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Graphs
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Extremely important concept in computer science

Graph ¢ = (V,E)
e V:node (or vertex) set
e E CV?: edge set
— Simple graph: no self-loops, no multiple edges
— Undirected graph: we often think of edges as sets of size 2 (e.g., {u, v})

— Directed graph: edges are sometimes also called arcs
— Weighted graph: (positive) weight on edges (or nodes)

e (simple) path: sequence v, ..., v, of nodes such that
(v;,v;41) € Eforalli € {0, ...,k — 1}

Many real-world problems can be formulated as optimization
problems on graphs
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Graph Optimization: Examples
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Minimum spanning tree (MST):
e Compute min. weight spanning tree of a weighted undir. Graph

Shortest paths:
e Compute (length) of shortest paths (single source, all pairs, ...)

Traveling salesperson (TSP):
e Compute shortest TSP path/tour in weighted graph

Vertex coloring:
e Color the nodes such that neighbors get different colors

e Goal: minimize the number of colors

Maximum matching:
e Matching: set of pair-wise non-adjacent edges

e Goal: maximize the size of the matching
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Network Flow
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Flow Network:

 Directed graph G = (V,E),E € V?

e Each (directed) edge e has a capacity c, = 0
— Amount of flow (traffic) that the edge can carry

e Asingle source node s € V and a single sink nodet € IV

Flow: (informally)
e Traffic from s to t such that each edge carries at most its capacity

Examples:
 Highway system: edges are highways, flow is the traffic

e Computer network: edges are network links that can carry
packets, nodes are switches

e Fluid network: edges are pipes that carry liquid
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Network Flow: Definition
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Flow: function f: E — R,
* f(e)isthe amount of flow carried by edge e

Capacity Constraints:
e Foreachedgee €E, f(e) <c,

Flow Conservation:
e Foreachnodev eV \ {s,t},

Y fE@= ) f@

e intov e out of v
Flow Value:
fl= ) flew)= > f(@0)
e out of s eintot
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Example: Flow Network

UNI

FREIBURG

20

10

Algorithm Theory, WS 2012/13 Fabian Kuhn

10

20



Notation

UNI

FREIBURG

We define:
frw= ) f, U= Y fE@

eintov e out of v

ForasetS C V.

Fre)= ) f@),  fUS) = Y @)

e into S e out of S

Flow conservation: Vv € V \ {s,t}: f " (v) = f°"(v)
Flow value: || = f°Ut(s) = fI"(t)

For simplicity: Assume that all capacities are positive integers
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The Maximum-Flow Problem
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Maximum Flow:

Given a flow network, find a flow of maximum possible value

e C(Classical graph optimization problem
 Many applications (also beyond the obvious ones)

 Requires new algorithmic techniques
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Maximum Flow: Greedy?

Does greedy work?

A natural greedy algorithm:

 Aslong as possible, find an s-t-path with free capacity and
add as much flow as possible to the path
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Improving the Greedy Solution
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e Try to push 10 units of flow on edge (s, v)
e Too much incoming flow at v: reduce flow on edge (u, v)
e Add that flow on edge (u,t)
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Residual Graph
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Given a flow network G = (V, E) with capacities ¢, (for e € E)

For a flow f on G, define directed graph G = (Vf, Ef) as follows:
* NodesetVy =V
* Foreachedgee = (u,v) in E, there are two edges in E:
— forward edge e = (u, v) with residual capacity c, — f(e)
— backward edge e’ = (v, u) with residual capacity f(e)
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Residual Graph: Example
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Residual Graph: Example
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Residual Graph: Example
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Residual Graph G
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Augmenting Path
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Residual Graph G
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Augmenting Path
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Augmenting Path
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Augmenting Path
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Augmenting Path
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Definition:
An augmenting path P is a (simple) s-t-path on the residual
graph G¢ on which each edge has residual capacity > 0.

bottleneck(P, f): minimum residual capacity on any edge of the
augmenting path P

Augment flow f to get flow f':
e For every forward edge (u,v) on P:

f'((w,v)) = f((u,v)) + bottleneck(P, f)
e For every backward edge (u,v) on P:

f'((v,u)) == f((v,u)) — bottleneck(P, f)
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Augmented Flow

UNI

FREIBURG

Lemma: Given a flow f and an augmenting path P, the resulting
augmented flow [’ is legal and its value is
If'| = |f| + bottleneck(P, f).

Proof:
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Augmented Flow
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Lemma: Given a flow f and an augmenting path P, the resulting
augmented flow [’ is legal and its value is
If'| = |f| + bottleneck(P, f).

