)

Chapter 8
Parallel Algorithms

Algorithm Theory
WS 2012/13

Fabian Kuhn

UNI

FREIBURG

Sequential Algorithms

UNI

FREIBURG

Classical Algorithm Design:
 One machine/CPU/process/... doing a computation

RAM (Random Access Machine):

e Basic standard model

e Unit cost basic operations

e Unit cost access to all memory cells

Sequential Algorithm / Program:

e Sequence of operations
(executed one after the other)

Algorithm Theory, WS 2012/13 Fabian Kuhn

Parallel and Distributed Algorithms

UNI
I

FREIBURG

Today’s computers/systems are not sequential:

e Even cell phones have several cores

e Future systems will be highly parallel on many levels
e This also requires appropriate algorithmic techniques

Goals, Scenarios, Challenges:

e Exploit parallelism to speed up computations

e Shared resources such as memory, bandwidth, ...

* Increase reliability by adding redundancy

e Solve tasks in inherently decentralized environments

Algorithm Theory, WS 2012/13 Fabian Kuhn

Parallel and Distributed Systems

UNI
I

FREIBURG

 Many different forms

* Processors/computers/machines/... communicate and share
data through

— Shared memory or message passing

e Computation and communication can be

— Synchronous or asynchronous
e Many possible topologies for message passing
e Depending on system, various types of faults

Algorithm Theory, WS 2012/13 Fabian Kuhn

Challenges

UNI
FREIBURG

Algorithmic and theoretical challenges:

How to parallelize computations

Scheduling (which machine does what)

Load balancing

Fault tolerance

Coordination / consistency

Decentralized state

Asynchrony

Bounded bandwidth / properties of comm. channels

Algorithm Theory, WS 2012/13 Fabian Kuhn 5

Models

UNI
I

FREIBURG

e Alarge variety of models, e.g.:

e PRAM (Parallel Random Access Machine)

— Classical model for parallel computations

e Shared Memory

— Classical model to study coordination / agreement problems,
distributed data structures, ...

* Message Passing (fully connected topology)

— Closely related to shared memory models

e Message Passing in Networks

— Decentralized computations, large parallel machines, comes in various
flavors...

Algorithm Theory, WS 2012/13 Fabian Kuhn 6

PRAM

UNI
I

FREIBURG

 Parallel version of RAM model
e p processors, shared random access memory

-

e Basic operations / access to shared memory cost 1
e Processor operations are synchronized

e Focus on parallelizing computation rather than cost of
communication, locality, faults, asynchrony, ...

Algorithm Theory, WS 2012/13 Fabian Kuhn 7

Other Parallel Models

UNI
I

FREIBURG

e Message passing: Fully connected network, local memory and
information exchange using messages

e Dynamic Multithreaded Algorithms: Simple parallel
programming paradigm
— E.g., used in Cormen, Leiserson, Rivest, Stein (CLRS)

FIB(n) v
: <2
1 if n<2 N
2 then return n ‘
3 x « spawn FIB(n — 1) ‘ ‘
4 y «— spawn FIB(n — 2) ‘l\‘
> sypec A T&.ORITHMS
6 return (r +y)

Algorithm Theory, WS 2012/13 Fabian Kuhn 8

Parallel Computations

UNI
FREIBURG

Sequential Computation: Parallel Computation:
e Sequence of operations e Directed Acyclic Graph (DAG)

Q
Q

® =

. =

O & @)

Algorithm Theory, WS 2012/13 Fabian Kuhn 9

Parallel Computations

UNI
FREIBURG

T,: time to perform comp. with p procs

e T,:work (total # operations)

— Time when doing the
computation sequentially

e T,:critical path / span

— Time when parallelizing as
much as possible

e Lower Bounds:

Algorithm Theory, WS 2012/13 Fabian Kuhn

~
=\

l

e

b

Parallel Computations

UNI
I

FREIBURG

T,: time to perform comp. with p procs

e Lower Bounds:

) 1
e Parallelism: —
Too

— maximum possible speed-up

e Linear Speed-up:
T

p _
T—l—@(P)

Algorithm Theory, WS 2012/13 Fabian Kuhn

T1=11
)
To,=5

UNI

Scheduling

FREIBURG

 How to assign operations to processors?

