)

Chapter 5
Graph Algorithms

Algorithm Theory
WS 2012/13

Fabian Kuhn

UNI
!

FREIBURG

Graphs

UNI
FREIBURG

Extremely important concept in computer science

Graph ¢ = (V,E)
e V:node (or vertex) set
e E CV?: edge set
— Simple graph: no self-loops, no multiple edges
— Undirected graph: we often think of edges as sets of size 2 (e.g., {u, v})

— Directed graph: edges are sometimes also called arcs
— Weighted graph: (positive) weight on edges (or nodes)

e (simple) path: sequence v, ..., v, of nodes such that
(v;,v;41) € Eforalli € {0, ...,k — 1}

Many real-world problems can be formulated as optimization
problems on graphs

Algorithm Theory, WS 2012/13 Fabian Kuhn 2

Graph Optimization: Examples

|
FRE:BURG

UNI

Minimum spanning tree (MST):
e Compute min. weight spanning tree of a weighted undir. Graph

Shortest paths:
e Compute (length) of shortest paths (single source, all pairs, ...)

Traveling salesperson (TSP):
e Compute shortest TSP path/tour in weighted graph

Vertex coloring:
e Color the nodes such that neighbors get different colors

e Goal: minimize the number of colors

Maximum matching:
e Matching: set of pair-wise non-adjacent edges

e Goal: maximize the size of the matching
Algorithm Theory, WS 2012/13 Fabian Kuhn 3

Network Flow

UNI
FREIBURG

Flow Network:

 Directed graph G = (V,E),E € V?

e Each (directed) edge e has a capacity c, = 0
— Amount of flow (traffic) that the edge can carry

e Asingle source node s € V and a single sink nodet € IV

Flow: (informally)
e Traffic from s to t such that each edge carries at most its capacity

Examples:
 Highway system: edges are highways, flow is the traffic

e Computer network: edges are network links that can carry
packets, nodes are switches

e Fluid network: edges are pipes that carry liquid

Algorithm Theory, WS 2012/13 Fabian Kuhn 4

Network Flow: Definition

|
FRE:BURG

UNI

Flow: function f: E — R,
* f(e)isthe amount of flow carried by edge e

Capacity Constraints:
e Foreachedgee €E, f(e) <c,

Flow Conservation:
e Foreachnodev eV \ {s,t},

Y fE@=) f@

e intov e out of v
Flow Value:
fl=) flew)= > f(@0)
e out of s eintot

Algorithm Theory, WS 2012/13 Fabian Kuhn 5

Example: Flow Network

UNI

FREIBURG

20

10

Algorithm Theory, WS 2012/13 Fabian Kuhn

10

20

Notation

UNI

FREIBURG

We define:
frw=) f, U= Y fE@

eintov e out of v

ForasetS C V.

Fre)=) f@), fUS) = Y @)

e into S e out of S

Flow conservation: Vv € V \ {s,t}: f " (v) = f°"(v)
Flow value: || = f°Ut(s) = fI"(t)

For simplicity: Assume that all capacities are positive integers

Algorithm Theory, WS 2012/13 Fabian Kuhn

The Maximum-Flow Problem

UNI
I

FREIBURG

Maximum Flow:

Given a flow network, find a flow of maximum possible value

e C(Classical graph optimization problem
 Many applications (also beyond the obvious ones)

 Requires new algorithmic techniques

Algorithm Theory, WS 2012/13 Fabian Kuhn 8

UNI
FREIBURG

Maximum Flow: Greedy?

Does greedy work?

A natural greedy algorithm:

 Aslong as possible, find an s-t-path with free capacity and
add as much flow as possible to the path

Algorithm Theory, WS 2012/13 Fabian Kuhn 9

Improving the Greedy Solution

UNI
I

FREIBURG

e Try to push 10 units of flow on edge (s, v)
e Too much incoming flow at v: reduce flow on edge (u, v)
e Add that flow on edge (u,t)

Algorithm Theory, WS 2012/13 Fabian Kuhn 10

FREIBURG

Residual Graph

UNI

Given a flow network G = (V, E) with capacities ¢, (for e € E)

For a flow f on G, define directed graph G = (Vf, Ef) as follows:
* NodesetVy =V
* Foreachedgee = (u,v) in E, there are two edges in E:
— forward edge e = (u, v) with residual capacity c, — f(e)
— backward edge e’ = (v, u) with residual capacity f(e)

Algorithm Theory, WS 2012/13 Fabian Kuhn 11

UNI

Residual Graph: Example

FREIBURG

@

15

10

@ S

15

Algorithm Theory, WS 2012/13 Fabian Kuhn 12

Residual Graph: Example

UNI

FREIBURG

Flow f

Algorithm Theory, WS 2012/13 Fabian Kuhn

13

Residual Graph: Example

UNI

FREIBURG

Residual Graph G

Algorithm Theory, WS 2012/13 Fabian Kuhn

14

Augmenting Path

UNI

FREIBURG

Residual Graph G

Algorithm Theory, WS 2012/13

Fabian Kuhn

15

Augmenting Path

UNI

FREIBURG

Augmenting Path

Algorithm Theory, WS 2012/13

Fabian Kuhn

16

UNI
I

FREIBURG

Augmenting Path

New Flow

@z

15

B i
10 -10
15
e

5+ 10 y

Algorithm Theory, WS 2012/13 Fabian Kuhn 17

Augmenting Path

UNI
FREIBURG

Definition:
An augmenting path P is a (simple) s-t-path on the residual
graph G¢ on which each edge has residual capacity > 0.

bottleneck(P, f): minimum residual capacity on any edge of the
augmenting path P

Augment flow f to get flow f':
e For every forward edge (u,v) on P:

f'((w,v)) = f((u,v)) + bottleneck(P, f)
e For every backward edge (u,v) on P:

f'((v,u)) == f((v,u)) — bottleneck(P, f)

Algorithm Theory, WS 2012/13 Fabian Kuhn 18

Augmented Flow

UNI

FREIBURG

Lemma: Given a flow f and an augmenting path P, the resulting
augmented flow [’ is legal and its value is
If'| = |f| + bottleneck(P, f).

Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn 19

Augmented Flow

UNI

FREIBURG

Lemma: Given a flow f and an augmenting path P, the resulting
augmented flow [’ is legal and its value is
If'| = |f| + bottleneck(P, f).

Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn 20

Ford-Fulkerson Algorithm

 Improve flow using an augmenting path as long as possible:

1. Initially, f(e) = Oforalledgese € E, Gr = G

2. while there is an augmenting s-t-path P in Gf do
3 Let P be an augmenting s-t-path in G¢;

4, f' == augment(f, P);

5 update f to be f;

6 update the residual graph G

7

end;

Algorithm Theory, WS 2012/13 Fabian Kuhn

UNI
I

FREIBURG

Ford-Fulkerson Running Time

UNI
I

FREIBURG

Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm terminates after at most C iterations, where

C = Z Co -

e out of s
Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn 22

Ford-Fulkerson Running Time

UNI
I

FREIBURG

Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm can be implemented to run in O (mC) time.

Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn 23

s-t Cuts

UNI
FREIBURG

Definition:
An s-t cut is a partition (4, B) of the vertex set such that s € A

andt € B
@ 20
A - 20 Q

15 0 20 15 B

s 5 t
10

@ 0

Y

15

Algorithm Theory, WS 2012/13 Fabian Kuhn 24

Cut Capacity

|
FRE:BURG

UNI

Definition:
The capacity c(4, B) of an s-t-cut (4, B) is defined as

c(4,B) := 2 Co.
@ 20 eoutof 4

20
A u (v)

15
0 20 5 R

10

&= 0

Y

15

Algorithm Theory, WS 2012/13 Fabian Kuhn 25

Cuts and Flow Value

UNI

FREIBURG

Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

f] = foUt(4) — f™(A).

Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn 26

Cuts and Flow Value

UNI
I

FREIBURG

Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

f] = foUt(4) — f™(A).

Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

fl = f™(B) — f°"*(B).

Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn 27

Upper Bound on Flow Value

UNI

FREIBURG

Lemma:
Let f be any s-t flow and (4, B) and s-t cut. Then |f| < c(4, B).

Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn 28

Ford-Fulkerson Gives Optimal Solution ;

FREIBURG

UNI

Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B) in G for which

If| = c(4%, BY).
Proof:

e Define A™: set of nodes that can be reached from s on a path
with positive residual capacities in Gy:

e ForB* =V \ A" (A%, B*) isan s-t cut
— By definitions € A*andt & A"

Algorithm Theory, WS 2012/13 Fabian Kuhn 29

Ford-Fulkerson Gives Optimal Solution ;

UNI
FREIBURG

Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B) in G for which

If| = c(4%, BY).
Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn 30

Ford-Fulkerson Gives Optimal Solution ;

UNI
FREIBURG

Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B) in G for which

If| = c(4%, BY).
Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn 31

Ford-Fulkerson Gives Optimal Solution ;

UNI
FREIBURG

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn 32

Min-Cut Algorithm

UNI
I

FREIBURG

Ford-Fulkerson also gives a min-cut algorithm:

Theorem: Given a flow f of maximum value, we can compute an
s-t cut of minimum capacity in O(m) time.

Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn 33

Max-Flow Min-Cut Theorem

UNI

FREIBURG

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an s-t flow is
equal to the minimum capacity of an s-t cut.

Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn

34

Integer Capacities

UNI
I

FREIBURG

Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a

maximum flow f for which the flow f(e) of every edge e is an
integer.

Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn 35

Non-Integer Capacities

UNI
FREIBURG

What if capacities are not integers?

e rational capacities:

— can be turned into integers by multiplying them with large enough integer
— algorithm still works correctly

e real (non-rational) capacities:

— not clear whether the algorithm always terminates

e even for integer capacities, time can linearly depend on the value
of the maximum flow

Algorithm Theory, WS 2012/13 Fabian Kuhn 36

Slow Execution

UNI
I

FREIBURG

e Number of iterations: 2000 (value of max. flow)

Algorithm Theory, WS 2012/13 Fabian Kuhn 37

Improved Algorithm

|
FRE:BURG

UNI

Idea: Find the best augmenting path in each step
e best: path P with maximum bottleneck(P, f)

e Best path might be rather expensive to find
- find almost best path

e Scaling parameter A:
(initially, A = "max ¢, rounded down to next power of 2")

 Aslong as there is an augmenting path that improves the flow by
at least A, augment using such a path

e If thereis nosuch path: A := A/z

Algorithm Theory, WS 2012/13 Fabian Kuhn 38

Scaling Parameter Analysis

UNI
I

FREIBURG

Lemma: If all capacities are integers, number of different scaling
parameters used is < 1 + |log, C|.

e A-scaling phase: Time during which scaling parameter is A

Algorithm Theory, WS 2012/13 Fabian Kuhn 39

Length of a Scaling Phase

Lemma: If f is the flow at the end of the A-scaling phase, the
maximum flow in the network has value at most |f| + mA.

Algorithm Theory, WS 2012/13 Fabian Kuhn

UNI
I

FREIBURG

Length of a Scaling Phase

UNI

FREIBURG

Lemma: The number of augmentation in each scaling phase is at
most 2m.

Algorithm Theory, WS 2012/13 Fabian Kuhn 41

Running Time: Scaling Max Flow Alg.

