

Chapter 2 Greedy Algorithms

Algorithm Theory WS 2013/14

Fabian Kuhn

Traveling Salesperson Problem (TSP)

Input:

- Set V of n nodes (points, cities, locations, sites)
- Distance function $d: V \times V \to \mathbb{R}$, i.e., d(u, v): dist. from u to v
- Distances usually symmetric, asymm. distances → asymm. TSP

Solution:

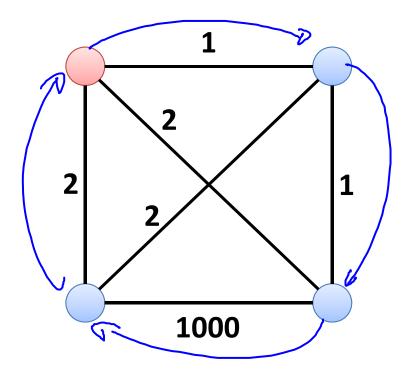
- Ordering/permutation $v_1, v_2, ..., v_n$ of nodes
- Length of TSP path: $\sum_{i=1}^{n-1} d(v_i, v_{i+1})$
- Length of TSP tour: $d(v_n, v_1) + \sum_{i=1}^{n-1} d(v_i, v_{i+1})$

Goal:

Minimize length of TSP path or TSP tour

Nearest Neighbor (Greedy)

Nearest neighbor can be arbitrarily bad, even for TSP paths



TSP Variants

Asymmetric TSP

- arbitrary non-negative distance/cost function
- most general, nearest neighbor arbitrarily bad
- NP-hard to get within any bound of optimum

Symmetric TSP

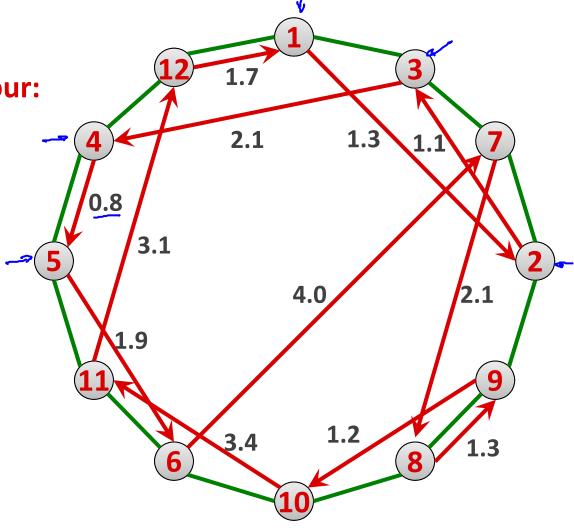
- arbitrary non-negative distance/cost function
- nearest neighbor arbitrarily bad
- NP-hard to get within any bound of optimum

Metric TSP

- distance function defines metric space: symmetric, non-negative, triangle inequality: $d(u,v) \le d(u,w) + d(w,v)$
- possible to get close to optimum (we will later see factor $\frac{3}{2}$)
- what about the nearest neighbor algorithm?

Optimal TSP tour:

Nearest-Neighbor TSP tour:

