)

UNI
I

FREIBURG

Chapter 8

Parallel Algorithms
Parallel Prefix Sums

Algorithm Theory
WS 2012/13

Fabian Kuhn

PRAM

UNI
I

FREIBURG

 Parallel version of RAM model
e p processors, shared random access memory

-

Basic operations / access to shared memory cost 1

e Processor operations are synchronized

e Focus on parallelizing computation rather than cost of
communication, locality, faults, asynchrony, ...

Algorithm Theory, WS 2012/13 Fabian Kuhn 2

UNI
I

FREIBURG

Brent’s Theorem

Brent’s Theorem: On p processors, a parallel computation can be

performed in time (\
T T,
1, <N el +
N

Proof:
 Greedy scheduling achieves this...
e Hoperations scheduled with oo processors in round i: x;

Algorithm Theory, WS 2012/13 Fabian Kuhn 3

Prefix Sums

UNI
I

FREIBURG

* The following works for any associative binary operator @:

associativity: (c@)@c = a®(b®c)

All-Prefix-Sums: Given a sequence of n values aq, ..., a,, the all-
. . -:-ﬁ .
prefix-sums operation w.r.t. @ returns the sequence of prefix sums:

S1,S2, e, Sy = al,gleBaz, aba,Das, ...,a;D - Da,

e Can be computed efficiently in parallel and turns out to be an
important building block for designing parallel algorithms

1
Example: Operator: +, input: a4, ..., a3 = 3,1,7,0,4,1,6, 3

S1y ., Sg = 2,00 NS, 6, 22, 7S

—

—

Algorithm Theory, WS 2012/13 Fabian Kuhn 4

UNI

Computing the Sum

FREIBURG

e Let’sfirstlookats, = a;Da,D - Da,

e Parallelize using a binary tree:

((q.'_Lab +@3ﬁ“{«»*@sﬂ +@, + q8>>

+ &

i

— \

¥ +
7N 7\
A A A A

Algorithm Theory, WS 2012/13 Fabian Kuhn 5

Computing the Sum

UNI
I

FREIBURG

Lemma: The sum s,, = a,@Da, D --- Da,, can be computed in
time O(logn) on an EREW PRAM. The total number of
operations (total work) is O (n).

Proof:
ElEw: exd. rfao(), exck. wﬁJ‘ﬁ

Corollary: The sum s,, can be computed in time O(logn) using
O(n/logn) processors on an EREW PRAM.

Proof:

e Follows from Brent’s theorem (T; = O0(n), T, = O(logn))

— "q . _o(ﬁ
\fg?—\- oy = ¢ +O(a“&l‘\

Algorithm Theory, WS 2012/13 Fabian Kuhn 6

Getting The Prefix Sums

UNI
I

FREIBURG

* |nstead of computing the sequence s4, S5, ..., S, let’s compute
T vy Ty = 0,581,852, ., Sp—q (0: neutral element w.r.t. @)
—_— -— S Y - —

— =
1,0 =0,a1,a,@Ba,, ...,a:B - Bay_4

—_—

* Together with s,,, this gives all prefix sums 3;= G +a;

 Prefixsumrj)=5s;,_1 =a;D--Da;_1:

©
© ©

©) ©. ©)

©

@ (@ @ (@ @ (& @ (&

D6 @ 6 W0 @ o W & o,

@)@ e

r14

Algorithm Theory, WS 2012/13 Fabian Kuhn (Sl?’) 7
*

UNI

Getting The Prefix Sums

FREIBURG

Claim: The prefix sum@= a1 - Da;_q is the sum of all the
leaves in the left sub-tree of ancestor u of the leaf v containing q;
such that v is in the right sub-tree of u.

OF

Z A L@
< 2 A& e
5 @® @ ® ® @
© OO0 ® 00 0 O 00 ©® 6 wWe o
- = = —

——— = - — e—

Algorithm Theory, WS 2012/13 Fabian Kuhn 8

Computing The Prefix Sums

UNI
FREIBURG

For each node v of the binary tree, define r(v) as follows:

* 7(v) is the sum of the values a; at the leaves in all the left sub-
trees of ancestors u of v such that v is in the right sub-tree of u.

