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Divide-And-Conquer Principle
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e |Important algorithm design method

e Examples from Informatik 2:

e Sorting: Mergesort, Quicksort
e Binary search can be considered as a divide and conquer algorithm

e Further examples
e Median
e Compairing orders
e Delaunay triangulation / Voronoi diagram
e Closest pairs
e Line intersections

e Integer faetoerization / FFT
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Example 1: Quicksort
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function Quick (S: sequence): sequence;

{returns the sorted sequence S}
begin
if #5 < 1 thenreturn §
else { choose pivot element v in §;
partition S into S, with elements < v,
and S, with elements > v
return | Quick(S,) v| Quick(S,)

end;
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Example 2: Mergesort
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Formulation of the D&C principle
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Divide-and-conquer method for solving a
problem instance of siz QS

s

—~ L
n < c: Solve the problem directly. arT 1o
== P y ’{72

n > c: Divide the problem into k subproblems of
sizes n, ...,nk@(k > 2).

|l2.conquer |~

Solve the k subproblems in the same way
(recursively).

| [Bieombine T ey

Combine the partial solutions to generate a solution
for the original instance.
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Analysis
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Recurrence relation:

o T(n) : max. number of steps necessary for solving an instance of si

)

.o,

@
e T(n) = {T(nl) + -+ T(nk)
+ cost for divide and combine

—_——  ———

Special case: k=2,n, =n, ="/,

P

e cost for divide and combine: DC(n)
c T =a / Ve

ifn<c
ifn>c

T =2MAEDC®S

'1:"7 wn

Algorithm Theory, WS 2013/14 Fabian Kuhn



Analysis, Example
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Recurrence relation:

® @)SE-T(n/Z)@ T(1)@

Guess the solution by repeated substitution:

w + z
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¢ 2 (1700 <l = (TOH + (@ )
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¢ 4 (QTCR + <04 )+ (c+ £)*-8TCR* (<2
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Analysis, Example
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Recurrence relation:

, T(n) <2-T(n/2) + cn?,

Verify by induction:
P T € am s Zew

W e, ae| T & avle v
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= aWn + 2C\l\2‘
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Comparing Orders
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* Many web systems maintain user preferences / rankings on

e

things like books, movies, restaurants, ...

b«ﬁqa{

e Collaborative filtering: @
— Predict user taste by comparing ranking ifferent users.

— If the system finds users with similar tastes, it can make
recommendations (e.g., Amazon)
— a, b, o, ,Q\Q

\ 23 (%

e Coreissue: Compare two rankings

— Intuitively, two rankings (of movies) are more similar, the more pairs are
ordered in the same way

— Label the first user’s movies from 1 to n according to ranking
— Order labels according to second user’s ranking
— How far is this from the ascending order (of the first user)?
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Number of Inversions
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Formal problem:
e Given:array A = |aq, a,, as, ..., a, | of distinct elements

 Objective: Compute number of inversions |
I = |{0Si<j£n|ai>aj)}|

e Example:A=[4 ,1,5,2,7,10, 6 |
U k_}/
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* Naive solution:

ook 0& a“ A1
™ e O
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Divide and conquer
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1. Divide array into 2 equal parts A, and A,

2. Recursively compute #inversions in A, and A,
3. Combine: add #pairs a; € Ay, a; € A, suchthat a; > q;
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Combine Step
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e Assume A, and A,. are sorted

,,.777@7—7%_ ] L < l““—‘
4///%?‘//¢l’ A{ -| ﬁ//'% a; AT
7t i ts

L i‘*\ Je j
e Pointers i and j, initially pointing to first elements of A, and A,

o |f a; < CljZ et L

— a; is smallest among the remaining elements
— No inversion of a; and one of the remaining elements

O(w)

|f a; > a;: tnel. 'i) —
— a; is smallest among the remaining elements

— Do not change count

— a; is smaller than all remaining elements in A,
— Add number of remaining elements in A, to count

* |Increment point, pointing to smaller element
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Combine Step
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 Need sub-sequences in sorted order
e Then, combine step is like merging in merge sort

e Idea: Solve sorting and #inversions at the same time!

1. Partition A into two equal parts A, and A,
2. Recursively compute #inversions and sort A, and A,

ow) Ehv  ssrd

—

3. Merge A, and A, to sorted sequence, at the same time, compute
number of inversions between elements a; in A, and a; in 4,

————) = —
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