Proof:
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Ford-Fulkerson Algorithm

 Improve flow using an augmenting path as long as possible:

1. Initially, f(e) = Oforalledgese € E, Gr = G

2. while there is an augmenting s-t-path P in Gf do
3 Let P be an augmenting s-t-path in G¢;

4, f' == augment(f, P);

5 update f to be f;

6 update the residual graph G

7

end;

Algorithm Theory, WS 2012/13 Fabian Kuhn
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Ford-Fulkerson Running Time
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Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm terminates after at most C iterations, where

C = Z Co -

e out of s
Proof:
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Ford-Fulkerson Running Time

UNI
I

FREIBURG

Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm can be implemented to run in O (mC) time.

Proof:
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s-t Cuts
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Definition:
An s-t cut is a partition (4, B) of the vertex set such that s € A

andt € B
@ 20
A - 20 Q

15 0 20 15 B

s 5 t
10

@ 0

Y

15
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Cut Capacity
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Definition:
The capacity c(4, B) of an s-t-cut (4, B) is defined as

c(4,B) := 2 Co.
@ 20 eoutof 4

20
A u (v)

15
0 20 5 R

10

&= 0

Y

15
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Cuts and Flow Value
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Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

f] = foUt(4) — f™(A).

Proof:
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Cuts and Flow Value
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Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

f] = foUt(4) — f™(A).

Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

fl = f™(B) — f°"*(B).

Proof:
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Upper Bound on Flow Value
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Lemma:
Let f be any s-t flow and (4, B) and s-t cut. Then |f| < c(4, B).

Proof:
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Ford-Fulkerson Gives Optimal Solution ;
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Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B) in G for which

If| = c(4%, BY).
Proof:

e Define A™: set of nodes that can be reached from s on a path
with positive residual capacities in Gy:

e ForB* =V \ A" (A%, B*) isan s-t cut
— By definitions € A*andt & A"
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Ford-Fulkerson Gives Optimal Solution ;
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Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B) in G for which

If| = c(4%, BY).
Proof:
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Ford-Fulkerson Gives Optimal Solution ;
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Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B) in G for which

If| = c(4%, BY).
Proof:
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Ford-Fulkerson Gives Optimal Solution ;
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Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof:
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Min-Cut Algorithm
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Ford-Fulkerson also gives a min-cut algorithm:

Theorem: Given a flow f of maximum value, we can compute an
s-t cut of minimum capacity in O(m) time.

Proof:
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Max-Flow Min-Cut Theorem
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Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an s-t flow is
equal to the minimum capacity of an s-t cut.

Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn
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Integer Capacities
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Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a

maximum flow f for which the flow f(e) of every edge e is an
integer.

Proof:

Algorithm Theory, WS 2012/13 Fabian Kuhn 35



Non-Integer Capacities
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What if capacities are not integers?

e rational capacities:

— can be turned into integers by multiplying them with large enough integer
— algorithm still works correctly

e real (non-rational) capacities:

— not clear whether the algorithm always terminates

e even for integer capacities, time can linearly depend on the value
of the maximum flow
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Slow Execution
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e Number of iterations: 2000 (value of max. flow)
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Improved Algorithm
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Idea: Find the best augmenting path in each step
e best: path P with maximum bottleneck(P, f)

e Best path might be rather expensive to find
- find almost best path

e Scaling parameter A:
(initially, A = "max ¢, rounded down to next power of 2")

 Aslong as there is an augmenting path that improves the flow by
at least A, augment using such a path

e If thereis nosuch path: A := A/z
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Scaling Parameter Analysis
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Lemma: If all capacities are integers, number of different scaling
parameters used is < 1 + |log, C|.

e A-scaling phase: Time during which scaling parameter is A
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Length of a Scaling Phase

Lemma: If f is the flow at the end of the A-scaling phase, the
maximum flow in the network has value at most |f| + mA.

Algorithm Theory, WS 2012/13 Fabian Kuhn
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Length of a Scaling Phase
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Lemma: The number of augmentation in each scaling phase is at
most 2m.
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Running Time: Scaling Max Flow Alg.
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Theorem: The number of augmentations of the algorithm with
scaling parameter and integer capacities is at most O(m log C). The
algorithm can be implemented in time 0(m?log C).
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Strongly Polynomial Algorithm
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 Time of regular Ford-Fulkerson algorithm with integer capacities:
0O(mC)

 Time of algorithm with scaling parameter:

0 (m?log C)

O(log C) is polynomial in the size of the input, but notinn
e Can we get an algorithm that runs in time polynomial in n?

e Always picking a shortest augmenting path leads to running time
0(m?n)
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Preflow-Push Max-Flow Algorithm
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Definition:
An s-t preflow is a function f: E = R, such that

e Foreachedgee €E: f(e) <c,
e Foreachnodev eV \ {s}:

Y f@= ) fe

e intov e out of v

Excess of node v:

@)= Y f@- ) fe)

e intov e out of v

* Apreflow f with excess es(v) = 0 forallv # s, t is a flow

with value |f| = ef(t) = —er(s).

