Chapter 8
Online Algorithms

Algorithm Theory
WS 2012/13

Fabian Kuhn
Online Computations

- Sometimes, an algorithm has to start processing the input before the complete input is known

- For example, when storing data in a data structure, the sequence of operations on the data structure is not known

Online Algorithm: An algorithm that has to produce the output step-by-step when new parts of the input become available.

Offline Algorithm: An algorithm that has access to the whole input before computing the output.

- Some problems are inherently online
 - Especially when real-time requests have to be processed over a significant period of time
Competitive Ratio

• Let’s again consider optimization problems
 – For simplicity, assume, we have a minimization problem

Optimal offline solution \(\text{OPT}(I) \):
• Best objective value that an offline algorithm can achieve for a given input sequence \(I \)

Online solution \(\text{ALG}(I) \):
• Objective value achieved by an online algorithm \(\text{ALG} \) on \(I \)

Competitive Ratio: An algorithm has competitive ratio \(c \geq 1 \) if
\[
\text{ALG}(I) \leq c \cdot \text{OPT}(I) + \alpha.
\]
• If \(\alpha \leq 0 \), we say that \(\text{ALG} \) is strictly \(c \)-competitive.
Paging Algorithm

Assume a simple memory hierarchy:

- Page in fast memory (hit): take page from there
- Page not fast memory (miss): leads to a page fault
- Page fulla: the page is loaded into the fast memory and some page has to be evicted from the fast memory
- Paging algorithm: decides which page to evict
- Classical online problem: we don’t know the future accesses
Paging Strategies

Least Recently Used (LRU):
• Replace the page that hasn’t been used for the longest time

First In First Out (FIFO):
• Replace the page that has been in the fast memory longest

Last In First Out (LIFO):
• Replace the page most recently moved to fast memory

Least Frequently Used (LFU):
• Replace the page that has been used the least

Longest Forward Distance (LFD):
• Replace the page whose next request is latest (in the future)
• LFD is not an online strategy!
LFD is Optimal

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

- For contradiction, assume that LFD is not optimal
- Then there exists a finite input sequence σ on which LFD is not optimal (assume that the length of σ is $|\sigma| = n$)
- Let OPT be an optimal solution for σ such that
 - OPT processes requests $1, \ldots, i$ in exactly the same way as LFD
 - OPT processes request $i + 1$ differently than LFD
 - Any other optimal strategy processes one of the first $i + 1$ requests differently than LDF
- Hence, OPT is the optimal solution that behaves in the same way as LFD for as long as possible \rightarrow we have $i < n$
- Goal: Construct OPT' that is identical with LFD for req. $1, \ldots, i + 1$
LFD is Optimal

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

Case 1: Request $i + 1$ does **not** lead to a page fault

- LFD does not change the content of the fast memory
- OPT behaves differently than LFD
 - As up to request $i + 1$, both algorithms behave in the same way, they also have the same fast memory content
 - OPT therefore does not require the new page for request $i + 1$
 - Hence, OPT can also load that page later (without extra cost) → OPT’
LFD is Optimal

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

Case 2: Request $i + 1$ does lead to a page fault

- LFD and OPT move the same page into the fast memory, but they evict different pages
 - If OPT loads more than one page, all pages that are not required for request $i + 1$ can also be loaded later
- Say, LFD evicts page p and OPT evicts page p'
- By the definition of LFD, p' is required again before page p
LFD is Optimal

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

Case 2: Request \(i + 1 \) does lead to a page fault

\[i + 1 \]

LFD evicts \(p \)

OPT evicts \(p' \)

\[\ell' < \ell: \text{OPT evicts } p \]

\[j': \text{next req. for } p' \]

\[j: \text{next req. for } p \]

\[\ell \leq j': \text{OPT loads } p' \text{ (for first time after } i + 1) \]

a) OPT keeps \(p \) in fast memory until request \(\ell \)

 Evict \(p \) at request \(i + 1 \), keep \(p' \) instead and load \(p \) (instead of \(p' \)) back into the fast memory at request \(\ell \)

b) OPT evicts \(p \) at request \(\ell' < \ell \)