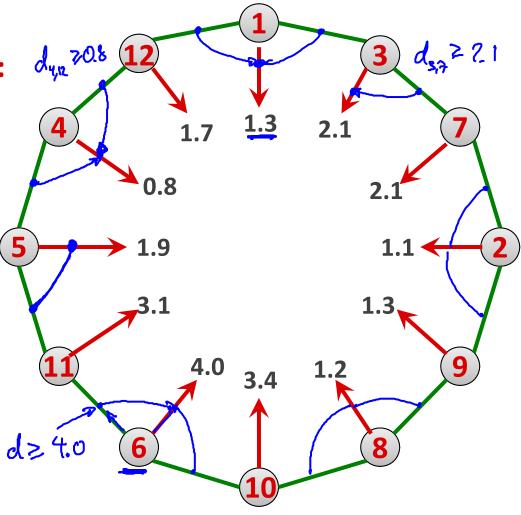


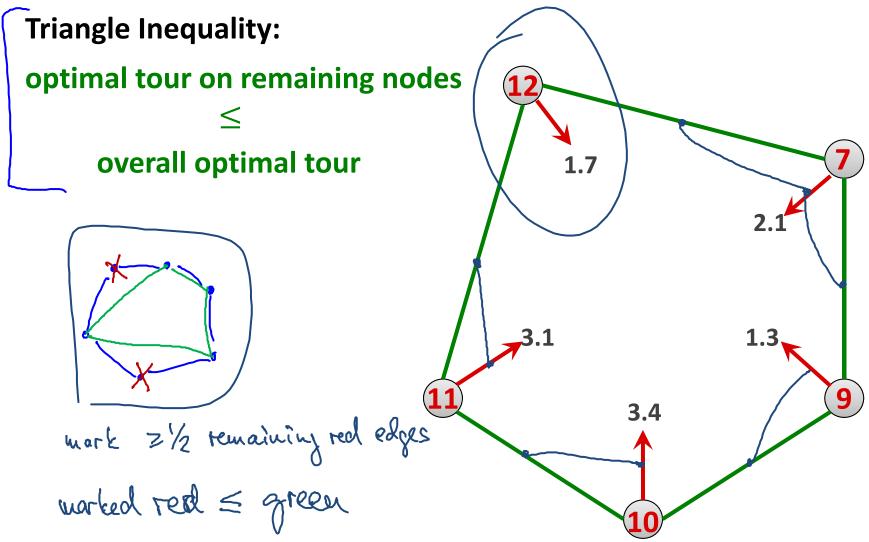
Optimal TSP tour:

Nearest-Neighbor TSP tour:

cost = 24

marked red < green < opt TSP length





Analysis works in phases:

- In each phase, assign each optimal edge to some greedy edge
 - Cost of greedy edge ≤ cost of optimal edge
- Each greedy edge gets assigned ≤ 2 optimal edges
 - At least half of the greedy edges get assigned
- At end of phase:

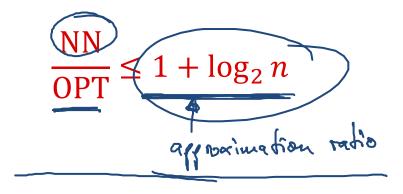
Remove points for which greedy edge is assigned Consider optimal solution for remaining points

- Triangle inequality: remaining opt. solution \leq overall opt. sol.
- Cost of greedy edges assigned in each phase ≤ opt. cost
- Number of phases $\leq \log_2 n$
 - +1 for last greedy edge in tour

Assume:

NN: cost of greedy tour, OPT: cost of optimal tour

We have shown:

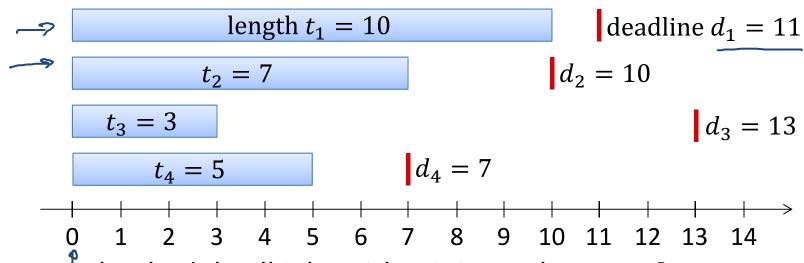


Example of an approximation algorithm

• We will later see a $\frac{3}{2}$ -approximation algorithm for metric TSP

Back to Scheduling

Given: n requests / jobs with deadlines:

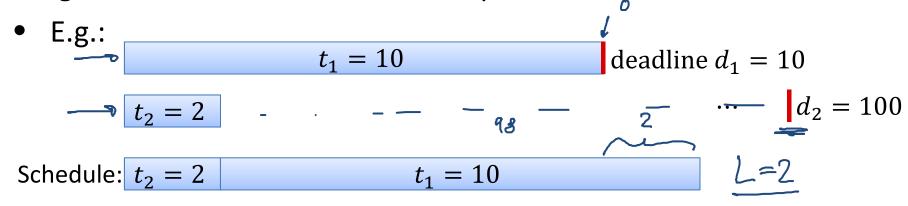


- Goal: schedule all jobs with minimum lateness L
 - Schedule: s(i), f(i): start and finishing times of request iNote: $f(i) = s(i) + t_i$ $s(i) + t_i = f(i)$
- Lateness $L := \max \left\{ \underline{0}, \max_{i} \left\{ \underline{f(i)} \underline{d_i} \right\} \right\}$ Lakeness of i war? o, $f(i) d_i$?
 - largest amount of time by which some job finishes late
- Many other natural objective functions possible...

Greedy Algorithm?

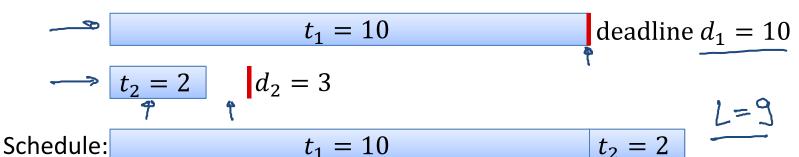
Schedule jobs in order of increasing length?

• Ignores deadlines: seems too simplistic...



Schedule by increasing slack time?

• Should be concerned about slack time: $d_i - t_i$



Greedy Algorithm

Schedule by earliest deadline?

- Schedule in increasing order of d_i
- Ignores lengths of jobs: too simplistic?
- Earliest deadline is optimal!

Algorithm:

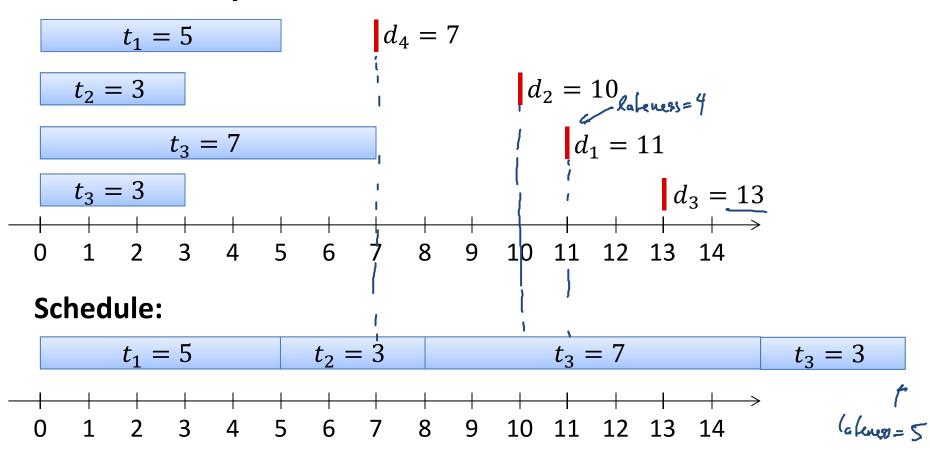
- Assume jobs are reordered such that $d_1 \le d_2 \le \cdots \le d_n$
- Start/finishing times:

- Can 3
- First job starts at time s(1) = 0
- Duration of job i is t_i : $f(i) = s(i) + t_i$
- No gaps between jobs: s(i + 1) = f(i)

(idle time: gaps in a schedule → alg. gives schedule with no idle time)

Example

Jobs ordered by deadline:

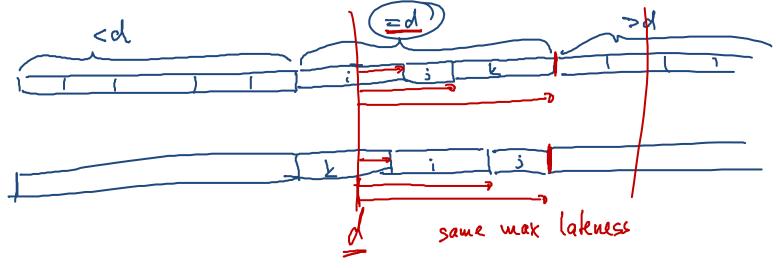


Lateness: job 1: 0, job 2: 0, job 3: 4, job 4 5

Basic Facts

- 1. There is an optimal schedule with no idle time
 - Can just schedule jobs earlier...