Algorithm Theory, WS 2012/13 Fabian Kuhn
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Preflows and Labelings
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Height function h: V — N
e Assigns an integer height to each nodev € V

Source and Sink Conditions:
e h(s)=n and h(t) =0

Steepness Condition:

e Forall edges e = (v, w) with residual capacity > 0
(residual graph Gy for a preflow f defined as before for flows)

h(v) < h(w) +1

e Apreflow f and a labeling h are called compatible if source,
sink, and steepness conditions are satisfied
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Compatible Labeling
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Arrows: edges of Gy with positive residual capacity
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Preflows with Compatible Labelings
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Lemma: If a preflow f is compatible with a labeling h, then there is
no s-t path in Gy with only positive residual capacities.
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Flows with Compatible Labelings
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Lemma: If s-t flow f is compatible with a labeling h, then f is a
flow of maximum value.

Algorithm Theory, WS 2012/13 Fabian Kuhn
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Algorithm Idea:
e Start with a preflow f and a compatible labeling
e Extend preflow f while keeping a compatible labeling

* Assoonas f is aflow (nodes v # s, t have excess ef(v) = 0),
f is a maximum flow

Initialization:
e Labeling h: h(s) =n, h(v) =0forallv # s
e Preflow f:
— Edges e = (s,u) of G out of s need residual capacity 0: f(e) = c,

— Preflow on other edges e does not matter: f(e) = 0

Algorithm Theory, WS 2012/13 Fabian Kuhn 49



Initialization
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Initial labeling h: h(s) =n, h(v) = 0forv # s

Initial preflow f:

edge e out of s: f(e) = c,,

other edgese: f(e) =0

Claim: Initial labeling h and preflow f are compatible.

Algorithm Theory, WS 2012/13
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Push
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Consider some node v with excess ef(v) > 0:

* Assume v has a neighbor w in the residual graph G¢such that the
edge e = (v, w) has positive residual capacity and h(v) > h(w):

push flow fromvtow

» If eisaforward edge: increase f(e) by min{ef(v), Co — f(e)}

* If eis abackward edge: decrease f(e) by min{ef(v),f(e)}
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Relabel
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Consider some node v with excess ef(v) > 0:

* Assume that it is not possible to push flow to a neighbor in G¢:

For all edges e = (v, w) in G with positive residual capacity, we
have h(w) = h(v)

relabel v: h(v) .= h(v) + 1
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 Aslong as there is a node v with excess ef(v) > 0, if possible do
a push operation from v to a neighbor, otherwise relabel v

Lemma: Throughout the Preflow-Push Algorithm:
i. Labels are non-negative integers

ii. If capacities are integers, f is an integer preflow

iii. The preflow f and the labeling h are compatible

If the algorithm terminates, f is a maximum flow.
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Properties of Preflows
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Lemma: If f is a preflow and node v has excess es(v) > 0, then
there is a path with positive residual capacities in G¢ from v to s.
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Heights
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Lemma: During the algorithm, all nodes v have h(v) < 2n — 1.

Algorithm Theory, WS 2012/13 Fabian Kuhn
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Number of Relabelings
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Lemma: During the algorithm, each node is relabeled at most
2n — 1 times.

e Hence: total number or relabeling operations < 2n?
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Number of Saturating Push Operations ;
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e A push operation on (v, w) is called saturating if:
— e = (v,w) is a forward edge and after the push, f((v, W)) = C,
— e = (v,w) is a backward edge and after the push, f((W, v)) =0

Lemma: The number of saturating push operations is at most 2nm.
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Number of Non-Saturating Push Ops.
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Lemma: There are < 2n?m non-saturating push operations.

Proof:

Potential function:

O(f, h) == z h(v)
v:ier(v)>0
At all times, ®(f,h) > 0
Non-saturating push on (v, w):
— Before push: ef(v) > 0, after push: ef(v) = 0
— Push might increase e;(w) from0to> 0
— h(v) 2h(w)+1 >  pushdecreases ®(f, h) by at least 1

Relabel: increases ®(f, h) by 1

Saturating push on (v, w): er (W) might be positive afterwards
- ®(f,h) increases by at most h(w) < 2n —1
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Number of Non-Saturating Push Ops.