UNI
I

FREIBURG

Theorem: The number of augmentations of the algorithm with
scaling parameter and integer capacities is at most O(m log C). The
algorithm can be implemented in time 0(m?log C).

Algorithm Theory, WS 2012/13 Fabian Kuhn 42

Strongly Polynomial Algorithm

UNI
I

FREIBURG

 Time of regular Ford-Fulkerson algorithm with integer capacities:
0O(mC)

 Time of algorithm with scaling parameter:

0 (m?log C)

O(log C) is polynomial in the size of the input, but notinn
e Can we get an algorithm that runs in time polynomial in n?

e Always picking a shortest augmenting path leads to running time
0(m?n)

Algorithm Theory, WS 2012/13 Fabian Kuhn 43

Preflow-Push Max-Flow Algorithm

UNI

FREIBURG

Definition:
An s-t preflow is a function f: E = R, such that

e Foreachedgee €E: f(e) <c,
e Foreachnodev eV \ {s}:

Y f@=) fe

e intov e out of v

Excess of node v:

@)= Y f@-) fe)

e intov e out of v

* Apreflow f with excess es(v) = 0 forallv # s, t is a flow

with value |f| = ef(t) = —er(s).

Algorithm Theory, WS 2012/13 Fabian Kuhn

44

Preflows and Labelings

UNI

Height function h: V — N
e Assigns an integer height to each nodev € V

Source and Sink Conditions:
e h(s)=n and h(t) =0

Steepness Condition:

e Forall edges e = (v, w) with residual capacity > 0
(residual graph Gy for a preflow f defined as before for flows)

h(v) < h(w) +1

e Apreflow f and a labeling h are called compatible if source,
sink, and steepness conditions are satisfied

Algorithm Theory, WS 2012/13 Fabian Kuhn 45

FREIBURG

Compatible Labeling

UNI
I

FREIBURG

Arrows: edges of Gy with positive residual capacity

Algorithm Theory, WS 2012/13 Fabian Kuhn 46

Preflows with Compatible Labelings

UNI

FREIBURG

Lemma: If a preflow f is compatible with a labeling h, then there is
no s-t path in Gy with only positive residual capacities.

Algorithm Theory, WS 2012/13 Fabian Kuhn 47

Flows with Compatible Labelings

UNI

FREIBURG

Lemma: If s-t flow f is compatible with a labeling h, then f is a
flow of maximum value.

Algorithm Theory, WS 2012/13 Fabian Kuhn

48

UNI

Turning a Preflow into a Flow

FREIBURG

Algorithm Idea:
e Start with a preflow f and a compatible labeling
e Extend preflow f while keeping a compatible labeling

* Assoonas f is aflow (nodes v # s, t have excess ef(v) = 0),
f is a maximum flow

Initialization:
e Labeling h: h(s) =n, h(v) =0forallv # s
e Preflow f:
— Edges e = (s,u) of G out of s need residual capacity 0: f(e) = c,

— Preflow on other edges e does not matter: f(e) = 0

Algorithm Theory, WS 2012/13 Fabian Kuhn 49

Initialization

UNI
I

FREIBURG

Initial labeling h: h(s) =n, h(v) = 0forv # s

Initial preflow f:

edge e out of s: f(e) = c,,

other edgese: f(e) =0

Claim: Initial labeling h and preflow f are compatible.

Algorithm Theory, WS 2012/13

Fabian Kuhn

50

Push

UNI
I

FREIBURG

Consider some node v with excess ef(v) > 0:

* Assume v has a neighbor w in the residual graph G¢such that the
edge e = (v, w) has positive residual capacity and h(v) > h(w):

push flow fromvtow

» If eisaforward edge: increase f(e) by min{ef(v), Co — f(e)}

* If eis abackward edge: decrease f(e) by min{ef(v),f(e)}

Algorithm Theory, WS 2012/13 Fabian Kuhn 51

Relabel

UNI
I

FREIBURG

Consider some node v with excess ef(v) > 0:

* Assume that it is not possible to push flow to a neighbor in G¢:

For all edges e = (v, w) in G with positive residual capacity, we
have h(w) = h(v)

relabel v: h(v) .= h(v) + 1

Algorithm Theory, WS 2012/13 Fabian Kuhn 52

UNI

Preflow-Push Algorithm

FREIBURG

 Aslong as there is a node v with excess ef(v) > 0, if possible do
a push operation from v to a neighbor, otherwise relabel v

Lemma: Throughout the Preflow-Push Algorithm:
i. Labels are non-negative integers

ii. If capacities are integers, f is an integer preflow

iii. The preflow f and the labeling h are compatible

If the algorithm terminates, f is a maximum flow.

Algorithm Theory, WS 2012/13 Fabian Kuhn 53

Properties of Preflows

UNI

FREIBURG

Lemma: If f is a preflow and node v has excess es(v) > 0, then
there is a path with positive residual capacities in G¢ from v to s.

Algorithm Theory, WS 2012/13 Fabian Kuhn 54

Heights

UNI

FREIBURG

Lemma: During the algorithm, all nodes v have h(v) < 2n — 1.

Algorithm Theory, WS 2012/13 Fabian Kuhn

55

UNI

Number of Relabelings

FREIBURG

Lemma: During the algorithm, each node is relabeled at most
2n — 1 times.

e Hence: total number or relabeling operations < 2n?

Algorithm Theory, WS 2012/13 Fabian Kuhn 56

Number of Saturating Push Operations ;

UNI
FREIBURG

e A push operation on (v, w) is called saturating if:
— e = (v,w) is a forward edge and after the push, f((v, W)) = C,
— e = (v,w) is a backward edge and after the push, f((W, v)) =0

Lemma: The number of saturating push operations is at most 2nm.