2. Inversion: Job \underline{i} scheduled before job \underline{j} if $\underline{d_i} > \underline{d_j}$ Schedules with no inversions have the same maximum lateness



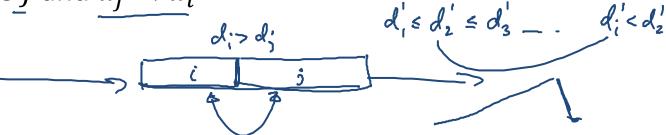
Earliest Deadline is Optimal

Theorem:

There is an optimal schedule \mathcal{O} with no inversions and no idle time.

Proof:

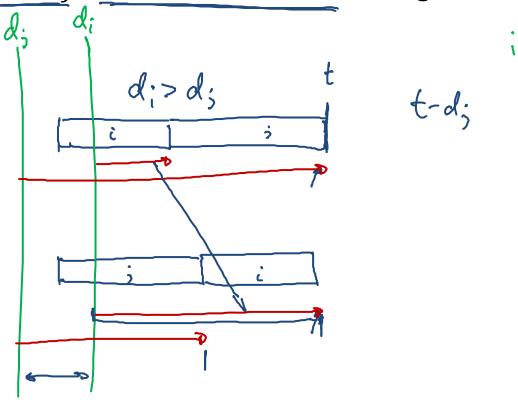
- Consider optimal schedule O' with no idle time
- If \mathcal{O}' has inversions, \exists pair (i,j), s.t. \underline{i} is scheduled immediately before j and $d_i < d_i$



- Claim: Swapping i and j gives schedule with
 - 1. Less inversions
 - 2. Maximum lateness no larger than in O'

Earliest Deadline is Optimal

Claim: Swapping i and j: maximum lateness no larger than in \mathcal{O}'



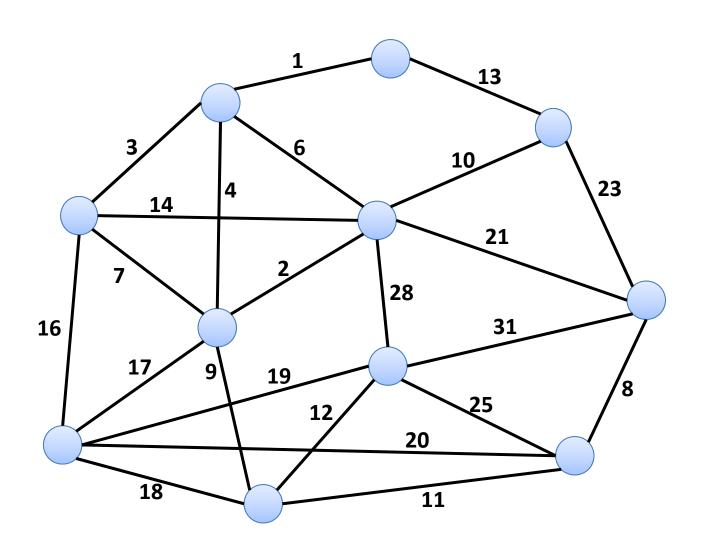
Exchange Argument

- General approach that often works to analyze greedy algorithms
- Start with any solution
- Define basic exchange step that allows to transform solution into a new solution that is not worse
- Show that exchange step move solution closer to the solution produced by the greedy algorithm
- Number of exchange steps to reach greedy solution should be finite...