Lemma: There are < 2n?m non-saturating push operations.

Proof:

e Potential function ®(f,h) = 0

e Non-saturating push decreases ®(f, h) by 1

e Relabel increases ®(f,h) by 1

» Saturating push increase ®(f,h) by < 2n —1

Algorithm Theory, WS 2012/13 Fabian Kuhn
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Preflow-Push Algorithm
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Theorem: The preflow-push algorithm computes a maximum
flow after at most 0 (mn?) push and relabel operations.

Algorithm Theory, WS 2012/13 Fabian Kuhn
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Choosing a Maximum Height Node
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Lemma: If we always choose a node v with ef(v) > 0 at maximum
height, there are at most O(n?) non-saturating push operations.

Proof: New potential function: H :== max h(v)
v:ier(v)>0

Algorithm Theory, WS 2012/13 Fabian Kuhn 61



Choosing a Maximum Height Node
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Lemma: If we always choose a node v with ef(v) > 0 at maximum
height, there are at most O(n?) non-saturating push operations.

Proof: New potential function: H :== max h(v)
v:ier(v)>0
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Theorem: If we always use a maximum height node with positive
excess, the preflow-push algorithm computes a maximum flow after
at most 0 (n?) push and relabel operations.

Theorem: The preflow-push algorithm that always chooses a

maximum height node with positive excess can be implemented in
time 0 (n3).

Proof: see exercises
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Maximum Flow Applications

e Maximum flow has many applications

e Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

e Examples:
— related network flow problems
— computation of small cuts
— computation of matchings
— computing disjoint paths
— scheduling problems
— assignment problems with some side constraints
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Undirected Edges and Vertex Capacities .
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Undirected Edges:
* Undirected edge {u, v}: add edges (u, v) and (v, u) to network

Vertex Capacities:
 Not only edge, but also (or only) nodes have capacities

e Capacity ¢, of node v & {s, t}:
finw) = foUw) <

e Replace node v by edge e, = {Vin, Vout}:
e O
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Minimum s-t Cut

Given: undirected graph ¢ = (V/,E), nodes s,t € V
s-t cut: Partition (4,B) of V suchthats € A,t € B

Size of cut (4, B): number of edges crossing the cut

Objective: find s-t cut of minimum size

Algorithm Theory, WS 2012/13 Fabian Kuhn
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Edge Connectivity
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Definition: A graph G = (V, E) is k-edge connected for an integer
k = 1if the graph Gy = (V,E \ X) is connected for every edge set

XCE,|X|<k-1.

Goal: Compute edge connectivity A(G) of G
(and edge set X of size A(G) that divides G into = 2 parts)

e minimum set X is a minimum s-t cut forsome s,t € I/
— Actually for all s, t in different components of Gy = (V,E \ X)

e Possible algorithm: fix s and find min s-t cutforallt # s
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Minimum s-t Vertex-Cut
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Given: undirected graph ¢ = (V/,E), nodes s,t € V

s-t vertex cut: Set X < V suchthats,t € X and sand t arein
different components of the sub-graph G[V \ X] induced by V \ X

Size of vertex cut: | X|

Objective: find s-t vertex-cut of minimum size
e Replace undirected edge {u, v} by (u, v) and (v, u)
e Compute max s-t flow for edge capacities co and node capacities

c, = 1forv #s,t
* Replace each node v by v;, and v ¢:

e Min edge cut corresponds to min vertex cut in G
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Vertex Connectivity
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Definition: A graph G = (V, E) is k-vertex connected for an integer
k = 1 if the sub-graph G [V \ X] induced by V' \ X is connected for
every edge set

XCV,|X|<k-1.

