)

Chapter 8
Online Algorithms

Algorithm Theory
WS 2012/13

Fabian Kuhn

UNI

FREIBURG

Online Computations

UNI
I

FREIBURG

e Sometimes, an algorithm has to start processing the input
before the complete input is known

 For example, when storing data in a data structure, the
sequence of operations on the data structure is not known

Online Algorithm: An algorithm that has to produce the output
step-by-step when new parts of the input become available.

Offline Algorithm: An algorithm that has access to the whole
input before computing the output.

e Some problems are inherently online

— Especially when real-time requests have to be processed over a
significant period of time

Algorithm Theory, WS 2012/13 Fabian Kuhn 2

UNI

Competitive Ratio

FREIBURG

e Let’s again consider optimization problems

— For simplicity, assume, we have a minimization problem

Optimal offline solution OPT(I):

e Best objective value that an offline algorithm can achieve for a
given input sequence [

Online solution ALG(I):
 Objective value achieved by an online algorithm ALG on [

Competitive Ratio: An algorithm has competitive ratioc = 1 if

S ALG() < c-OPT() +a ‘eocc

e Ifa <0, we say that ALG is strictly c-competitive.

Algorithm Theory, WS 2012/13 Fabian Kuhn 3

Paging Algorithm

UNI
I

FREIBURG

Assume a simple memory hierarchy:

X fast memory of size k

LY

%, X o slow memory

If a memory page has to be accessed:
* Page in fast memory (hit): take page from there
«|

e Page 2ot fast memory (miss): leads to a page fault

e Page fula: the page is loaded into the fast memory and some
page has to be evicted from the fast memory

e Paging algorithm: decides which page to evict
e C(Classical online problem: we don’t know the future accesses

Algorithm Theory, WS 2012/13 Fabian Kuhn 4

Paging Strategies

Least Recently Used (LRU):
 Replace the page that hasn’t been used for the longest time

First In First Out (FIFO):
 Replace the page that has been in the fast memory longest

Last In First Out (LIFO):
e Replace the page most recently moved to fast memory

Least Frequently Used (LFU):
 Replace the page that has been used the least

Longest Forward Distance (LFD):
 Replace the page whose next request is latest (in the future)
e LFD is not an online strategy!

Algorithm Theory, WS 2012/13 Fabian Kuhn

UNI
I

FREIBURG

LFD is Optimal

UNI
I

FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:
e For contradiction, assume that LFD is not optimal

* Then there exists a finite input sequence g on which LFD is not
optimal (assume that the length of o is |o| = n)

e Let OPT be an optimal solution for o such that

STE——
— OPT processes requests 1, ..., i in exactly the same way as LFD

— OPT processes request i + 1 differently than LFD

— Any other optimal strategy processes one of the first i + 1 requests
differently than LDF

 Hence, OPT is the optimal solution that behaves in the same way
as LFD for as long as possible 2 we havei < n

e Goal: Construct OPT' that is identical with LFD forreq. 1, ...,i + 1

a‘ ____’_’_—————_'

Algorithm Theory, WS 2012/13 Fabian Kuhn 6

LFD is Optimal

UNI
FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:
Case 1: Request i + 1 does not lead to a page fault

 LFD does not change the content of the fast memory

 OPT behaves differently than LFD
- OPT replaces some page in the fast memory

— As up to request i + 1, both algorithms behave in the same way, they also
have the same fast memory content

— OPT therefore does not require the new page for requesti + 1

— Hence, OPT can also load that page later (without extra cost) = OPT’

Algorithm Theory, WS 2012/13 Fabian Kuhn 7

LFD is Optimal

UNI
I

FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:
Case 2: Request i + 1 does lead to a page fault

e LFD and OPT move the same page into the fast memory, but they
evict different pages

— If OPT loads more than one page, all pages that are not required for
request i + 1 can also be loaded later

e Say, LFD evicts page p and OPT evicts page g’

—aane-

e By the definition of LFD, p’ is required again before page p

Algorithm Theory, WS 2012/13 Fabian Kuhn 8

LFD is Optimal

UNI
FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:
Case 2: Request i + 1 does lead to a page fault 323
P thains
1< £:0PTevictsp j:nextreq.forp’ j:nextreq.forp

o s

i+1
' . . : >
< j': OPT loads p’ (for first time after i + 1)

LFD evicts p
OPT evicts p/

a) OPT keeps p in fast memory until request £

— Evictp atrequest i + 1, keep p' instead and load p (instead of p’) back
into the fast memory at request ¢

b) OPT evicts p at request ¢’ < ¢
— Evictp atrequesti + 1 and p’ at request £’ (switch evictions of p and p’)