Algorithm Theory, WS 2012/13 Fabian Kuhn 57

Number of Non-Saturating Push Ops.

UNI
FREIBURG

Lemma: There are < 2n?m non-saturating push operations.

Proof:

Potential function:

O(f, h) == z h(v)
v:ier(v)>0
At all times, ®(f,h) > 0
Non-saturating push on (v, w):
— Before push: ef(v) > 0, after push: ef(v) = 0
— Push might increase e;(w) from0to> 0
— h(v) 2h(w)+1 > pushdecreases ®(f, h) by at least 1

Relabel: increases ®(f, h) by 1

Saturating push on (v, w): er (W) might be positive afterwards
- ®(f,h) increases by at most h(w) < 2n —1

Algorithm Theory, WS 2012/13 Fabian Kuhn 58

Number of Non-Saturating Push Ops.

Lemma: There are < 2n?m non-saturating push operations.

Proof:

e Potential function ®(f,h) = 0

e Non-saturating push decreases ®(f, h) by 1

e Relabel increases ®(f,h) by 1

» Saturating push increase ®(f,h) by < 2n —1

Algorithm Theory, WS 2012/13 Fabian Kuhn

|
FRE:BURG

UNI

Preflow-Push Algorithm

UNI

FREIBURG

Theorem: The preflow-push algorithm computes a maximum
flow after at most 0 (mn?) push and relabel operations.

Algorithm Theory, WS 2012/13 Fabian Kuhn

60

Choosing a Maximum Height Node

UNI
I

FREIBURG

Lemma: If we always choose a node v with ef(v) > 0 at maximum
height, there are at most O(n?) non-saturating push operations.

Proof: New potential function: H :== max h(v)
v:ier(v)>0

Algorithm Theory, WS 2012/13 Fabian Kuhn 61

Choosing a Maximum Height Node

UNI
I

FREIBURG

Lemma: If we always choose a node v with ef(v) > 0 at maximum
height, there are at most O(n?) non-saturating push operations.

Proof: New potential function: H :== max h(v)
v:ier(v)>0

Algorithm Theory, WS 2012/13 Fabian Kuhn 62

UNI

Improved Preflow-Push Algorithm

FREIBURG

Theorem: If we always use a maximum height node with positive
excess, the preflow-push algorithm computes a maximum flow after
at most 0 (n?) push and relabel operations.

Theorem: The preflow-push algorithm that always chooses a

maximum height node with positive excess can be implemented in
time 0 (n3).

Proof: see exercises

Algorithm Theory, WS 2012/13 Fabian Kuhn 63

UNI

Maximum Flow Applications

e Maximum flow has many applications

e Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

e Examples:
— related network flow problems
— computation of small cuts
— computation of matchings
— computing disjoint paths
— scheduling problems
— assignment problems with some side constraints

Algorithm Theory, WS 2012/13 Fabian Kuhn 64

FREIBURG

Undirected Edges and Vertex Capacities .

UNI
FREIBURG

Undirected Edges:
* Undirected edge {u, v}: add edges (u, v) and (v, u) to network

Vertex Capacities:
 Not only edge, but also (or only) nodes have capacities

e Capacity ¢, of node v & {s, t}:
finw) = foUw) <

e Replace node v by edge e, = {Vin, Vout}:
e O

Algorithm Theory, WS 2012/13 Fabian Kuhn 65

Minimum s-t Cut

Given: undirected graph ¢ = (V/,E), nodes s,t € V
s-t cut: Partition (4,B) of V suchthats € A,t € B

Size of cut (4, B): number of edges crossing the cut

Objective: find s-t cut of minimum size

Algorithm Theory, WS 2012/13 Fabian Kuhn

UNI
I

FREIBURG

Edge Connectivity

UNI
I

FREIBURG

Definition: A graph G = (V, E) is k-edge connected for an integer
k = 1if the graph Gy = (V,E \ X) is connected for every edge set

XCE,|X|<k-1.

Goal: Compute edge connectivity A(G) of G
(and edge set X of size A(G) that divides G into = 2 parts)

e minimum set X is a minimum s-t cut forsome s,t € I/
— Actually for all s, t in different components of Gy = (V,E \ X)

e Possible algorithm: fix s and find min s-t cutforallt # s

Algorithm Theory, WS 2012/13 Fabian Kuhn 67

Minimum s-t Vertex-Cut

|
FRE:BURG

UNI

Given: undirected graph ¢ = (V/,E), nodes s,t € V

s-t vertex cut: Set X < V suchthats,t € X and sand t arein
different components of the sub-graph G[V \ X] induced by V \ X

Size of vertex cut: | X|

Objective: find s-t vertex-cut of minimum size
e Replace undirected edge {u, v} by (u, v) and (v, u)
e Compute max s-t flow for edge capacities co and node capacities

c, = 1forv #s,t
* Replace each node v by v;, and v ¢:

e Min edge cut corresponds to min vertex cut in G

Algorithm Theory, WS 2012/13 Fabian Kuhn 68

Vertex Connectivity

|
FRE:BURG

UNI

Definition: A graph G = (V, E) is k-vertex connected for an integer
k = 1 if the sub-graph G [V \ X] induced by V' \ X is connected for
every edge set

XCV,|X|<k-1.