Goal: Compute vertex connectivity k(G) of G
(and node set X of size k(G) that divides G into = 2 parts)

e Compute minimum s-t vertex cut for fixed sand allt # s
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Edge-Disjoint Paths
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Given: Graph G = (V,E) with nodes s,t € V
Goal: Find as many edge-disjoint s-t paths as possible

Solution:
* Find max s-t flow in G with edge capacitiesc, = 1foralle € E

Flow f induces |f| edge-disjoint paths:
* Integral capacities = can compute integral max flow f
* Get |f| edge-disjoint paths by greedily picking them

e Correctness follows from flow conservation f1*(v) = fOu(p)
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Vertex-Disjoint Paths

UNI
I

FREIBURG

Given: Graph G = (V,E) with nodes s,t € V
Goal: Find as many internally vertex-disjoint s-t paths as possible

Solution:
* Find max s-t flow in G with node capacitiesc, = 1 forallv eV

Flow f induces |f| vertex-disjoint paths:
* Integral capacities = can compute integral max flow f
o Get |f]| vertex-disjoint paths by greedily picking them

e Correctness follows from flow conservation f1*(v) = fOU(p)
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Menger’s Theorem
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Theorem: (edge version)

For every graph G = (V, E) with nodes s,t € V, the size of the
minimum s-t (edge) cut equals the maximum number of pairwise
edge-disjoint paths from s to t.

Theorem: (node version)

For every graph G = (V, E) with nodes s,t € V, the size of the
minimum s-t vertex cut equals the maximum number of pairwise
internally vertex-disjoint paths from s to t

e Both versions can be seen as a special case of the max flow min
cut theorem
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Baseball Elimination

UNI

FREIBURG

Algorithm Theory, WS 2012/13

Team Wins Losses To Play Against = 1;;
[ w; ?; NY Balt. T. Bay
New York 81 70 11 - 2 4 2 3
Baltimore 79 77 6 2 - 2 1 1
Tampa Bay 78 76 8 4 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
Boston 72 83 7 3 1 1 2 -

Only wins/losses possible (no ties), winner: team with most wins

Which teams can still win (as least as many wins as top team)?
Boston is eliminated (cannot win):

— Boston can get at most 79 wins, New York already has 81 wins

If for some i, j: w; +1; < w; 2 team i is eliminated

Sufficient condition, but not a necessary one!

Fabian Kuhn



Baseball Elimination
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Team Wins Losses To Play Against = 1;;
[ w; ?; ; NY Balt. T. Bay
New York 81 70 11 - 2 4 2 3
Baltimore 79 77 6 2 - 2 1 1
Tampa Bay 78 76 8 4 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
Boston 72 83 7 3 1 1 2 -

e Can Toronto still finish first?

e Toronto can get 82 > 81 wins, but:
NY and Tampa have to play 4 more times against each other
- if NY wins one, it gets 82 wins, otherwise, Tampa has 82 wins

e Hence: Toronto cannot finish first
e How about the others? How can we solve this in general?
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Max Flow Formulation
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e (Can team 3 finish with most wins?

Remaining number
of games between
the 2 teams

team Number of wins team i can

game nodes have to not beat team 3
nodes

e Team 3 can finish first iff all source-game edges are saturated

Algorithm Theory, WS 2012/13 Fabian Kuhn 75



Reason for Elimination
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(BN
\o)
(o)
(@)}

AL East: Aug 30,
Team Wins Losses To Play Against = 1;;
[ w; ?; T; \'\ Balt. Bost.  Tor.
New York 75 59 28 - 3 8 7 3
Baltimore 71 63 28 3 - 2 7 4
Boston 69 66 27 8 2 - 0 0
Toronto 63 72 27 7 7 0 - 0
Detroit 49 86 27 3 4 0 0 -

e Detroit could finish with 49 4+ 27 = 76 wins
e Consider R = {NY, Bal, Bos, Tor}

— Have together already won w(R) = 278 games

— Must together win at least ¥(R) = 27 more games

 On average, teamsin R win

Algorithm Theory, WS 2012/13
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Reason for Elimination
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Certificate of elimination:

R € X,

w(R) =

Wi,
lER
!

Hwins of

nodesin R

Team x € X is eliminated by R if

Algorithm Theory, WS 2012/13

w(R) +

r(R)
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r(R) = z Tij

I,JER

|
#remaining games
among nodes in R
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Reason for Elimination
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Theorem: Team x is eliminated if and only if there exists a subset
R € X of the teams X such that x is eliminated by R.

Proof Idea:

Minimum cut gives a certificate...

If x is eliminated, max flow solution does not saturate all
outgoing edges of the source.

Team nodes of unsaturated source-game edges are saturated

Source side of min cut contains all teams of saturated team-dest.

edges of unsaturated source-game edges

Set of team nodes in source-side of min cut give a certificate R
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Circulations with Demands
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Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several
sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands
are exactly satisfied

e The circulation problem is a feasibility rather than a maximization
problem
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Circulations with Demands: Formally

Given: Directed network G = (V/, E) with
e Edge capacitiesc, > Oforalle € E

e Nodedemandsd, € RforallveVl

— d, > 0: node needs flow and therefore is a sink
— d, < 0:node has a supply of —d,, and is therefore a source
— d, = 0: node is neither a source nor a sink

Flow: Function f: E = R, satisfying
e Capacity Conditions:Ve € E: 0 < f(e) <c,
e Demand Conditions: Vv € V: fi%(v) — foUuv) =d,

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.

