)

Chapter 1
Divide and Conquer

Algorithm Theory
WS 2013/14

Fabian Kuhn

UNI

FREIBURG

Divide-And-Conquer Principle

UNI
FREIBURG

e |Important algorithm design method

e Examples from Informatik 2:

e Sorting: Mergesort, Quicksort
e Binary search can be considered as a divide and conquer algorithm

e Further examples
e Median
e Compairing orders
e Delaunay triangulation / Voronoi diagram
e Closest pairs
e Line intersections

e Integer faetoerization / FFT

Algorithm Theory, WS 2013/14 Fabian Kuhn 2

UNI

Example 1: Quicksort

FREIBURG

”%u
S v e
/‘=\q\/

.S, < v /||v (S >v)
\R—/L
v] S

function Quick (S: sequence): sequence;

{returns the sorted sequence S}
begin
if #5 < 1 thenreturn §
else { choose pivot element v in §;
partition S into S, with elements < v,
and S, with elements > v
return | Quick(S,) v| Quick(S,)

end;

Algorithm Theory, WS 2013/14 Fabian Kuhn 3

Example 2: Mergesort

FREIBURG

2
=
S S,
sort recursively sort recursively
\ \
S¢ Sec
merge /
Algorithm Theory, WS 2013/14 Fabian Kuhn 4

Formulation of the D&C principle

UNI
I

FREIBURG

Divide-and-conquer method for solving a
problem instance of siz QS

s

—~ L
n < c: Solve the problem directly. arT 1o
== P y ’{72

n > c: Divide the problem into k subproblems of
sizes n, ...,nk@(k > 2).

|l2.conquer |~

Solve the k subproblems in the same way
(recursively).

| [Bieombine T ey

Combine the partial solutions to generate a solution
for the original instance.

Algorithm Theory, WS 2013/14 Fabian Kuhn

LI }
wal

Analysis

UNI

FREIBURG

Recurrence relation:

o T(n) : max. number of steps necessary for solving an instance of si

)

.o,

@
e T(n) = {T(nl) + -+ T(nk)
+ cost for divide and combine

—_—— ———

Special case: k=2,n, =n, ="/,

P

e cost for divide and combine: DC(n)
c T =a / Ve

ifn<c
ifn>c

T =2MAEDC®S

'1:"7 wn

Algorithm Theory, WS 2013/14 Fabian Kuhn

Analysis, Example

|
FRE:BURG

UNI

Recurrence relation:

® @)SE-T(n/Z)@ T(1)@

Guess the solution by repeated substitution:

w + z
T 2 2--[‘_%%’2 cu

¢ 2 (1700 <l = (TOH + (@)
C)II\Z

¢ 4 (QTCR + <04)+ (c+ £)*-8TCR* (<2

foye
<2UTW) 4 2ed € an Lk

—_—— ~

s

Algorithm Theory, WS 2013/14 Fabian Kuhn 7

Analysis, Example

UNI

FREIBURG

Recurrence relation:

, T(n) <2-T(n/2) + cn?,

Verify by induction:
P T € am s Zew

W e, ae| T & avle v

WS T S 9 TR + e

(E——r)

‘é ‘LL&-V-Z\-‘ ’r Zc\§)+ et

= aWn + 2C\l\2‘

_ O

Algorithm Theory, WS 2013/14 Fabian Kuhn

T(1) <a

e

UNI

Comparing Orders

FREIBURG

* Many web systems maintain user preferences / rankings on

e

things like books, movies, restaurants, ...

b«ﬁqa{

e Collaborative filtering: @
— Predict user taste by comparing ranking ifferent users.

— If the system finds users with similar tastes, it can make
recommendations (e.g., Amazon)
— a, b, o, ,Q\Q

\ 23 (%

e Coreissue: Compare two rankings

— Intuitively, two rankings (of movies) are more similar, the more pairs are
ordered in the same way

— Label the first user’s movies from 1 to n according to ranking
— Order labels according to second user’s ranking
— How far is this from the ascending order (of the first user)?

Algorithm Theory, WS 2013/14 Fabian Kuhn 9

Number of Inversions

UNI

FREIBURG

Formal problem:
e Given:array A = |aq, a,, as, ..., a, | of distinct elements

 Objective: Compute number of inversions |
I = |{0Si<j£n|ai>aj)}|

e Example:A=[4 ,1,5,2,7,10, 6 |
U k_}/

S- t“\Mw

* Naive solution:

ook 0& a“ A1
™ e O

Algorithm Theory, WS 2013/14 Fabian Kuhn

10

Divide and conquer

UNI

FREIBURG

i

N,

Ay

Ay

1. Divide array into 2 equal parts A, and A,

2. Recursively compute #inversions in A, and A,
3. Combine: add #pairs a; € Ay, a; € A, suchthat a; > q;

TN\

{ Vi Af (al

)

N

‘h.

Algorithm Theory, WS 2013/14

%

Fabian Kuhn

P\ ./\\
a]) 4,
Y /Z

11

Combine Step

UNI
FREIBURG

e Assume A, and A,. are sorted

,,.777@7—7%_] L < l““—‘
4///%?‘//¢l’ A{ -| ﬁ//'% a; AT
7t i ts

L i‘*\ Je j
e Pointers i and j, initially pointing to first elements of A, and A,

o |f a; < CljZ et L

— a; is smallest among the remaining elements
— No inversion of a; and one of the remaining elements

O(w)

|f a; > a;: tnel. 'i) —
— a; is smallest among the remaining elements

— Do not change count

— a; is smaller than all remaining elements in A,
— Add number of remaining elements in A, to count

* |Increment point, pointing to smaller element

Algorithm Theory, WS 2013/14 Fabian Kuhn 12

Combine Step

UNI

FREIBURG

 Need sub-sequences in sorted order
e Then, combine step is like merging in merge sort

e Idea: Solve sorting and #inversions at the same time!

1. Partition A into two equal parts A, and A,
2. Recursively compute #inversions and sort A, and A,

ow) Ehv ssrd

—

3. Merge A, and A, to sorted sequence, at the same time, compute
number of inversions between elements a; in A, and a; in 4,

————) = —
Ow)

Algorithm Theory, WS 2013/14 Fabian Kuhn

13