Goal: Compute vertex connectivity k(G) of G
(and node set X of size k(G) that divides G into = 2 parts)

e Compute minimum s-t vertex cut for fixed sand allt # s

Algorithm Theory, WS 2012/13 Fabian Kuhn 69

UNI

Edge-Disjoint Paths

FREIBURG

Given: Graph G = (V,E) with nodes s,t € V
Goal: Find as many edge-disjoint s-t paths as possible

Solution:
* Find max s-t flow in G with edge capacitiesc, = 1foralle € E

Flow f induces |f| edge-disjoint paths:
* Integral capacities = can compute integral max flow f
* Get |f| edge-disjoint paths by greedily picking them

e Correctness follows from flow conservation f1*(v) = fOu(p)

Algorithm Theory, WS 2012/13 Fabian Kuhn 70

Vertex-Disjoint Paths

UNI
I

FREIBURG

Given: Graph G = (V,E) with nodes s,t € V
Goal: Find as many internally vertex-disjoint s-t paths as possible

Solution:
* Find max s-t flow in G with node capacitiesc, = 1 forallv eV

Flow f induces |f| vertex-disjoint paths:
* Integral capacities = can compute integral max flow f
o Get |f]| vertex-disjoint paths by greedily picking them

e Correctness follows from flow conservation f1*(v) = fOU(p)

Algorithm Theory, WS 2012/13 Fabian Kuhn 71

Menger’s Theorem

UNI

FREIBURG

Theorem: (edge version)

For every graph G = (V, E) with nodes s,t € V, the size of the
minimum s-t (edge) cut equals the maximum number of pairwise
edge-disjoint paths from s to t.

Theorem: (node version)

For every graph G = (V, E) with nodes s,t € V, the size of the
minimum s-t vertex cut equals the maximum number of pairwise
internally vertex-disjoint paths from s to t

e Both versions can be seen as a special case of the max flow min
cut theorem

Algorithm Theory, WS 2012/13 Fabian Kuhn 72

Baseball Elimination

UNI

FREIBURG

Algorithm Theory, WS 2012/13

Team Wins Losses To Play Against = 1;;
[w; ?; NY Balt. T. Bay
New York 81 70 11 - 2 4 2 3
Baltimore 79 77 6 2 - 2 1 1
Tampa Bay 78 76 8 4 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
Boston 72 83 7 3 1 1 2 -

Only wins/losses possible (no ties), winner: team with most wins

Which teams can still win (as least as many wins as top team)?
Boston is eliminated (cannot win):

— Boston can get at most 79 wins, New York already has 81 wins

If for some i, j: w; +1; < w; 2 team i is eliminated

Sufficient condition, but not a necessary one!

Fabian Kuhn

Baseball Elimination

UNI

FREIBURG

Team Wins Losses To Play Against = 1;;
[w; ?; ; NY Balt. T. Bay
New York 81 70 11 - 2 4 2 3
Baltimore 79 77 6 2 - 2 1 1
Tampa Bay 78 76 8 4 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
Boston 72 83 7 3 1 1 2 -

e Can Toronto still finish first?

e Toronto can get 82 > 81 wins, but:
NY and Tampa have to play 4 more times against each other
- if NY wins one, it gets 82 wins, otherwise, Tampa has 82 wins

e Hence: Toronto cannot finish first
e How about the others? How can we solve this in general?

Algorithm Theory, WS 2012/13 Fabian Kuhn 74

Max Flow Formulation

UNI
I

FREIBURG

e (Can team 3 finish with most wins?

Remaining number
of games between
the 2 teams

team Number of wins team i can

game nodes have to not beat team 3
nodes

e Team 3 can finish first iff all source-game edges are saturated

Algorithm Theory, WS 2012/13 Fabian Kuhn 75

Reason for Elimination

UNI
I

FREIBURG

(BN
\o)
(o)
(@)}

AL East: Aug 30,
Team Wins Losses To Play Against = 1;;
[w; ?; T; \'\ Balt. Bost. Tor.
New York 75 59 28 - 3 8 7 3
Baltimore 71 63 28 3 - 2 7 4
Boston 69 66 27 8 2 - 0 0
Toronto 63 72 27 7 7 0 - 0
Detroit 49 86 27 3 4 0 0 -

e Detroit could finish with 49 4+ 27 = 76 wins
e Consider R = {NY, Bal, Bos, Tor}

— Have together already won w(R) = 278 games

— Must together win at least ¥(R) = 27 more games

 On average, teamsin R win

Algorithm Theory, WS 2012/13

278+27

Fabian Kuhn

= 76.25 games

76

Reason for Elimination

UNI
FREIBURG

Certificate of elimination:

R € X,

w(R) =

Wi,
lER
!

Hwins of

nodesin R

Team x € X is eliminated by R if

Algorithm Theory, WS 2012/13

w(R) +

r(R)

IR

> Wy T Ty

Fabian Kuhn

r(R) = z Tij

I,JER

|
#remaining games
among nodes in R

77

Reason for Elimination

UNI

FREIBURG

Theorem: Team x is eliminated if and only if there exists a subset
R € X of the teams X such that x is eliminated by R.

Proof Idea:

Minimum cut gives a certificate...

If x is eliminated, max flow solution does not saturate all
outgoing edges of the source.

Team nodes of unsaturated source-game edges are saturated

Source side of min cut contains all teams of saturated team-dest.

edges of unsaturated source-game edges

Set of team nodes in source-side of min cut give a certificate R

Algorithm Theory, WS 2012/13 Fabian Kuhn 78

Circulations with Demands

UNI
I

FREIBURG

Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several
sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands
are exactly satisfied

e The circulation problem is a feasibility rather than a maximization
problem

Algorithm Theory, WS 2012/13 Fabian Kuhn 79

Circulations with Demands: Formally

Given: Directed network G = (V/, E) with
e Edge capacitiesc, > Oforalle € E

e Nodedemandsd, € RforallveVl

— d, > 0: node needs flow and therefore is a sink
— d, < 0:node has a supply of —d,, and is therefore a source
— d, = 0: node is neither a source nor a sink

Flow: Function f: E = R, satisfying
e Capacity Conditions:Ve € E: 0 < f(e) <c,
e Demand Conditions: Vv € V: fi%(v) — foUuv) =d,

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.

