

Chapter 2 Greedy Algorithms

Algorithm Theory WS 2013/14

Fabian Kuhn

Matroids

Same, but more abstract...

Matroid: pair (E)

- E: set, called the ground set
- *I*: finite family of finite subsets of E (i.e., $I \subseteq 2^E$), called **independent sets**

(E, I) needs to satisfy 3 properties:

- 1. Empty set is independent, i.e., $\emptyset \in I$ (implies that $I \neq \emptyset$)
- **2.** Hereditary property: For all $A \subseteq I$ and all $A' \subseteq A$,

if $A \in I$, then also $A' \in I$

3. Augmentation / Independent set exchange property: If $A, B \in I$ and |A| > |B|, there exists $x \in A \setminus B$ such that

$$\mathbf{B}' \coloneqq \mathbf{B} \cup \{\mathbf{x}\} \in \mathbf{I}$$

Matroids and Greedy Algorithms

Weighted matroid: each $e \in E$ has a weight w(e) > 0

Goal: find maximum weight independent set

Greedy algorithm:

- 1. Start with $S = \emptyset$
- 2. Add max. weight $e \in E \setminus S$ to S such that $S \cup \{e\} \in I$

Claim: greedy algorithm computes optimal solution

Greedy is Optimal

• *S*: greedy solution

A: any other solution

$$A = E$$
, A ind, set
 $\omega(x_1) \ge \omega(x_2) \ge ... \ge \omega(x_{1S1})$
 $\omega(y_1) \ge \omega(y_2) \ge ... \ge \omega(x_{1A1})$

[S] ≥ |A|: assume |S| < |A| exch. prop. ∃y; ∈ A \ S S.t. Sury; 3 is in I

for contradiction, assume that S has smaller weight than A

k: smallest index s.t. $\omega(X_k) < \omega(y_k)$ (k exists)

$$\omega(A^2) \leq \omega(A^F) \leq \omega(x^F)$$

every subset is also in I

ayu. prop.

∃je31,--,23 s.t. S'U/4; } ∈ I

(and g; \(\) S')

greedy adds y;

Algorithm Theory, WS 2013/14

Fabian Kuhn

Matroids: Examples

Forests of a graph G = (V, E):

- forest F: subgraph with no cycles (i.e., $F \subseteq E$)
- \mathcal{F} : set of all forests \rightarrow (E,\mathcal{F}) is a matroid
- Greedy algorithm gives maximum weight forest (equivalent to MST problem)

Bicircular matroid of a graph G = (V, E):

- \mathcal{B} : set of edges such that every connected subset has ≤ 1 cycle
- (E, \mathcal{B}) is a matroid \rightarrow greedy gives max. weight such subgraph

Linearly independent vectors:

- Vector space V, E: finite set of vectors, I: sets of lin. indep. vect.
- Fano matroid can be defined like that

Greedoid

- Matroids can be generalized even more
- Relax hereditary property:

Replace
$$\underline{A' \subseteq A \subseteq I} \implies \underline{A' \in I}$$

by $\emptyset \neq \underline{A} \subseteq I \implies \exists a \in \underline{A}, \text{ s. t. } A \setminus \{a\} \in I$

- Exchange property holds as before
- Under certain conditions on the weights, greedy is optimal for computing the max. weight $A \in I$ of a greedoid.
 - Additional conditions automatically satisfied by hereditary property
- More general than matroids