Z/G\"'\

For a leaf node v holding value a;: r(v) = r; = s;4 Cg" vy

- —

For the root node: r(root) = 0
T =

For all other nodes v: v is the right child of u:

(u has left child w)
v is the left child of u:
W v is the left child of u @/@\@r(v)—r(u)+5
r(v) =r(u) = T

(S: sum of values in
sub-tree of w)

Algorithm Theory, WS 2012/13 Fabian Kuhn 9

Computing The Prefix Sums

UNI
FREIBURG

* leaf node v holding value a;: r(v) =1; = 5;_4

v
e root node: r(root) = 0 a/\
* Node v is the left child of u: r(v) = r(u) é
 Node v is the right child of u: r(v) = r(u) +

— Where: S = sum of values in left sub-tree of u |
¢ FOEE
A\ Wa A\

Algorithm to compute values r(v):

1. Compute sum of values in each sub-tree (bottom-up)
— Can be done in parallel time O (logn) with O (n) total work

2. Compute values r(v) top-down from root to leaves:

— To compute the value r(v), only r(u) of the parent u and the sum of the
left sibling (if v is a right child) are needed

— Can be done in parallel time O (logn) with O(n) total work

Algorithm Theory, WS 2012/13 Fabian Kuhn 10

W Nz 4+ S

Example \,

UNI
FREIBURG

75

—

1. Compute sums of all sub-trees

— Bottom-up (level-wise in parallel, starting at the leaves)

2. Compute values r(v)

— Top-down (starting at the root)

O,
O \} 2-_1
0 10 2 34
1y 11 13 18
0 11 10 19 21 30 34 43
(11 © (2) ©

96@9669@6609 ONOIONO
O 3 11
=

10 16 19 21 21 29 30 31

-

Algorithm Theory, WS 2012/13 Fabian Kuhn

34 38 43 50

11

Computing Prefix Sums

|
FRE:BURG

UNI

Theorem: Given a sequence a4y, ..., a, of n values, all prefix sums
S; = a1 - @Da; (for1 < i < n)can be computed in time O(logn)
using O(n/logn) processors on an EREW PRAM.

Proof:

e Computing the sums of all sub-trees can be done in parallel in
time O(logn) using O(n) total operations.

e The same is true for the top-down step to compute the r(v)

e The theorem then follows from Brent’s theorem:

T
I, =0(m), T =0(ogn) = T,<T, _|_?1

Remark: This can be adapted to other parallel models and to
different ways of storing the value (e.g., array or list)

Algorithm Theory, WS 2012/13 Fabian Kuhn 12

Parallel Quicksort

UNI
FREIBURG

e Key challenge: parallelize partition

pivot
N\
5 (14|18 192(3 1|25(17(11| 4 (20(10(26 13|23|16
partition
/ /ﬂ
1,5 14| 8 1114 (10| 2 91316123/,1ng zlj%

e How can we do this in parallel?

* For now, let’s just care about the values < pivot

e What are their new positions

Algorithm Theory, WS 2012/13

Fabian Kuhn

13

UNI

Using Prefix Sums

FREIBURG

e Goal: Determine positions of values < pivot after partitionpivot

2 3 @ < /
3

14|18| 8 19|21 1|25/17/11| 4 (20|/10(26| 2 | 9 |13|23|16

I
5
l
1 1/0(1/0|1/1[1|0]|1

i
1/0(1|{0](0]|1]1(0]0

& if s

‘/ \J
1/2(2/3/3/3|4|5/5|5|/6[7,7|8[8|9|10{11/11|12
partition
5(14/8 |3 |1(11|4 (10| 2 |9 [13|16(18(|19(21|25|17/20(|26(23

L /L q

Algorithm Theory, WS 2012/13 Fabian Kuhn 14

Partition Using Prefix Sums

e The positions of the entries > pivot can be determined in the

same way
* Prefixsums: Ty = 0(n), T, = O0(logn)

* Remaining computations: T; = 0(n), T, = 0(1)

* Overall: T; = 0(n), T, = 0(logn)

Lemma: The partitioning of quicksort can be carried out in
n

parallel in time O (logn) using O () processors.

logn

Proof:

e By Brent’s theorem: T, < % + Tw

——

Algorithm Theory, WS 2012/13 Fabian Kuhn

15

UNI
I

FREIBURG

Applying to Quicksort

UNI
FREIBURG

Theorem: On an EREW PRAM, using p processors, randomized
quicksort can be executed in time T, (in expectation and with

high probability), where / /

nlogn
T,=0 +&€n .
p

———

Proof:
| tecuiston lavef - T\ ==O(ﬂ) /Cb:o(’&g""»

Gvesal]
T: O(‘«—Q@v)
O(de u\\ C. EQLQ(Q (N,(\ D- o T.;b: O(Q%ZU\}

Remark:

e We get optimal (linear) speed-up w.r.t. to the sequential
algorithm for all p = O(n/logn).

Algorithm Theory, WS 2012/13 Fabian Kuhn 16

Other Applications of Prefix Sums

UNI
I

FREIBURG

Prefix sums are a very powerful primitive to design parallel

algorithms.

— Particularly also by using other operators than +

Example Applications:

Lexical comparison of strings
Add multi-precision numbers
Evaluate polynomials

Solve recurrences

Radix sort / quick sort

Search for regular expressions

Implement some tree operations

Algorithm Theory, WS 2012/13 Fabian Kuhn

17