Algorithm Theory, WS 2012/13 Fabian Kuhn

UNI
I

FREIBURG

Example

UNI
FREIBURG

Algorithm Theory, WS 2012/13

Fabian Kuhn

Condition on Demands

UNI
FREIBURG

Claim: If there exists a feasible circulation with demands d,, for

v € V, then
Zdv — 0.

vev
Proof:

* Ypdy = Zv(fin(v) - fOUt(v))

 f(e) of each edge e appears twice in the above sum with
different signs = overall sum is 0

Total supply = total demand:

Define D = z d, = z -d,

v:d,>0 v:d,,<0

Algorithm Theory, WS 2012/13 Fabian Kuhn 82

Reduction to Maximum Flow

UNI
I

FREIBURG

e Add “super-source” s* and “super-sink” t* to network

s” supplies t* siphons
sources flow out
with flow of sinks

Algorithm Theory, WS 2012/13 Fabian Kuhn 83

Example

UNI

FREIBURG

Algorithm Theory, WS 2012/13

Fabian Kuhn

SIS

UNI
I

FREIBURG

Formally...

Reduction: Get graph G’ from graph as follows
e Nodesetof G'isV U {s*, t*}

e Edge setis E and edges
— (s%,v) forall v with d, < 0, capacity of edge is —d,,
— (v, t*) for all v with d,, > 0, capacity of edge is d,,

Observations:

e Capacity of min s*-t* cut is at least D (e.g., the cut (s*,V U {t*})

e Afeasible circulation on G can be turned into a feasible flow of
value D of G’ by saturating all (s*,v) and (v, t*) edges.

e Any flow of G’ of value D induces a feasible circulation on G

— (s*,v) and (v, t*) edges are saturated
— By removing these edges, we get exactly the demand constraints

Algorithm Theory, WS 2012/13 Fabian Kuhn 85

Circulation with Demands

|
FRE:BURG

UNI

Theorem: There is a feasible circulation with demands d,, v € V
on graph G if and only if there is a flow of value D on G'.

e |f all capacities and demands are integers, there is an integer
circulation

The max flow min cut theorem also implies the following:

Theorem: The graph G has a feasible circulation with demands
d,, v € V if and only if for all cuts (4, B),

z d, < c(A,B).

Algorithm Theory, WS 2012/13 Fabian Kuhn 86

Circulation: Demands and Lower Bounds _

UNI
FREIBURG

Given: Directed network G = (V/, E) with
e Edge capacities ¢, > 0 and lower bounds 0 < ¥, < c, fore € E

e Nodedemandsd, € RforallveVl

— d, > 0: node needs flow and therefore is a sink
— d, < 0:node has a supply of —d,, and is therefore a source
— d, = 0: node is neither a source nor a sink

Flow: Function f: E = R, satisfying
e Capacity Conditions:Ve € E: £, < f(e) < c,
« Demand Conditions: Yv € V: fi%(v) — fOUu(v) =d,

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.

Algorithm Theory, WS 2012/13 Fabian Kuhn 87

Solution Idea

UNI
I

FREIBURG

* Define initial circulation f(e) = £,
Satisfies capacity constraints: Ve € E: ¢, < f,(e) < c,

e Define
Lo = '@ = @) = Y le=) e
e into v e out of v

 If L, = 0, demand condition is satisfied at v by f,, otherwise, we
need to superimpose another circulation f; such that

dy = fi"(0) = [P W) = dy ~ Ly
e Remaining capacity of edge e: ¢, := c, — ¥,

e We get a circulation problem with new demands d;,, new
capacities c,, and no lower bounds

Algorithm Theory, WS 2012/13 Fabian Kuhn 88

UNI

Eliminating a Lower Bound: Example

FREIBURG

Lower bound of 2

Algorithm Theory, WS 2012/13 Fabian Kuhn 89

Reduce to Problem Without Lower Bounds

UNI
I

FREIBURG

Graph ¢ = (V,E):
e Capacity: Foreachedgee € E: ¥, < f(e) <c,
e Demand: For each node v € V: f(v) — f°U(v) = d,,

Model lower bounds with supplies & demands:

W—==C @

Flow: ¢,

Create Network G’ (without lower bounds):
* Foreachedgee€E:c, =c, — ¥,
* ForeachnodeveV:d, =d,— L,

Algorithm Theory, WS 2012/13 Fabian Kuhn 90

BURG

Circulation: Demands and Lower Bounds _:.

2
= T

Theorem: There is a feasible circulation in G (with lower bounds) if
and only if there is feasible circulation in G’ (without lower bounds).

e Given circulation f in G’, f(e) = f'(e) + ¢, is circulation in G
— The capacity constraints are satisfied because f'(e) < ¢, — ¥,
— Demand conditions:

Fr@) = fUm =) @t fi) = Y Wt fE)
e into v e out of v

=L, +(d, —L,) =d,
e Given circulation fin G', f(e) = f'(e) + ¥, is circulation in G
— The capacity constraints are satisfied because f'(e) < ¢, — ¥,
— Demand conditions:

Fr@ -t =) (F@-2)—) ()t
e intov e out of v

=d,—L,

Algorithm Theory, WS 2012/13 Fabian Kuhn 91

Integrality

UNI
I

FREIBURG

Theorem: Consider a circulation problem with integral capacities,
flow lower bounds, and node demands. If the problem is feasible,
then it also has an integral solution.

Proof:
e Graph G’ has only integral capacities and demands

 Thus, the flow network used in the reduction to solve
circulation with demands and no lower bounds has only
integral capacities

e The theorem now follows because a max flow problem with
integral capacities also has an optimal integral solution

e |t also follows that with the max flow algorithms we studied,
we get an integral feasible circulation solution.