Algorithm Theory, WS 2012/13 Fabian Kuhn 9

Phase Partition

UNI
I

FREIBURG

We partition a given request sequence_o into phases as follows:
 Phase 0: empty sequence

e Phaseli: mgximal sequence that immediately follows phase
[— 1 and contains at most k distinct page requests

Example sequence (k = 4):
| {
Pw%&z .6,68.3.2,69.1063,102135

W: interval starting with the second request of phase i
and ending with the first request of phase i + 1
* |f the last phase is phase p, phase-interval i is defined fori =1, ...,p—1

Algorithm Theory, WS 2012/13 Fabian Kuhn 10

UNI

Optimal Algorithm

FREIBURG

Lemma: Algorithm LFD has at least one page fault in each phase
tinterval (fori = 1,...,p — 1, where p is the number of phases).

Proof: l l @ l

/\
N
/
9

requests: | ¢

SN— . —
Y Y

phase i phasei+ 1

q is in fast memory after first request of phase i

Number of distinct requests in phase i: k

4

By maximality of phase i: g’ does not occur in phase i

Number of distinct requests # g in phase interval i: k

—> at least one page fault

Algorithm Theory, WS 2012/13 Fabian Kuhn 11

UNI

LRU and FIFQ Algorithms

FREIBURG

Lemma: Algorithm LFD has at least one page fault in each phase
interval i (fori = 1, ...,p — 1, where p is the number of phases).

Corollary: The number of page faults of an optimal offline

algorithm is at least p — 1, where p is the number of phases
—————— F

Theorem: The LRU and the FIFO algorithms both have a

competitive ratio of at most k. | .

ﬁ.
~— | \

Proof:

 |In phase i only pages from phases before phase i are evicted
from the fast memory 2 < k page faults per phase

— As long as not all k pages from phase i have been requested, the least
recently used and the first inserted are from phases before i

— When all k pages have been requested, the k pages of phase i are in fast
memory and there are no more page faults in phase i

Algorithm Theory, WS 2012/13 Fabian Kuhn 12

Lower Bound

UNI
FREIBURG

Theorem: Even if the slow memory contains only k 4@ pages,
any deterministic algorithm has competitive ratio at least k.

Proof:
e Consider some given deterministic algorithm ALG

e Because ALG is deterministic, the content of the fast memory
after the first i requests is determined by the first i requests.

e Construct a request sequence inductively as follows:
— Assume some initial slow memory content

— The (i + 1)5t request is for the page which is not in fast memory after
the first i requests (throughout we only use k + 1 different pages)

e There is a page fault for every request

e OPT has a page fault at most every k requests
— There is always a page that is not required for the next k — 1 requests

02,34 3,41

Algorithm Theory, WS 2012/13 Fabian Kuhn 13

UNI

Randomized Algorithms

 We have seen that deterministic paging algorithms cannot be
better than k-competitive

e Does it help to use randomization?

Competitive Ratio: A randomized online algorithm has
competitive ratio ¢ = 1 if for all inputs I,

ALG(I)] < c-OPT(D) +a.

e Ifa <0, wesaythat ALG is strictly c-competitive.

Algorithm Theory, WS 2012/13 Fabian Kuhn 14

FREIBURG

UNI

‘Adversa ries

FREIBURG

 Forrandomized algorithm, we need to distinguish between
different kinds of adversaries (providing the input)

Oblivious Adversary:

e Has to determine the complete input sequence before the
algorithm starts

— The adversary cannot adapt to random decisions of the algorithm

A

e The adversary knows how the algorithm reacted to earlier inputs

daptive Adversary:

* online adaptive: adversary has no access to the randomness
used to react to the current input

e offline adaptive: adversary knows the random bits used by the
L_ algorithm to serve the current input

Algorithm Theory, WS 2012/13 Fabian Kuhn 15

Lower Bound

UNI
FREIBURG

The adversaries can be ordered according to their strength

oblivious < online adaptive < offline adaptive
Wea\ - 2 n.o(argl‘.m
* For algorithm that works against an oblivious adversary, also

works with and onu@ﬁ‘ﬁfﬂi’ne adaptive adversary

() ‘V.\\-t-s

* Alower bound that holds against anWadaﬁive
adversary also holds for the other 2 o 5livions

Theorem: No randomized paging algorithm can be better than
k-competitive against an online (or offline) adaptive adversary.

Proof: The same proof as for deterministic algorithms works.

e Are there better algorithms with an oblivious adversary?

Algorithm Theory, WS 2012/13 Fabian Kuhn 16

