

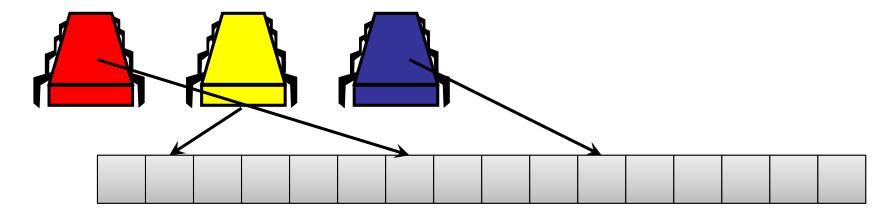
Chapter 8 Parallel Algorithms Parallel Prefix Sums

Algorithm Theory WS 2012/13

Fabian Kuhn

PRAM

- Parallel version of RAM model
- p processors, shared random access memory



- Basic operations / access to shared memory cost 1
- Processor operations are synchronized
- Focus on parallelizing computation rather than cost of communication, locality, faults, asynchrony, ...

Brent's Theorem

Brent's Theorem: On p processors, a parallel computation can be

performed in time

 $T_p \leq \frac{T_1 - T_{\infty}}{p} + T_{\infty}$

Proof:

- Greedy scheduling achieves this...
- #operations scheduled with ∞ processors in round $i: x_i$

Prefix Sums

• The following works for any associative binary operator $\underline{\oplus}$:

associativity:
$$(a \oplus b) \oplus c = a \oplus (b \oplus c)$$

All-Prefix-Sums: Given a sequence of n values a_1, \dots, a_n , the all-prefix-sums operation w.r.t. \oplus returns the sequence of prefix sums:

$$s_1, s_2, \dots, s_n = \underline{a_1}, \underline{a_1 \oplus a_2}, \underline{a_1 \oplus a_2 \oplus a_3}, \dots, \underline{a_1 \oplus \cdots \oplus a_n}$$

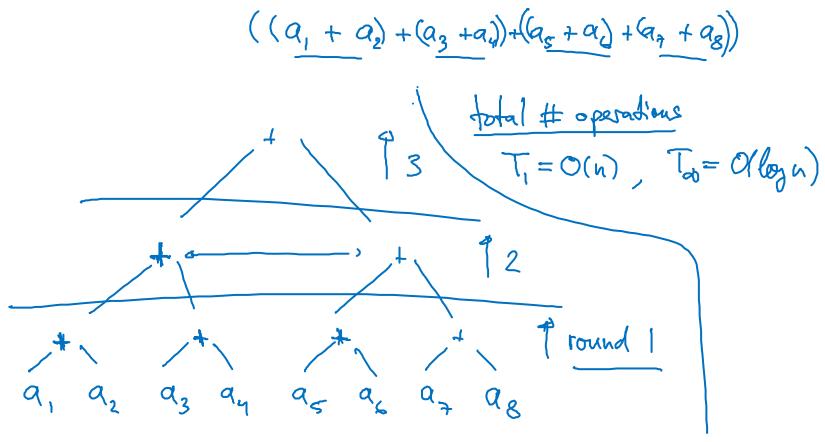
 Can be computed efficiently in parallel and turns out to be an important building block for designing parallel algorithms

Example: Operator: +, input: $a_1, ..., a_8 = 3, 1, 7, 0, 4, 1, 6, 3$

$$s_1, \dots, s_8 = 3, 4, 11, 11, 15, 16, 22, 25$$

Computing the Sum

- Let's first look at $s_n = a_1 \oplus a_2 \oplus \cdots \oplus a_n$
- Parallelize using a binary tree:



Computing the Sum

Lemma: The sum $s_n = a_1 \oplus a_2 \oplus \cdots \oplus a_n$ can be computed in time $O(\log n)$ on an EREW PRAM. The total number of operations (total work) is O(n).

Proof:

EREW: excl. read, excl. write

Corollary: The sum s_n can be computed in time $O(\log n)$ using $O(n/\log n)$ processors on an EREW PRAM.

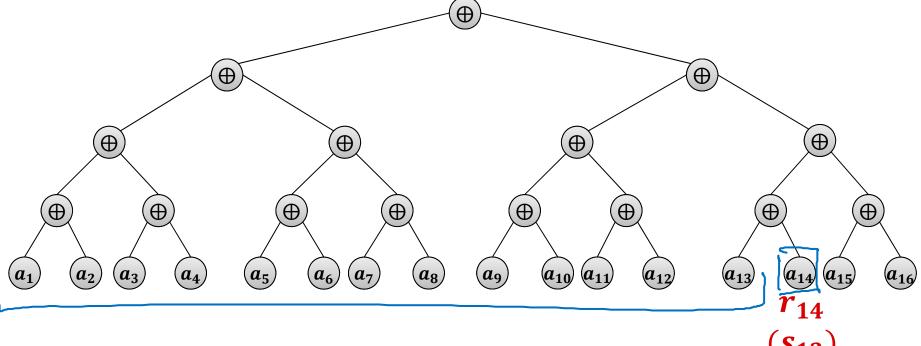
Proof:

• Follows from Brent's theorem $(T_1 = O(n), T_{\infty} = O(\log n))$

$$T_{p} \leq \frac{T_{1}}{p} + T_{\infty} = \frac{\alpha n}{p} + o(\log n)$$

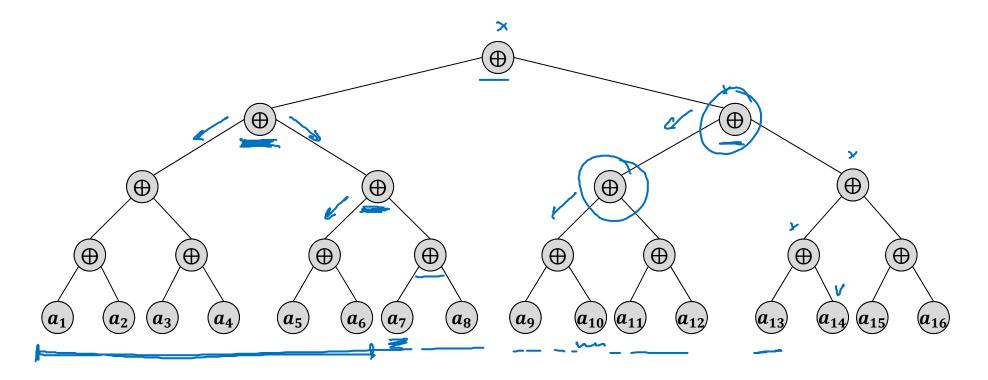
Getting The Prefix Sums

- Instead of computing the sequence s_1, s_2, \dots, s_n let's compute $r_1, \dots, r_n = 0, s_1, s_2, \dots, s_{n-1}$ (0: neutral element w.r.t. \bigoplus) $r_1, \dots, r_n = 0, a_1, a_1 \oplus a_2, \dots, a_1 \oplus \dots \oplus a_{n-1}$
- Together with s_n , this gives all prefix sums $s_n = r_1 + a_1$
- Prefix sum $r_i = s_{i-1} = a_1 \oplus \cdots \oplus a_{i-1}$:



Getting The Prefix Sums

Claim: The prefix sum $r_i = a_1 \oplus \cdots \oplus a_{i-1}$ is the sum of all the leaves in the left sub-tree of ancestor u of the leaf v containing a_i such that v is in the right sub-tree of u.



Computing The Prefix Sums

For each node v of the binary tree, define r(v) as follows:

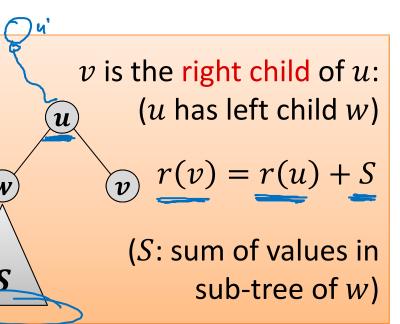
• r(v) is the sum of the values a_i at the leaves in all the left subtrees of ancestors u of v such that v is in the right subtree of u.

For a leaf node v holding value a_i : $r(v) = r_i = s_{i-1}$

For the root node: r(root) = 0

For all other nodes v:

v is the left child of u: r(v) = r(u)



Computing The Prefix Sums

• leaf node v holding value $\underline{a_i}$: $\underline{r(v)} = \underline{r_i} = \underline{s_{i-1}}$

• root node: r(root) = 0

• Node v is the left child of u: $r(v) = \underline{r}(u)$

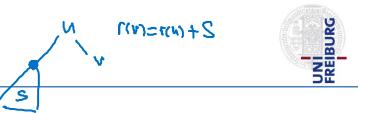
• Node v is the right child of u: r(v) = r(u) + S

- Where: S = sum of values in left sub-tree of u

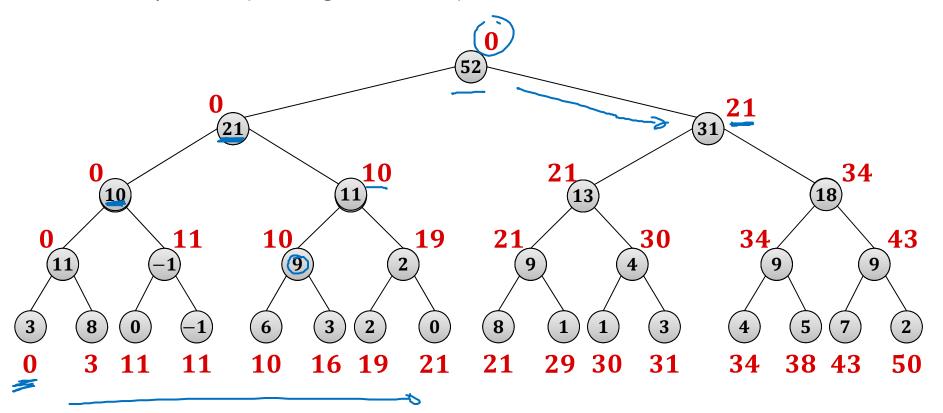
Algorithm to compute values r(v):