Algorithm Theory, WS 2012/13 Fabian Kuhn 92

Matrix Rounding

UNI
FREIBURG

* Given: p X g matrix D = {d; ;} of real numbers
* rowisum:q; =),;d;;, columnjsum:b; =),;d,;;

* Goal: Round each d; ;, as well as a; and b; up or down to the

next integer so that the sum of rounded elements in each row
(column) equals the rounded row (column) sum

e Original application: publishing census data

Example:

3.14 | 6.80 | 7.30
9.60 | 2.40 | 0.70
3.60 | 1.20

original data possible rounding

Algorithm Theory, WS 2012/13 Fabian Kuhn 93

UNI

Matrix Rounding

FREIBURG

Theorem: For any matrix, there exists a feasible rounding.

Remark: Just rounding to the nearest integer doesn’t work

original data

rounding to nearest integer feasible rounding

Algorithm Theory, WS 2012/13 Fabian Kuhn 94

Reduction to Circulation

UNI
I

FREIBURG

Matrix elements and row/column sums
give a feasible circulation that satisfies

all lower bound, capacity, and demand

constraints

columns:

all demands d,, = 0

Algorithm Theory, WS 2012/13 Fabian Kuhn 95

Matrix Rounding

UNI
FREIBURG

Theorem: For any matrix, there exists a feasible rounding.

Proof:

* The matrix entries d; ; and the row and column sums a; and b;
give a feasible circulation for the constructed network

e Every feasible circulation gives matrix entries with corresponding
row and column sums (follows from demand constraints)

 Because all demands, capacities, and flow lower bounds are
integral, there is an integral solution to the circulation problem

- gives a feasible rounding!

Algorithm Theory, WS 2012/13 Fabian Kuhn 96

i
Dandi3ydd
INN

Matching

Fabian Kuhn

Algorithm Theory, WS 2012/13

Gifts-Children Graph

UNI

FREIBURG

 Which child likes which gift can be represented by a graph

b J

Algorithm Theory, WS 2012/13 Fabian Kuhn

UNI

Matching

FREIBURG

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size */, (every node is matched)

Algorithm Theory, WS 2012/13 Fabian Kuhn 99

UNI
I

FREIBURG

Bipartite Graph

Definition: A graph G = (V, E) is called bipartite iff its node set
can be partitioned into two parts V = I/; U V, such that for each

edge {u,v} € E,
Hu,v}nV;| =1.

 Thus, edges are only between the two parts

O

E
4 £

Algorithm Theory, WS 2012/13 Fabian Kuhn 100

|
IBURG

Santa’s Problem

Maximum Matching in Bipartite Graphs:

Every child can get a gift
iff there is a matching
of size #children

Clearly, every matching
is at most as big

® [l‘ﬁ)(S0 B

If #children = #gifts,
there is a solution iff
there is a perfect matching

=
9

L 3
L .

g

[
o
=

Algorithm Theory, WS 2012/13 Fabian Kuhn

Reducing to Maximum Flow

UNI

FREIBURG

e Like edge-disjoint paths...

all capacities are 1

Algorithm Theory, WS 2012/13 Fabian Kuhn

102

Reducing to Maximum Flow

UNI
FREIBURG

Theorem: Every integer solution to the max flow problem on the
constructed graph induces a maximum bipartite matching of G.

Proof:

1. Aflow f of value |f| induces a matching of size |f|
— Left nodes (gifts) have incoming capacity 1
— Right nodes (children) have outgoing capacity 1
— Left and right nodes are incident to < 1 edge e of G with f(e) =1

2. A matching of size k implies a flow f of value |f| = k
— For each edge {u, v} of the matching:

f(sw)=7f(wv)=Ff(wt)=1

— All other flow values are 0

Algorithm Theory, WS 2012/13 Fabian Kuhn 103

Running Time of Max. Bipartite Matching

UNI

FREIBURG

Theorem: A maximum matching of a bipartite graph can be
computed in time

Algorithm Theory, WS 2012/13 Fabian Kuhn

104

Perfect Matching?

UNI
FREIBURG

e There can only be a perfect matching if both sides of the
partition have size /,.

e There is no perfect matching, iff there is an s-t cut of
size < "/, in the flow network.

Algorithm Theory, WS 2012/13 Fabian Kuhn 105

UNI
FREIBURG

s-t Cuts

Partition (4, B) of node set suchthats € Aandt € B
e Ifv; € A:edge (v;,t)isincut (4,B)
 Ifu; € B:edge (s,u;)isincut (4, B)

e Otherwise (if u; € A, v; € B), all edges from u; to some
v; € B areincut (4,B)

Algorithm Theory, WS 2012/13 Fabian Kuhn 106

Hall’s Marriage Theorem

|
FRE:BURG

UNI

Theorem: A bipartite graph ¢ = (U UV, E) for which |U| = |V|
has a perfect matching if and only if

vU' c U:|N(U)| = U],
where N(U") € V is the set of neighbors of nodes in U'.

Proof: No perfect matching & some s-t cut has capacity < n
1. Assume thereis U’ for which [N(U")| < |U']:

U’ N(U’)

Algorithm Theory, WS 2012/13 Fabian Kuhn 107

Hall’s Marriage Theorem

|
FRE:BURG

UNI

Theorem: A bipartite graph ¢ = (U UV, E) for which |U| = |V|
has a perfect matching if and only if

vU' c U:|N(U)| = U],
where N(U") € V is the set of neighbors of nodes in U'.