Algorithm Theory, WS 2012/13 Fabian Kuhn
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Example
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Condition on Demands
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Claim: If there exists a feasible circulation with demands d,, for

v € V, then
Zdv — 0.

vev
Proof:

* Ypdy = Zv(fin(v) - fOUt(v))

 f(e) of each edge e appears twice in the above sum with
different signs = overall sum is 0

Total supply = total demand:

Define D = z d, = z -d,

v:d,>0 v:d,,<0
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Reduction to Maximum Flow
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e Add “super-source” s* and “super-sink” t* to network

s” supplies t* siphons
sources flow out
with flow of sinks
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Example
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Formally...

Reduction: Get graph G’ from graph as follows
e Nodesetof G'isV U {s*, t*}

e Edge setis E and edges
— (s%,v) forall v with d, < 0, capacity of edge is —d,,
— (v, t*) for all v with d,, > 0, capacity of edge is d,,

Observations:

e Capacity of min s*-t* cut is at least D (e.g., the cut (s*,V U {t*})

e Afeasible circulation on G can be turned into a feasible flow of
value D of G’ by saturating all (s*,v) and (v, t*) edges.

e Any flow of G’ of value D induces a feasible circulation on G

— (s*,v) and (v, t*) edges are saturated
— By removing these edges, we get exactly the demand constraints
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Circulation with Demands
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Theorem: There is a feasible circulation with demands d,, v € V
on graph G if and only if there is a flow of value D on G'.

e |f all capacities and demands are integers, there is an integer
circulation

The max flow min cut theorem also implies the following:

Theorem: The graph G has a feasible circulation with demands
d,, v € V if and only if for all cuts (4, B),

z d, < c(A,B).
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Circulation: Demands and Lower Bounds _
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Given: Directed network G = (V/, E) with
e Edge capacities ¢, > 0 and lower bounds 0 < ¥, < c, fore € E

e Nodedemandsd, € RforallveVl

— d, > 0: node needs flow and therefore is a sink
— d, < 0:node has a supply of —d,, and is therefore a source
— d, = 0: node is neither a source nor a sink

Flow: Function f: E = R, satisfying
e Capacity Conditions:Ve € E: £, < f(e) < c,
« Demand Conditions: Yv € V: fi%(v) — fOUu(v) =d,

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.
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Solution Idea
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* Define initial circulation f(e) = £,
Satisfies capacity constraints: Ve € E: ¢, < f,(e) < c,

e Define
Lo = '@ = @) = Y le= ) e
e into v e out of v

 If L, = 0, demand condition is satisfied at v by f,, otherwise, we
need to superimpose another circulation f; such that

dy = fi"(0) = [P W) = dy ~ Ly
e Remaining capacity of edge e: ¢, := c, — ¥,

e We get a circulation problem with new demands d;,, new
capacities c,, and no lower bounds
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Lower bound of 2
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Reduce to Problem Without Lower Bounds
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Graph ¢ = (V,E):
e Capacity: Foreachedgee € E: ¥, < f(e) <c,
e Demand: For each node v € V: f(v) — f°U(v) = d,,

Model lower bounds with supplies & demands:

W—==C @

Flow: ¢,

Create Network G’ (without lower bounds):
* Foreachedgee€E:c, =c, — ¥,
* ForeachnodeveV:d, =d,— L,
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Circulation: Demands and Lower Bounds _:.

2
= T

Theorem: There is a feasible circulation in G (with lower bounds) if
and only if there is feasible circulation in G’ (without lower bounds).

e Given circulation f in G’, f(e) = f'(e) + ¢, is circulation in G
— The capacity constraints are satisfied because f'(e) < ¢, — ¥,
— Demand conditions:

Fr@) = fUm = ) @t fi) = Y Wt fE)
e into v e out of v

=L, +(d, —L,) =d,
e Given circulation fin G', f(e) = f'(e) + ¥, is circulation in G
— The capacity constraints are satisfied because f'(e) < ¢, — ¥,
— Demand conditions:

Fr@ -t = ) (F@-2)— ) ()t
e intov e out of v

=d,—L,
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Integrality
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Theorem: Consider a circulation problem with integral capacities,
flow lower bounds, and node demands. If the problem is feasible,
then it also has an integral solution.