- 1. Compute sum of values in each sub-tree (bottom-up)
 - Can be done in parallel time $O(\log n)$ with O(n) total work
- 2. Compute values r(v) top-down from root to leaves:
 - To compute the value r(v), only r(u) of the parent u and the sum of the left sibling (if v is a right child) are needed
 - Can be done in parallel time $O(\log n)$ with O(n) total work

Example



- 1. Compute sums of all sub-trees
 - Bottom-up (level-wise in parallel, starting at the leaves)
- 2. Compute values r(v)
 - Top-down (starting at the root)



Computing Prefix Sums

Theorem: Given a sequence $a_1, ..., a_n$ of n values, all prefix sums $s_i = a_1 \oplus \cdots \oplus a_i$ (for $1 \le i \le n$) can be computed in time $O(\log n)$ using $O(n/\log n)$ processors on an EREW PRAM.

Proof:

- Computing the sums of all sub-trees can be done in parallel in time $O(\log n)$ using O(n) total operations.
- The same is true for the top-down step to compute the r(v)
- The theorem then follows from Brent's theorem:

$$T_1 = O(n), \qquad T_\infty = O(\log n) \implies T_p < T_\infty + \frac{T_1}{p}$$

Remark: This can be adapted to other parallel models and to different ways of storing the value (e.g., array or list)

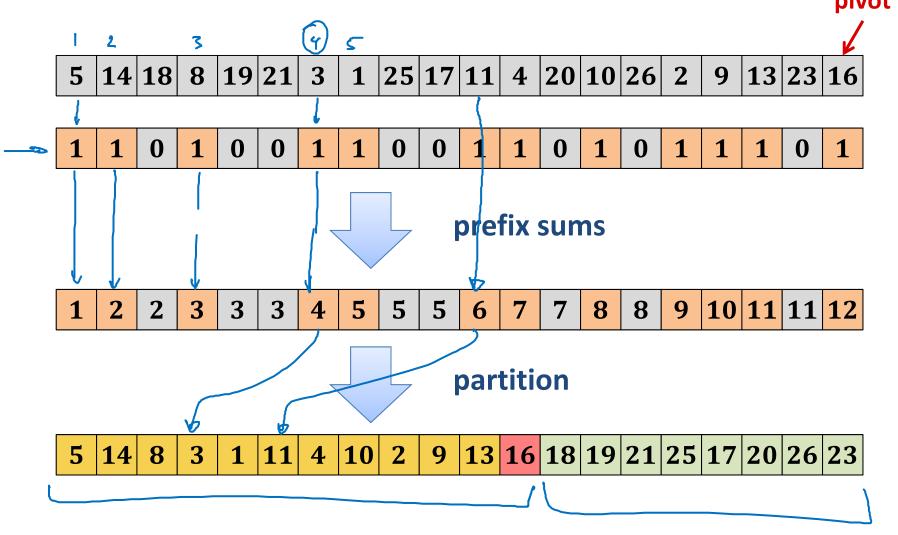
Parallel Quicksort

Key challenge: parallelize partition
 5 14 18 8 19 21 3 1 25 17 11 4 20 10 26 2 9 13 23 16
 partition
 5 14 8 3 1 11 4 10 2 9 13 16 18 19 21 25 17 20 26 23

- How can we do this in parallel?
- For now, let's just care about the values ≤ pivot
- What are their new positions

Using Prefix Sums

Goal: Determine positions of values ≤ pivot after partition pivot



Partition Using Prefix Sums

- The positions of the entries > pivot can be determined in the same way
- Prefix sums: $T_1 = O(n)$, $T_{\infty} = O(\log n)$
- Remaining computations: $T_1 = O(n)$, $T_{\infty} = O(1)$
- Overall: $T_1 = O(n)$, $T_{\infty} = O(\log n)$

Lemma: The partitioning of quicksort can be carried out in parallel in time $O(\log n)$ using $O\left(\frac{n}{\log n}\right)$ processors.

Proof:

• By Brent's theorem: $T_p \le \frac{T_1}{p} + T_{\infty}$

Applying to Quicksort

Theorem: On an EREW PRAM, using p processors, randomized quicksort can be executed in time T_p (in expectation and with high probability), where

$$T_p = O\left(\frac{n\log n}{p} + \log^2 n\right).$$

Proof:

I recursion level:
$$T_i = O(u)$$
, $T_\infty = O(\log u)$

$$T_i = O(\log u)$$

$$T_0 = O(\log^2 u)$$

$$T_\infty = O(\log^2 u)$$

Remark:

• We get optimal (linear) speed-up w.r.t. to the sequential algorithm for all $p = O(n/\log n)$.

Other Applications of Prefix Sums

- Prefix sums are a very powerful primitive to design parallel algorithms.
 - Particularly also by using other operators than ±

Example Applications:

- Lexical comparison of strings
- Add multi-precision numbers
- Evaluate polynomials
- Solve recurrences
- Radix sort / quick sort
- Search for regular expressions
- Implement some tree operations
- ...