Proof: No perfect matching & some s-t cut has capacity < n
2. Assume that thereis a cut (4, B) of capacity < n
Ul=n—x U’

NU)<y+z : g : y
e O x+y+z<n(— G
O O
NG 5

Algorithm Theory, WS 2012/13 Fabian Kuhn 108

Hall’s Marriage Theorem

|
FRE:BURG

UNI

Theorem: A bipartite graph ¢ = (U UV, E) for which |U| = |V|
has a perfect matching if and only if

vU' c U:|N(U)| = U],
where N(U") € V is the set of neighbors of nodes in U'.

Proof: No perfect matching & some s-t cut has capacity < n
2. Assume that thereis a cut (4, B) of capacity < n

Ul=n—x
NU)<y+z
X+y+z<n

Algorithm Theory, WS 2012/13 Fabian Kuhn 109

What About General Graphs

UNI

FREIBURG

e Can we efficiently compute a maximum matching if G is not
bipartitie?

e How good is a maximal matching?

— A matching that cannot be extended...

e Vertex Cover:set S € V of nodes such that
vi{u,v} € E, fu,vins + Q.

<o

A vertex cover covers all edges by incident nodes

Algorithm Theory, WS 2012/13 Fabian Kuhn

110

Vertex Cover vs Matching

UNI
FREIBURG

Consider a matching M and a vertex cover S

Claim: |[M| < |S]

Proof:
e Atleast one node of every edge {u,v} € Misin S
 Needs to be a different node for different edges from M

Algorithm Theory, WS 2012/13 Fabian Kuhn 111

Vertex Cover vs Matching

UNI
I

FREIBURG

Consider a matching M and a vertex cover S

Claim: If M is maximal and S is minimum, |S| < 2|M|

Proof:

e M is maximal: for every edge {u, v} € E, either u or v (or both)
are matched

e Everyedge e € E is “covered” by at least one matching edge

 Thus, the set of the nodes of all matching edges gives a vertex
cover S of size |S| = 2|M|.

Algorithm Theory, WS 2012/13 Fabian Kuhn 112

UNI

Maximal Matching Approximation

FREIBURG

Theorem: For any maximal matching M and any maximum matching
M™, it holds that
M| > m
2

Proof:

Theorem: The set of all matched nodes of a maximal matching M is
a vertex cover of size at most twice the size of a min. vertex cover.

Algorithm Theory, WS 2012/13 Fabian Kuhn 113

Augmenting Paths

UNI
I

FREIBURG

Consider a matching M of agraph G = (V, E):
e Anodev € Viscalled free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free
node and visits edges in E \ M and edges in M alternatingly.

free nodes

e Matching M can be improved using an augmenting path by
switching the role of each edge along the path

Algorithm Theory, WS 2012/13 Fabian Kuhn 114

Augmenting Paths

UNI
I

FREIBURG

Theorem: A matching M of G = (V, E) is maximum if and only if
there is no augmenting path.

Proof:
e Consider non-max. matching M and max. matching M™ and define
F==M\M", F*:=M"\M

* Notethat FNF* =@ and |F| < |F7|
e Each node v € V isincident to at most one edge in both F and F~*
e F U F"induces even cycles and paths

O e e)

O e e e)

O e e e)

Algorithm Theory, WS 2012/13 Fabian Kuhn 115

Finding Augmenting Paths

UNI

FREIBURG

augmenting path

Algorithm Theory, WS 2012/13 Fabian Kuhn

free nodes

odd cycle

116

Blossoms

UNI
I

FREIBURG

* If we find an odd cycle...
free node () f

Graph G

Matching M
contract
blossom @\
.contracted blossom
(: —v

Graph G’

Y
wals

Matching M’ = M \ {e, e’}
is a matching of G'.

blossom
Algorithm Theory, WS 2012/13 Fabian Kuhn 117

UNI

Contracting Blossoms

FREIBURG

Lemma: Graph G has an augmenting path w.r.t. matching M iff G’
has an augmenting path w.r.t. matching M’

f f

Note: If stem has length 0O,
root v of blossom if free
and thus also the node v’
is free in G'.

Also: The matching M can be computed efficiently from M'.

Algorithm Theory, WS 2012/13 Fabian Kuhn 118

Edmond’s Blossom Algorithm

UNI
I

FREIBURG

Algorithm Sketch:
1. Build a tree for each free node

2. Starting from an explored node u at even distance from a free
node f in the tree of f, explore some unexplored edge {u, v}:

1. If visan unexplored node, v is matched to some neighbor w:
add w to the tree (w is now explored)

2. Ifvisexplored and in the same tree:
at odd distance from root - ignore and move on
at even distance from root = blossom found

3. Ifvisexplored and in another tree
at odd distance from root - ignore and move on
at even distance from root - augmenting path found

Algorithm Theory, WS 2012/13 Fabian Kuhn 119

Running Time

UNI

FREIBURG

Finding a Blossom: Repeat on smaller graph
Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time O (mn?).

Algorithm Theory, WS 2012/13 Fabian Kuhn

120

Matching Algorithms

UNI
FREIBURG

We have seen:
e O(mn) time alg. to compute a max. matching in bipartite graphs

. O(mnz) time alg. to compute a max. matching in general graphs

Better algorithms:

e Best known running time (bipartite and general gr.): O(m\/ﬁ)

Weighted matching:
 Edges have weight, find a matching of maximum total weight
e Bipartite graphs: flow reduction works in the same way

e General graphs: can also be solved in polynomial time
(Edmond’s algorithms is used as blackbox)

Algorithm Theory, WS 2012/13 Fabian Kuhn 121

Happy Holidays!

UNI
I

FREIBURG

e WellT A
WAS 2! P’

. He-HﬂACHTSFeR-m.

Algorithm Theory, WS 2012/13

Fabian Kuhn 122

