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Theorem: The number of edge cuts of size at most a - A(G) in an
n-node graph G is at most n°“. 7

Proof: JP‘ <eadn,
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Resilience To Edge Failures
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e Consider a network (a graph) ¢ with n nodes

e Assume that each link (edge) of G fails independently with
probabilityﬁ

 How large can p be such that the remaining graph is still
connected with probability 1 — &€7?
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e LetXy,...,X, beindependent 0-1 random variables and define
bi = P(X; = 1). ’;:'DE[X;:]—“—?,—
e Consider the random variable_)_g = Z?=1Xi #a{ onss

 We have(p)= E[X] = X7 E[X;] = X7, p;

Chernoff Bound (Lower Tail): / /
Ve >0: P(X < (1—8)p) < e 512
Chernoff Bound (Upper Tail): /
ed
ve>0: PX>(14+6 <
x> 1+ 0w < (G

holds ford < 1
S—
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/3
Assume that a fair coin is flipped n times. What is the probability
to have

1. less thann/3 heads? .
com i e X, Xy =l Gt Jeeads o= TKi=0=Yo s Y= ék;

Wasyusis 2

_AA“‘ 2?1 V\'/L’=l /z, -(/g)z% ““/3‘ )(”E“(M/’/Z_)

UX <) =X < \-%)"%) < e = e
2. more than 0.51n tails? _oe®

P(X > 0510 = W(X'? L+ 002)“@< @. <
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Applied to Edge Cut @E@
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e Consider an edge cut (4,B) ofsize k = a - A(G)

16:Int
A(G)

e Assume that each edge fails with probabilityp < 1 —

1;-1n t
A(G)

* Probability that at least 1 edge crossing (4, B) survives
taud. Vos. )(l,.../)(k )(;=| Tq aJyt 1 Surnives T(X\':n:% X= 2}(\

 Hence each edge survives with probability g =

| ‘T#‘vf suw%v'w‘ué edses
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Maintaining Connectivity
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* Agraph G = (V,E) is connected iff every edge cut (4, B) has
size at least 1.

acro%s (74,'57 @ ; o Ceu&? @

— G um(' ounu

* We need to make sure that every cut keeps at least 1 edge
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Maintaining All Cuts of a Certain Size

e The number of cuts of size k = aA(G) is at most n*“. .

=

Claim: If each edge survives with probability g = 16;?é§n), with
=

probability at least 1 — f72%, at least one edge of each cut of

size k = aA(G) survives. o k<2

speafc cud (A D) od i L = Tl oAye suves) < € =B w
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Maintaining All Cuts of a Certain Size

UNI

e The number of cuts of size k = aA(G) is at most n*%.

16-In(fn) .
G with

probability at least 1 — f72%, at least one edge of each cut of
size k = aA(G) survives.

Claim: If each edge survives with probability g =
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————

Theorem: If each edge of a graph G independently fails with

probability at most 1 — S(C;t) )lnn

1
connected with probablllty atleast1 — —

M ‘/4'14 ;s Sowne &? site L= e-k(€) tqé does Mo{' Sur Ve

the remaining graph is
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Quicksort: High Probability Bound
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e To conclude the randomization chapter, let’s look at
randomized quicksort again

e We have seen that the number of comparisons of randomized
quicksort is O(nlogn) in expectation.  Zuk

e Can we also show that the number of comparisons is
O (nlogn) with high probability? =

e Recall:

On each recursion level, each pivot is compared once with

each other element that is still in the same “part”
% < all elesont lm'*]'e'\ Yhe r?-'v"(

7 -
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Counting Number of Comparisons
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e We looked at 2 ways to count the number of comparisons
— recursive characterization of the expected number
— number of different pairs of values that are compared +—

Let’s consider yet another way:

e Each comparison is between a pivot and a non-pivot

e How many times is a specific array eleﬁment X compared as a
. ¥
non-pivot? Y

e —
DN 7N\
* _.._—."%

Value x is compared as a non-pivot to a pivot once in every
recursion level until one of the following two conditions apply:

1. xischosen as a pivot
2. xisalone
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Successful Recursion Level 32
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e Consider a specific recursion level £ v
| S W

e Assume that at the beginning of recursion level £, element x is
in a sub-array of length K, that still needs to be sorted.

e |f x has been chosen as a pivot before level £, we set K, := 1

Definition: We say that recursion level £ is successful for element
x iff the following is true: .

ey

2
Kepa =1 or Kppq s5-Ky .

—
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Successful Recursion Level
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Lemma: For every recursion level £ and every array element x, it
holds that level £ is successful for x with probability at least 1/3,
independently of what happens in other recursion levels.

Proof ‘
T % | if—(/i [ =t = Kool
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Number of Successful Recursion Levels

Lemma: If among the first £ recursion levels, at least logs,, (n)
are successful for element x, we have K,,= 1.

Proof: ,{f cowka.obc&m/ Q5sUneR l(eﬂﬂ

. 2
K,:: n K‘m S 21 _I_Q' loved 1 1 Succeg&( E‘m < g :
] i< —
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n
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Number of Comparisons for x

Lemma: For every array element x, with high probability, as a
non-pivot, x is compared to a pivot at most O (logn) times.

Proof: 14:"{1? Successful (el
cousides @ Kavels " / L
( level ¢ T sucaesys L ,
Xi:fo rco‘(mw'w‘s’( 5('“ f‘%k'

Y, <X, W0i=D=ra, L are idependat  T=Z T <X
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Number of Comparisons for x

Lemma: For every array element x, with high probability, as a
non-pivot, x is compared to a pivot at most O (logn) times.

Proof:
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Number of Comparisons
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Theorem: With high probability, the total number of

comparisons is at most O(nlogn).

—

Proof:
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