

Chapter 1 Divide and Conquer

Algorithm Theory WS 2013/14

Fabian Kuhn

Divide-And-Conquer Principle

- Important algorithm design method
- Examples from Informatik 2:
 - Sorting: Mergesort, Quicksort
 - Binary search can be considered as a divide and conquer algorithm
- Further examples
 - Median
 - Compairing orders
 - Delaunay triangulation / Voronoi diagram
 - Closest pairs
 - Line intersections
 - Integer factorization / FFT
 - ...

Example 1: Quicksort

Example 2: Mergesort

Formulation of the D&C principle

Divide-and-conquer method for solving a problem instance of size n:

QS MS

1. Divide

 $n \leq c$: Solve the problem directly.

n > c: Divide the problem into k subproblems of sizes $n_1, \dots, n_k < n$ $(k \ge 2)$.

trivial

2. Conquer

Solve the k subproblems in the same way (recursively).

3. Combine

Combine the partial solutions to generate a solution for the original instance.

Analysis

Recurrence relation:

• T(n): max. number of steps necessary for solving an instance of size n

•
$$T(n) = \begin{cases} \widehat{a} & \text{if } n \leq c \\ T(n_1) + \dots + T(n_k) & \text{if } n > c \end{cases}$$

$$+ \cos t \text{ for divide and combine}$$

Special case:
$$\underline{k=2}$$
, $n_1=n_2={}^n/_2$

- cost for divide and combine: DC(n)
- T(1) = a• T(n) = 2T(n/2) + DC(n)

Analysis, Example

Recurrence relation:

$$(*) T(n) \le 2 \cdot T(n/2) + (cn^2) T(1) \le a$$

Guess the solution by repeated substitution:

$$T(n) \leq 2T(\frac{1}{2}) + cu^{2}$$

$$\leq 2\left(2 \cdot T(\frac{1}{4}) + c(\frac{n}{2})^{2}\right) + cu^{2} = 4T(\frac{n}{4}) + (c + \frac{c}{2})u^{2}$$

$$\leq 4\left(2T(\frac{n}{8}) + c(\frac{n}{4})^{2}\right) + (c + \frac{c}{2})u^{2} = 8T(\frac{n}{8}) + (c + \frac{c}{2} + \frac{c}{4})u^{2}$$

$$\leq 2^{\frac{1}{2}} T(1) + 2cu^{2} \leq \alpha \cdot n + 2cu^{2}$$

$$\leq 2^{\frac{1}{2}} T(1) + 2cu^{2} \leq \alpha \cdot n + 2cu^{2}$$
The second representation of the second repres

Analysis, Example

Recurrence relation:

$$T(n) \le 2 \cdot T(n/2) + cn^2, \qquad T(1) \le a$$

Verify by induction:

quess:
$$T(u) \le a \cdot u + 2cu^2$$

 $iud. base: v=1$ $T(1) \le a + 2c$
 $iud. step: T(u) \le 2 - T(\frac{v}{2}) + cu^2$
 $iud. step: T(u) \le 2 - T(\frac{v}{2}) + cu^2$
 $\le 2(a \cdot \frac{v}{2} + 2c(\frac{v}{2})) + cv^2$
 $= a \cdot v + 2cv^2$

Comparing Orders

 Many web systems maintain user preferences / rankings on things like books, movies, restaurants, ...

• Collaborative filtering:

- Predict user taste by comparing rankings of different users.
- If the system finds users with similar tastes, it can make recommendations (e.g., Amazon)

- Core issue: Compare two rankings
 - Intuitively, two rankings (of movies) are more similar, the more pairs are ordered in the same way
 - Label the first user's movies from 1 to n according to ranking
 - Order labels according to second user's ranking
 - How far is this from the ascending order (of the first user)?

Number of Inversions

Formal problem:

• Given: array $A = [a_1, a_2, a_3, ..., a_n]$ of distinct elements

• **Objective**: Compute number of inversions *I*

$$I \coloneqq \left| \left\{ 0 \le i < j \le n \mid a_i > a_j \right) \right\} \right|$$

• Example: A = [4, 1, 5, 2, 7, 10, 6]Sinversions

Naive solution:

Divide and conquer

- 1. Divide array into 2 equal parts A_{ℓ} and A_r
- 2. Recursively compute #inversions in A_ℓ and A_r

3. Combine: add #pairs $a_i \in A_\ell$, $a_j \in A_r$ such that $a_i > a_j$

Combine Step

• Assume A_{ℓ} and A_{r} are sorted

- Pointers i and j, initially pointing to first elements of A_{ℓ} and A_r
- If $a_i < a_j$: incr. i
 - $-a_i$ is smallest among the remaining elements
 - No inversion of a_i and one of the remaining elements
 - Do not change count
- If $a_i > a_j$: incr. 3

- $-a_i$ is smallest among the remaining elements
- a_j is smaller than all remaining elements in A_ℓ
- Add number of remaining elements in A_{ℓ} to count
- Increment point, pointing to smaller element

Combine Step

- Need sub-sequences in sorted order
- Then, combine step is like merging in merge sort
- Idea: Solve sorting and #inversions at the same time!
 - 1. Partition A into two equal parts A_{ℓ} and A_r
 - 2. Recursively compute #inversions and sort A_{ℓ} and A_r

count #inv + sort

3. Merge A_{ℓ} and A_r to sorted sequence, at the same time, compute number of inversions between elements a_i in A_{ℓ} and a_j in A_r

O(u)