Proof:
e Graph G’ has only integral capacities and demands

 Thus, the flow network used in the reduction to solve
circulation with demands and no lower bounds has only
integral capacities

e The theorem now follows because a max flow problem with
integral capacities also has an optimal integral solution

e |t also follows that with the max flow algorithms we studied,
we get an integral feasible circulation solution.
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Matrix Rounding
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* Given: p X g matrix D = {d; ;} of real numbers
* rowisum:q; =),;d;;, columnjsum:b; =),;d,;;

* Goal: Round each d; ;, as well as a; and b; up or down to the

next integer so that the sum of rounded elements in each row
(column) equals the rounded row (column) sum

e Original application: publishing census data

Example:

3.14 | 6.80 | 7.30
9.60 | 2.40 | 0.70
3.60 | 1.20

original data possible rounding
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Theorem: For any matrix, there exists a feasible rounding.

Remark: Just rounding to the nearest integer doesn’t work

original data

rounding to nearest integer feasible rounding
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Reduction to Circulation
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Matrix elements and row/column sums
give a feasible circulation that satisfies

all lower bound, capacity, and demand

constraints

columns:

all demands d,, = 0
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Matrix Rounding
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Theorem: For any matrix, there exists a feasible rounding.

Proof:

* The matrix entries d; ; and the row and column sums a; and b;
give a feasible circulation for the constructed network

e Every feasible circulation gives matrix entries with corresponding
row and column sums (follows from demand constraints)

 Because all demands, capacities, and flow lower bounds are
integral, there is an integral solution to the circulation problem

- gives a feasible rounding!
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Gifts-Children Graph
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 Which child likes which gift can be represented by a graph

b J
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Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size */, (every node is matched)
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Bipartite Graph

Definition: A graph G = (V, E) is called bipartite iff its node set
can be partitioned into two parts V = I/; U V, such that for each

edge {u,v} € E,
Hu,v}nV;| =1.

 Thus, edges are only between the two parts

O

E
4 £
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Santa’s Problem

Maximum Matching in Bipartite Graphs:

Every child can get a gift
iff there is a matching
of size #children

Clearly, every matching
is at most as big

® [ l‘ﬁ)( S0 B

If #children = #gifts,
there is a solution iff
there is a perfect matching

=
9

L 3
L .

g

[
o
=
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Reducing to Maximum Flow
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e Like edge-disjoint paths...

all capacities are 1

Algorithm Theory, WS 2012/13 Fabian Kuhn
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Reducing to Maximum Flow
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Theorem: Every integer solution to the max flow problem on the
constructed graph induces a maximum bipartite matching of G.

Proof:

1. Aflow f of value |f| induces a matching of size |f|
— Left nodes (gifts) have incoming capacity 1
— Right nodes (children) have outgoing capacity 1
— Left and right nodes are incident to < 1 edge e of G with f(e) =1

2. A matching of size k implies a flow f of value |f| = k
—  For each edge {u, v} of the matching:

f(sw)=7f(wv)=Ff(wt)=1

— All other flow values are 0
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Running Time of Max. Bipartite Matching
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Theorem: A maximum matching of a bipartite graph can be
computed in time

Algorithm Theory, WS 2012/13 Fabian Kuhn
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Perfect Matching?
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e There can only be a perfect matching if both sides of the
partition have size /,.

e There is no perfect matching, iff there is an s-t cut of
size < "/, in the flow network.
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s-t Cuts

Partition (4, B) of node set suchthats € Aandt € B
e Ifv; € A:edge (v;,t)isincut (4,B)
 Ifu; € B:edge (s,u;)isincut (4, B)

e Otherwise (if u; € A, v; € B), all edges from u; to some
v; € B areincut (4,B)
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Hall’s Marriage Theorem
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Theorem: A bipartite graph ¢ = (U UV, E) for which |U| = |V|
has a perfect matching if and only if

vU' c U:|N(U)| = U],
where N(U") € V is the set of neighbors of nodes in U'.

Proof: No perfect matching & some s-t cut has capacity < n
1. Assume thereis U’ for which [N(U")| < |U']:

U’ N(U’)
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Hall’s Marriage Theorem
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UNI

Theorem: A bipartite graph ¢ = (U UV, E) for which |U| = |V|
has a perfect matching if and only if

vU' c U:|N(U)| = U],
where N(U") € V is the set of neighbors of nodes in U'.