e Generally an online problem

— When scheduling some jobs/operations, we do not know how the
computation evolves over time

Greedy (offline) scheduling:

e Order jobs/operations as they would be scheduled optimally
with oo processors (topological sort of DAG)

— Easy to determine: With oo processors, one always schedules all
jobs/ops that can be scheduled

e Always schedule as many jobs/ops as possible
e Schedule jobs/ops in the same order as with co processors

— i.e., jobs that become available earlier have priority

Algorithm Theory, WS 2012/13 Fabian Kuhn 12

Brent’s Theorem

UNI
I

FREIBURG

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Proof:
 Greedy scheduling achieves this...
e Hoperations scheduled with oo processors in round i: x;

Algorithm Theory, WS 2012/13 Fabian Kuhn 13

Brent’s Theorem

UNI
I

FREIBURG

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Proof:
 Greedy scheduling achieves this...
e Hoperations scheduled with oo processors in round i: x;

Algorithm Theory, WS 2012/13 Fabian Kuhn 14

UNI

Brent’s Theorem

FREIBURG

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors p = 0(T, /Tw), it is
possible to achieve a linear speed-up.

Algorithm Theory, WS 2012/13 Fabian Kuhn 15

PRAM

UNI
I

FREIBURG

Back to the PRAM:
e Shared random access memory, synchronous computation steps
e The PRAM model comes in variants...

EREW (exclusive read, exclusive write):
e Concurrent memory access by multiple processors is not allowed

e |f two or more processors try to read from or write to the same
memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):
e Reading the same memory cell concurrently is OK

e Two concurrent writes to the same cell lead to unspecified
behavior

e This is the first variant that was considered (already in the 70s)

Algorithm Theory, WS 2012/13 Fabian Kuhn 16

PRAM

UNI

FREIBURG

The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):
e Concurrent reads and writes are both OK

e Behavior of concurrent writes has to specified
— Weak CRCW: concurrent write only OK if all processors write 0
— Common-mode CRCW: all processors need to write the same value
— Arbitrary-winner CRCW: adversary picks one of the values
— Priority CRCW: value of processor with highest ID is written
— Strong CRCW: largest (or smallest) value is written

e The given models are ordered in strength:

weak < common-mode < arbitrary-winner < priority < strong

Algorithm Theory, WS 2012/13 Fabian Kuhn 17

Some Relations Between PRAM Models _

Theorem: A parallel computation that can be performed in time ¢,
using p processors on a strong CRCW machine, can also be
performed in time O(t logp) using p processors on an EREW
machine.

e Each (parallel) step on the CRCW machine can be simulated by
O(logp) steps on an EREW machine

Theorem: A parallel computation that can be performed in time ¢,
using p probabilistic processors on a strong CRCW machine, can
also be performed in expected time O(t logp) using O(p/logp)
processors on an arbitrary-winner CRCW machine.

e The same simulation turns out more efficient in this case

Algorithm Theory, WS 2012/13 Fabian Kuhn 18

UNI
FREIBURG

Some Relations Between PRAM Models _

FRE:BURG

UNI

Theorem: A computation that can be performed in time t, using p
processors on a strong CRCW machine, can also be performed in
time O(t) using O(p?) processors on a weak CRCW machine

Proof:
e Strong: largest value wins, weak: only concurrently writing 0 is OK

Algorithm Theory, WS 2012/13 Fabian Kuhn 19

Some Relations Between PRAM Models _

FRE:BURG

UNI

Theorem: A computation that can be performed in time t, using p
processors on a strong CRCW machine, can also be performed in
time O(t) using O(p?) processors on a weak CRCW machine

Proof:
e Strong: largest value wins, weak: only concurrently writing 0 is OK

Algorithm Theory, WS 2012/13 Fabian Kuhn 20

Computing the Maximum

|
FRE:BURG

UNI

Observation: On a strong CRCW machine, the maximum of an
values can be computed in O (1) time using n processors

e Each value is concurrently written to the same memory cell

Lemma: On a weak CRCW machine, the maximum of n integers
between 1 and 4/n can be computed in time 0(1) using O(n) proc.