 Evict \(p \) at request \(i + 1 \) and \(p' \) at request \(\ell' \) (switch evictions of \(p \) and \(p' \))
Phase Partition

We partition a given request sequence σ into phases as follows:

- **Phase 0**: empty sequence
- **Phase i**: maximal sequence that immediately follows phase $i - 1$ and contains at most k distinct page requests

Example sequence ($k = 4$):

\[
2, 5, 12, 5, 4, 2, 10, 8, 3, 6, 2, 2, 6, 6, 8, 3, 2, 6, 9, 10, 6, 3, 10, 2, 1, 3, 5
\]

Phase i Interval: interval starting with the second request of phase i and ending with the first request of phase $i + 1$

- If the last phase is phase p, phase-interval i is defined for $i = 1, \ldots, p - 1$
Optimal Algorithm

Lemma: Algorithm LFD has at least one page fault in each phase interval (for \(i = 1, \ldots, p - 1 \), where \(p \) is the number of phases).

Proof:

- \(q \) is in fast memory after first request of phase \(i \)
- Number of distinct requests in phase \(i \): \(k \)
- By maximality of phase \(i \): \(q' \) does not occur in phase \(i \)
- Number of distinct requests \(\neq q \) in phase interval \(i: k \)

\(\rightarrow \) at least one page fault
LRU and FIFO Algorithms

Lemma: Algorithm LFD has at least one page fault in each phase interval i (for $i = 1, \ldots, p - 1$, where p is the number of phases).

Corollary: The number of page faults of an optimal offline algorithm is at least $p - 1$, where p is the number of phases.

Theorem: The LRU and the FIFO algorithms both have a competitive ratio of at most k.

Proof:

- In phase i only pages from phases before phase i are evicted from the fast memory $\rightarrow \leq k$ page faults per phase
 - As long as not all k pages from phase i have been requested, the least recently used and the first inserted are from phases before i
 - When all k pages have been requested, the k pages of phase i are in fast memory and there are no more page faults in phase i
Lower Bound

Theorem: Even if the slow memory contains only \(k + 1 \) pages, any deterministic algorithm has competitive ratio at least \(k \).

Proof:

- Consider some given deterministic algorithm ALG
- Because ALG is deterministic, the content of the fast memory after the first \(i \) requests is determined by the first \(i \) requests.
- Construct a request sequence inductively as follows:
 - Assume some initial slow memory content
 - The \((i + 1)^{st}\) request is for the page which is not in fast memory after the first \(i \) requests (throughout we only use \(k + 1 \) different pages)
- There is a page fault for every request
- OPT has a page fault at most every \(k \) requests
 - There is always a page that is not required for the next \(k - 1 \) requests
Randomized Algorithms

• We have seen that deterministic paging algorithms cannot be better than k-competitive

• Does it help to use randomization?

Competitive Ratio: A randomized online algorithm has competitive ratio $c \geq 1$ if for all inputs I,

$$\mathbb{E}\left[\text{ALG}(I)\right] \leq c \cdot \text{OPT}(I) + \alpha.$$

• If $\alpha \leq 0$, we say that ALG is strictly c-competitive.
Adversaries

• For randomized algorithm, we need to distinguish between different kinds of adversaries (providing the input)

Oblivious Adversary:
• Has to determine the complete input sequence before the algorithm starts
 – The adversary cannot adapt to random decisions of the algorithm

Adaptive Adversary:
• The adversary knows how the algorithm reacted to earlier inputs
• online adaptive: adversary has no access to the randomness used to react to the current input
• offline adaptive: adversary knows the random bits used by the algorithm to serve the current input
Lower Bound

The adversaries can be ordered according to their strength:

\[\text{oblivious} < \text{online adaptive} < \text{offline adaptive} \]

- For algorithm that works against an oblivious adversary, also works with and online/offline adaptive adversary.
- A lower bound that holds against an offline adaptive adversary also holds for the other 2.
- ...

Theorem: No randomized paging algorithm can be better than \(k\)-competitive against an online (or offline) adaptive adversary.

Proof: The same proof as for deterministic algorithms works.

- Are there better algorithms with an oblivious adversary?