Another Exchange Argument Example

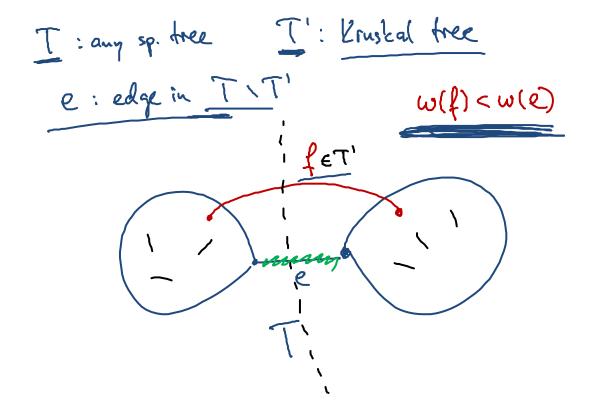
- Minimum spanning tree (MST) problem
 - Classic graph-theoretic optimization problem
- Given: weighted graph
- Goal: spanning tree with min. total weight
- Several greedy algorithms work
- Kruskal's algorithm:
 - Start with empty edge set
 - As long as we do not have a <u>spanning tree</u>:
 add minimum weight edge that doesn't close a cycle

Kruskal Algorithm: Example



Kruskal is Optimal

- Basic exchange step: swap to edges to get from tree T to tree T'
 - Swap out edge not in Kruskal tree, swap in edge in Kruskal tree
 - Swapping does not increase total weight
- For simplicity, assume, weights are unique:



Matroids

• Same, but more abstract...

Matroid: pair (E, I)

- *E*: set, called the ground set
- *I*: finite family of finite subsets of E (i.e., $I \subseteq 2^E$), called **independent sets**

(E, I) needs to satisfy 3 properties:

- 1. Empty set is independent, i.e., $\emptyset \in I$ (implies that $I \neq \emptyset$)
- **2.** Hereditary property: For all $A \subseteq I$ and all $A' \subseteq A$,

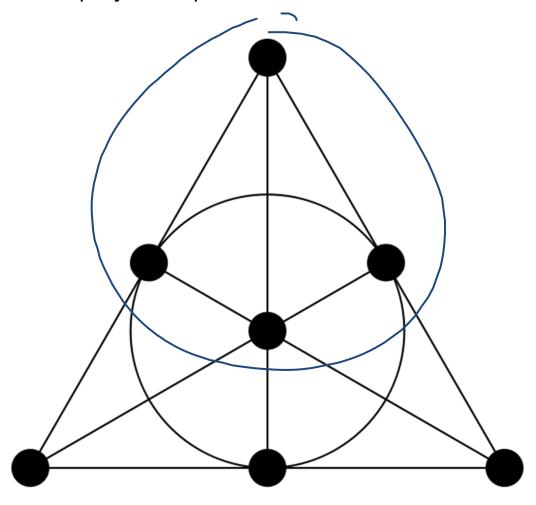
if $A \in I$, then also $A' \in I$

3. Augmentation / Independent set exchange property: If $A, B \in I$ and |A| > |B|, there exists $x \in A \setminus B$ such that

$$\mathbf{B}' \coloneqq \underline{B \cup \{x\}} \in I$$

Example

- Fano matroid:
 - Smallest finite projective plane of order 2...



Matroids and Greedy Algorithms

Weighted matroid: each $\underline{e} \in E$ has a weight $\underline{w(e)} > 0$

Goal: find maximum weight independent set

Greedy algorithm:

- 1. Start with $S = \emptyset$
- 2. Add max. weight $e \in E \setminus S$ to S such that $S \cup \{e\} \in I$

Claim: greedy algorithm computes optimal solution

Greedy is Optimal

any dedependent set

• *S*: greedy solution

$$S \neq A$$
 $\omega(x_1) \geq \omega(x_2) \geq ...$
 $S: X_1, X_2, X_3, ..., X_{k-1}, X_k, ...$
 $A: X_1, X_2, X_3, ..., X_{k-1}, X_k^1, ...$

$$\omega(X_{k}) \geq \omega(X_{k}')$$