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Exercise 1: Ford Fulkerson Algorithm

Consider the following flow network:

(a)

(b)

Solve the maximum flow problem on the above network by using the Ford Fulkerson algorithm.
Give all intermediate results.

Give a minimum capacity s-t cut of the given network. Describe how you can get the cut from
the maximum flow computed in (a).

Exercise 2: Network Flows

(a)

In this problem, we are given a flow network with unit-capacity edges: It consists of a directed
graph G = (V, E), a source node s € V, a sink node ¢t € V| and capacity ¢, = 1 for every e € FE.
We are also given a positive integer parameter k.

The goal is to delete k edges so as to reduce the maximum s-t flow in G by as much as possible.
In other words, you should find a set of edges F' C F so that |F| = k and the maximum s-t-flow
in G’ = (V,E\ F) is as small as possible.

Give a polynomial-time algorithm to solve this problem.

Suppose you are given a directed graph G = (V, E), with a positive integer capacity c. on each
edge e, a source node s € V, and a sink node t € V. You are also given a maximum s-¢ flow f in
G, defined by a flow value f. on each edge e. The flow f is acyclic: There is no directed cycle in
G on which all edges carry positive flow. The flow f is also integer-valued.

Now suppose, we pick a specific edge e* € E and reduce its capacity by 1 unit. Show how to find
a maximum flow in the resulting capacitated graph in time O(m + n), where m is the number of
edges in G and n is the number of nodes.



Exercise 3: Forward-Only Paths

A friend of you has written some very fast maximum flow code. Unfortunately it turns out that the
program doesn’t always compute a correct maximum flow. When inspecting the solution you realize
that your friend’s program implements a simplified variant of the Ford-Fulkerson algorithm. When
computing augmenting paths, the program only considers forward edges of the residual graph and it
does not consider backward edges at all. We have seen in the lecture that backward edges are necessary
to get a correct algorithm. However your friend claims that his algorithm (let’s call it the forward-
edge-only algorithm) always computes a solution that is within a constant factor of the optimal one.
That is, there is an absolute constant b > 1 such that the forward-edge-only algorithm computes a
flow of value at least 1/b times the value of an optimal flow. Is your friend right? If yes, prove it,
otherwise show that the ratio of the maximum flow value and the flow computed by the forward-edge-
only algorithm can be arbitrarily large. Assume that the forward-edge-only implementation always
takes an arbitrary (possibly worst-case) augmenting path of only forward edges as long as such an
augmenting path exists. You can also assume that all edge capacities are positive integers.