Proof:
e We have \/n memory cells f;, .., f yzm for the possible values
e Initializeall f; =1
* Forthe n values x4, ..., X, processor j sets ij =0
— Since only zeroes are written, concurrent writes are OK
 Now, f; = 0 iff value i occurs at least once
e Strong CRCW machine: max. value in time 0(1) w. 0(y/n) proc.
e Weak CRCW machine: time 0(1) using O(n) proc. (prev. lemma)

Algorithm Theory, WS 2012/13 Fabian Kuhn 21

Computing the Maximum

UNI
FREIBURG

Theorem: If each value can be represented using O (log n) bits, the
maximum of n (integer) values can be computed in time O(1) using
O (n) processors on a weak CRCW machine.

Proof:

log, n

First look at highest order bits

The maximum value also has the maximum among those bits

There are only v/n possibilities for these bits

log, n

max. of highest order bits can be computed in O(1) time

log, n

For those with largest highest order bits, continue with

log, n

next block of bits, ...

Algorithm Theory, WS 2012/13 Fabian Kuhn 22

Prefix Sums

UNI
FREIBURG

e The following works for any associative binary operator @:

associativity: (a®b)Dc = aB(bDc)

All-Prefix-Sums: Given a sequence of n values aq, ..., a,, the all-
prefix-sums operation w.r.t. @ returns the sequence of prefix sums:

S1,S2,..,S, = aq,a1Da,, a;Da,Da,, ..., a;D - Da,

e Can be computed efficiently in parallel and turns out to be an
important building block for designing parallel algorithms

Example: Operator: +, input: a4, ..., a3 = 3,1,7,0,4,1,6, 3

Algorithm Theory, WS 2012/13 Fabian Kuhn 23

Computing the Sum

UNI
I

FREIBURG

e Let'sfirstlookats, =a,®a,d - Da,

e Parallelize using a binary tree:

Algorithm Theory, WS 2012/13 Fabian Kuhn

24

Computing the Sum

UNI

Lemma: The sum s,, = a,@Da, D --- Da,, can be computed in
time O(logn) on an EREW PRAM. The total number of
operations (total work) is O (n).

Proof:

Corollary: The sum s,, can be computed in time O(logn) using
O(n/logn) processors on an EREW PRAM.

Proof:
e Follows from Brent’s theorem (T; = O0(n), T, = O(logn))

Algorithm Theory, WS 2012/13 Fabian Kuhn 25

FREIBURG

Getting The Prefix Sums

UNI
I

FREIBURG

* |nstead of computing the sequence s4, S5, ..., S, let’s compute
T vy Ty = 0,581,855, o, Sp—q (0: neutral element w.r.t. @)

Ty, .., =0,a,a,Da,,..,a;D - Da,,_1

* Together with s,,, this gives all prefix sums
 Prefixsumr; =5s;_1 =a,D--Da;_1:

©
© ©

©) ©. ©) ©

@ (@ @ (@ @ (& @ (&
@ @@ @ @@ W @ @ wew @ @ e @

r14

Algorithm Theory, WS 2012/13 Fabian Kuhn (513) 26

UNI

Getting The Prefix Sums

FREIBURG

Claim: The prefix sumr; = a;@® --- Da;_4 is the sum of all the
leaves in the left sub-tree of ancestor u of the leaf v containing a;

such that v is in the right sub-tree of u.

©
©) ©. (@) ©.

@ (@ @ (@ @ (@ @ (@
@ @@ @ @@ W @ @ e @ @ e @

Algorithm Theory, WS 2012/13 Fabian Kuhn 27

Computing The Prefix Sums

UNI
I

FREIBURG

For each node v of the binary tree, define r(v) as follows:

o r(v)isthe sum of the values a; at the leaves in all the left sub-
trees of ancestors u of v such that v is in the right sub-tree of u.