Proof: No perfect matching & some s-t cut has capacity < n
2. Assume that thereis a cut (4, B) of capacity < n
Ul=n—x U’

NU)<y+z : g : y
e O x+y+z<n(— G
O O
NG 5
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Hall’s Marriage Theorem
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UNI

Theorem: A bipartite graph ¢ = (U UV, E) for which |U| = |V|
has a perfect matching if and only if

vU' c U:|N(U)| = U],
where N(U") € V is the set of neighbors of nodes in U'.

Proof: No perfect matching & some s-t cut has capacity < n
2. Assume that thereis a cut (4, B) of capacity < n

Ul=n—x
NU)<y+z
X+y+z<n
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What About General Graphs
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e Can we efficiently compute a maximum matching if G is not
bipartitie?

e How good is a maximal matching?

— A matching that cannot be extended...

e Vertex Cover:set S € V of nodes such that
vi{u,v} € E, fu,vins + Q.

<o

A vertex cover covers all edges by incident nodes

Algorithm Theory, WS 2012/13 Fabian Kuhn
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Vertex Cover vs Matching
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Consider a matching M and a vertex cover S

Claim: |[M| < |S]

Proof:
e Atleast one node of every edge {u,v} € Misin S
 Needs to be a different node for different edges from M
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Vertex Cover vs Matching
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Consider a matching M and a vertex cover S

Claim: If M is maximal and S is minimum, |S| < 2|M|

Proof:

e M is maximal: for every edge {u, v} € E, either u or v (or both)
are matched

e Everyedge e € E is “covered” by at least one matching edge

 Thus, the set of the nodes of all matching edges gives a vertex
cover S of size |S| = 2|M|.

Algorithm Theory, WS 2012/13 Fabian Kuhn 112



UNI

Maximal Matching Approximation
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Theorem: For any maximal matching M and any maximum matching
M™, it holds that
M| > m
2

Proof:

Theorem: The set of all matched nodes of a maximal matching M is
a vertex cover of size at most twice the size of a min. vertex cover.
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Augmenting Paths
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Consider a matching M of agraph G = (V, E):
e Anodev € Viscalled free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free
node and visits edges in E \ M and edges in M alternatingly.

free nodes

e Matching M can be improved using an augmenting path by
switching the role of each edge along the path
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Augmenting Paths
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Theorem: A matching M of G = (V, E) is maximum if and only if
there is no augmenting path.

Proof:
e Consider non-max. matching M and max. matching M™ and define
F==M\M", F*:=M"\M

* Notethat FNF* =@ and |F| < |F7|
e Each node v € V isincident to at most one edge in both F and F~*
e F U F"induces even cycles and paths

O e e )

O e e e )

O e e e )
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Finding Augmenting Paths
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augmenting path
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Blossoms
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* If we find an odd cycle...
free node () f

Graph G

Matching M
contract
blossom @\
.contracted blossom
( : —v

Graph G’

Y
wals

Matching M’ = M \ {e, e’}
is a matching of G'.

blossom
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Lemma: Graph G has an augmenting path w.r.t. matching M iff G’
has an augmenting path w.r.t. matching M’

f f

Note: If stem has length 0O,
root v of blossom if free
and thus also the node v’
is free in G'.

Also: The matching M can be computed efficiently from M'.

Algorithm Theory, WS 2012/13 Fabian Kuhn 118



Edmond’s Blossom Algorithm
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Algorithm Sketch:
1. Build a tree for each free node

2. Starting from an explored node u at even distance from a free
node f in the tree of f, explore some unexplored edge {u, v}:

1. If visan unexplored node, v is matched to some neighbor w:
add w to the tree (w is now explored)

2. Ifvisexplored and in the same tree:
at odd distance from root - ignore and move on
at even distance from root = blossom found

3. Ifvisexplored and in another tree
at odd distance from root - ignore and move on
at even distance from root - augmenting path found
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Running Time
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Finding a Blossom: Repeat on smaller graph
Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time O (mn?).

Algorithm Theory, WS 2012/13 Fabian Kuhn
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Matching Algorithms
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We have seen:
e O(mn) time alg. to compute a max. matching in bipartite graphs

. O(mnz) time alg. to compute a max. matching in general graphs

Better algorithms:

e Best known running time (bipartite and general gr.): O(m\/ﬁ)

Weighted matching:
 Edges have weight, find a matching of maximum total weight
e Bipartite graphs: flow reduction works in the same way

e General graphs: can also be solved in polynomial time
(Edmond’s algorithms is used as blackbox)
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Happy Holidays!
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