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Exercise 1: Binomial Queue

We have seen in the lecture that when using a Binomial heap to implement Dijkstra’s algorithm for a
graph G with n nodes and m edges, we can upper bound the total running time by O(m log n). The
goal of this exercise is to show that this bound is tight for dense graphs.
Give a graph G = (V,E) with positive edge weights and m =

(
n
2

)
= Θ(n2) edges on which Dijkstra’s

algorithm implemented with a Binomial heap requires Θ(n2 log n) time.
When solving the exercise, you can assume that initially the nodes are inserted into the heap in the
worst possible order. You still need to show the inefficiency of using that heap in your counter example.

Exercise 2: Fibonacci Heap

(a) Consider the following Fibonacci heap (black nodes are marked, white nodes are unmarked). How
does the given Fibonacci heap look after a decrease-key(v, 2) operation and how does it look after
a subsequent delete-min operation?
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(b) Fibonacci heaps are only efficient in an amortized sense. The time to execute a single, individual
operation can be large. Show that in the worst case, both the delete-min and the decrease-key
operations can require time Ω(n) (for any heap size n).

Hint: Describe an execution in which there is a delete-min operation that requires linear time and
describe an execution in which there is a decrease-key operation that requires linear time.
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Exercise 3: Union-Find

(a) Show that when implementing a union-find data structure by using disjoint-set forests with the
union-by-size heuristic, the height of each tree is at most O(log n).

Hint: Show that any subtree with k nodes has height at most blog2 kc.

(b) Demonstrate that the above analysis is tight by giving an example execution (of merging n elements
in that data structure) that creates a tree of height Θ(log n). Can you even get a tree of height
blog2 nc?

Exercise 4: Amortized Analysis

You plan to implement a hash table. Because you don’t know how many keys will be inserted into
the hash table and because the number of keys stored in the hash table might change over time, you
want to be able to adapt the size of the hash table to the number of keys stored in the table. Your
implementation should allow two operations
Assume that you already have an efficient implementation for fixed table size s. Your implementation
allows new keys to be inserted efficiently as long as the load of the hash table is less than 3/4. That
is, as long as the number of elements in the table is less than 3

4s, your implementation guarantees that
an insert operation (which inserts one new key) costs O(1). A delete operation (which deletes one
key) can always be done in O(1) time. To adjust the table size based on the number of keys stored in
the table, you use the available implementation as follows.
Initially, the hash table is empty. When the first element x is inserted into the table, you build an
initial table of fixed size s0 and insert x. Assume that the cost for doing this is O(1). For simplicity,
assume that s0 = 8. Throughout, we will always work with one instance of the available hash table
implementation for a table of sufficiently large size s (which will always be divisible by 8). Operations
insert and delete are implemented as follows. Assume that s is the current table size and n is the
current number of keys stored in the table.

insert(x):

• If n < 3
4s, x is inserted into the current table. Recall that this can be done in O(1) time.

• If n = 3
4s, we set up a new hash table of size 2s and move all items from the old table to the

new larger table and insert x into the latter. We assume that the time to do this is O(s).

delete(x):

• If n > 1
8s, x is deleted from the current table. Recall that this can be done in O(1) time.

• If n = 1
8s, we first delete x. If s > 8, we then set up a new hash table of size s/2 and move all

items from the old table to the new smaller table. We assume that the time to do this is O(s).

For simplicity, we normalize time units such that all the above operations that can be done in O(1)
time need time at most 1 and the operations that take O(s) time need time at most s.
Show that the amortized running times of insert and delete are O(1),

a) once by using the accounting method (the “bank account method”) and

b) once via the potential function method.
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