For a leaf node v holding value a;: r(v) = r; = s;_4

For the root node: r(root) = 0

For all other nodes v: v is the right child of u:

(u has left child w)

@fa v is the left child of u: @ﬁ\@ () = r(u) + S
r(v) =r(u)

A (S: sum of values in

sub-tree of w)

Algorithm Theory, WS 2012/13 Fabian Kuhn 28

Computing The Prefix Sums

UNI
FREIBURG

* leaf node v holding value a;: r(v) =1; = 5;_4
e root node: r(root) =0

* Node v is the left child of u: r(v) = r(u)

e Node visthe right childof u: r(v) =r(u) + S

— Where: S = sum of values in left sub-tree of u

Algorithm to compute values r(v):

1. Compute sum of values in each sub-tree (bottom-up)
— Can be done in parallel time O (logn) with O (n) total work

2. Compute values r(v) top-down from root to leaves:

— To compute the value r(v), only r(u) of the parent u and the sum of the
left sibling (if v is a right child) are needed

— Can be done in parallel time O (logn) with O(n) total work

Algorithm Theory, WS 2012/13 Fabian Kuhn 29

Example

UNI
FREIBURG

1. Compute sums of all sub-trees

— Bottom-up (level-wise in parallel, starting at the leaves)

2. Compute values r(v)

— Top-down (starting at the root)

0

52)

0 21

2y Y

0 10 2

19) (13

0 11 10 19 21 30

YR ONNO. (9)

34

18)

34 43

96@@099@6009 ONOIONO
0O 3 11

10 16 19 21 21 29 30 31

Algorithm Theory, WS 2012/13 Fabian Kuhn

34 38 43 50

30

Computing Prefix Sums

|
FRE:BURG

UNI

Theorem: Given a sequence a4y, ..., a, of n values, all prefix sums
S; = a1 - @Da; (for1 < i < n)can be computed in time O(logn)
using O(n/logn) processors on an EREW PRAM.

Proof:

e Computing the sums of all sub-trees can be done in parallel in
time O(logn) using O(n) total operations.

e The same is true for the top-down step to compute the r(v)

e The theorem then follows from Brent’s theorem:

T
I, =0(m), T =0(ogn) = T,<T, _|_?1

Remark: This can be adapted to other parallel models and to
different ways of storing the value (e.g., array or list)

Algorithm Theory, WS 2012/13 Fabian Kuhn 31

Parallel Quicksort

UNI
I

FREIBURG

e Key challenge: parallelize partition

pivot

5(14(18 19|21 1(25(17|11| 4 (20|10|26| 2 | 9 |13(23|16
partition

5|14 8 1|11 10/ 2 |19 (13(16/18(19(21/25(|17(20/26|23

e How can we do this in parallel?

* For now, let’s just care about the values < pivot

e What are their new positions

Algorithm Theory, WS 2012/13

Fabian Kuhn

32

UNI

Using Prefix Sums

FREIBURG

e Goal: Determine positions of values < pivot after partitionpivot

/

5|14/18 8 |19(21| 3 |1 |25/17|11| 4 (20{10(26| 2 | 9 (13|23 |16

@ prefix sums

1/12/2/3/3(3|4/5/5/5|/6|7|7|8[8|9|10(11|11/12

@ partition

5/14/8 |3 |1(11|4 10/ 2 |9 (13/16/18(19|21|25(17|20|26|23

Algorithm Theory, WS 2012/13 Fabian Kuhn 33

Partition Using Prefix Sums

e The positions of the entries > pivot can be determined in the

same way
e Prefixsums:T; =0(n), T, = 0(logn)
* Remaining computations: T; = 0(n), T, = 0(1)

e Overall: T; = 0(n), T, = 0(logn)

Lemma: The partitioning of quicksort can be carried out in
n

parallel in time O (logn) using O () processors.

logn
Proof:

e By Brent’s theorem: T, < % + Tw

Algorithm Theory, WS 2012/13 Fabian Kuhn

34

UNI
I

FREIBURG

Applying to Quicksort

UNI
I

FREIBURG

Theorem: On an EREW PRAM, using p processors, randomized
quicksort can be executed in time T, (in expectation and with

high probability), where

nlogn
Tp:0< pg +log2n>.

Proof:

Remark:

e We get optimal (linear) speed-up w.r.t. to the sequential
algorithm for all p = O(n/logn).

Algorithm Theory, WS 2012/13 Fabian Kuhn 35

Other Applications of Prefix Sums

UNI
I

FREIBURG

Prefix sums are a very powerful primitive to design parallel

algorithms.

— Particularly also by using other operators than +

Example Applications:

Lexical comparison of strings
Add multi-precision numbers
Evaluate polynomials

Solve recurrences

Radix sort / quick sort

Search for regular expressions

Implement some tree operations

Algorithm Theory, WS 2012/13 Fabian Kuhn

36

