\sqrt{2})}{$$

Success Probability

Theorem: The recursive randomized min cut algorithm returns a minimum cut with probability at least $1/\log_2 n$.

Proof (by induction on n):

$$P(n) \stackrel{>}{=} P\left(\frac{n}{\sqrt{2}}\right) - \frac{1}{4} \cdot P\left(\frac{n}{\sqrt{2}}\right)^{2}, \quad P(2) = 1$$

$$= \frac{1}{\log n - \frac{1}{2}} - \frac{1}{4(\log n - \frac{1}{2})^{2}}$$

$$= \frac{4(\log n - \frac{1}{2}) - 1}{4(\log n - \frac{1}{2})^{2}} = \frac{4\log n - 3}{4(\log n - 4\log n + 1)} = \frac{4\log n - 4 + \frac{1}{\log n} + 1 - \frac{1}{\log n}}{4\log n - 4\log n + 1}$$

$$= \frac{1}{\log n} + \frac{1 - \frac{1}{\log n}}{\log n} > \frac{1}{\log n}$$
Alapsither Theory W6 2012 (12)

Running Time

1.
$$X_1 := \min(\cot(G, n/\sqrt{2}));$$

2.
$$X_2 := \min(\operatorname{contract}(G, n/\sqrt{2}));$$

3. **return** min{ X_1, X_2 };

Recursion:

- T(n): time to apply algorithm to n-node graphs
- Recursive calls: $2T \binom{n}{\sqrt{2}}$

• Number of contractions to get to $n/\sqrt{2}$ nodes: O(n)

$$T(n) = 2T\left(\frac{n}{\sqrt{2}}\right) + O(n^2), \qquad T(2) = O(1)$$

Running Time

Theorem: The running time of the recursive, randomized min cut algorithm is $O(n^2 \log n)$.

Proof:

Can be shown in the usual way, by induction on n

Remark:

- The running time is only by an $O(\log n)$ -factor slower than the basic contraction algorithm.
- The success probability is exponentially better!

Number of Minimum Cuts

- Given a graph G, how many minimum cuts can there be?
- Or alternatively: If G has edge connectivity k, how many ways are there to remove k edges to disconnect G?
- Note that the total number of cuts is large.

Number of Minimum Cuts

Example: Ring with n nodes

- Minimum cut size: 2
- Every two edges induce a min cut
- Number of edge pairs:

 $\binom{n}{2}$

 Are there graphs with more min cuts?

Number of Min Cuts

Theorem: The number of minimum cuts of a graph is at most $\binom{n}{2}$.

Proof:

- Assume there are s min cuts
- For $i \in \{1, ..., s\}$, define event C_i : $\underline{C_i} \coloneqq \{\text{basic contraction algorithm returns min cut } i\}$
- We know that for $i \in \{1, ..., s\}$: $\mathbb{P}(\mathcal{C}_i) = 1/\binom{n}{2}$
- Events $C_1, ..., C_s$ are disjoint:

$$| \geq \mathbb{P}\left(\bigcup_{i=1}^{S} \mathcal{C}_{i}\right) = \sum_{i=1}^{S} \mathbb{P}(\mathcal{C}_{i}) \stackrel{\geq}{=} \frac{S}{\binom{n}{2}} \implies S \stackrel{\leq}{=} \binom{\binom{n}{2}}{2}$$

Counting Larger Cuts

- In the following, assume that min cut has size $\lambda = \lambda(G)$
- How many cuts of size $k \leq \alpha \cdot \lambda$ can a graph have?
- Consider a specific cut (A, B) of size $\leq k$
- As before, during the contraction algorithm:
 - − min cut size $\geq \lambda$
 - number of edges ≥ λ · #nodes/2
 - cut (A, B) remains (and has size k) as long as no edge of it gets contracted
- Prob. that an edge crossing (A, B) is chosen in i^{th} contraction

$$= \frac{k}{\text{\#edges}} \le \frac{2k}{\lambda \cdot \text{\#nodes}} = \frac{2\alpha}{n - i + 1}$$

Counting Larger Cuts

Lemma: The probability that cut (A, B) of size $\alpha \cdot \lambda$ survives the first $\underline{n} - 2\alpha$ edge contractions is at least

$$\frac{(2\alpha)!}{n(n-1)\cdot\ldots\cdot(n-2\alpha+1)} \ge \frac{2^{2\alpha-1}}{n^{2\alpha}}.$$

Proof:

• As before, event \mathcal{E}_i : cut (A, B) survives contraction i

$$\frac{N((A_1B) \text{ surrives } n-2\alpha \text{ contr.}) \ge}{N-2\alpha - N-2\alpha-1 - N-2\alpha-2}$$

$$= \frac{2\alpha \cdot (2\alpha-1) \cdot \dots \cdot (n-2\alpha+1)}{N(n-1) \cdot \dots \cdot (n-2\alpha+1)} = \frac{(2\alpha)!}{(n-1) \cdot \dots \cdot (n-2\alpha+1)} \ge \frac{2^{2\alpha-1}}{N^{2\alpha}}$$

Number of Cuts

Theorem: The number of edge cuts of size at most $\alpha \cdot \lambda(G)$ in an n-node graph G is at most n.

Proof:

- Specific cat
$$(A,B)$$
 of size $\alpha \cdot \lambda$ survives first $n-2\alpha$ country. with prob. $\geq \frac{2^{2\alpha-1}}{n^{2\alpha}}$ \Rightarrow graph with 2α nodes