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Traveling Salesperson Problem (TSP)
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Input:

e Set V of n nodes (points, cities, locations, sites)

e Distance functiond:V XV = R, i.e., d(u,v): dist. from u to v
e Distances usually symmetric, asymm. distances = asymm. TSP

Solution:

e Ordering/permutation vy, v,, ..., v, of nodes

e Length of TSP path: Y1 d(v;, Vj41)

e Length of TSP tour: d(v,,, v1) + Xt d(v;, vi41)

Goal:
 Minimize length of TSP path or TSP tour
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Nearest Neighbor (Greedy)

 Nearest neighbor can be arbitrarily bad, even for TSP paths
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TSP Variants
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e Asymmetric TSP
— arbitrary non-negative distance/cost function
— most general, nearest neighbor arbitrarily bad
— NP-hard to get within any bound of optimum

e Symmetric TSP
— arbitrary non-negative distance/cost function
— nearest neighbor arbitrarily bad
— NP-hard to get within any bound of optimum

. l Metric TSP /

— distance function defines metric space: symmetric, non-negative,
triangle inequality: d(u, v) < d(u,w) + d(w, v)

— possible to get close to optimum (we will later see factor 3/,)

— what about the nearest neighbor algorithm?
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Metric TSP, Nearest Neighbor ;
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Optimal TSP tour: J'

Nearest-Neighbor TSP tour:
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Metric TSP, Nearest Neighbor |, s _
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Optimal TSP tour:

Nearest-Neighbor TSP tour:
cost = 24
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Metric TSP, Nearest Neighbor
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rTriangIe Inequality:

optimal tour on remaining nodes @
<

overall optimal tour
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Analysis works in phases:

A feo(

* |n each phase, assign each optimal edge to some greedy edge
— Cost of greedy edge < cost of optimal edge

e Each greedy edge gets assigned < 2 optimal edges
— At least half of the greedy edges get assigned

e At end of phase:
Remove points for which greedy edge is assigned
Consider optimal solution for remaining points

* Triangle inequality: remaining opt. solution < overall opt. sol.

e Cost of greedy edges assigned in each phase < opt. cost

e —
 Number of phases < log, n &
— +1 for last greedy edge in tour \
1 L
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Metric TSP, Nearest Neighbor
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e Assume:
NN: cost of greedy tour, OPT: cost of optimal tour

e We have shown: @
OPT 4@

6(« w‘\wak&«« "’l‘l“"”
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e Example of an approximation algorithm

We will later see a 3/,-approximation algorithm for metric TSP
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Back to Scheduling
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e Given: n requests / jobs with deadlines:

— length t; = 10 | deadline d; = 11
— t, =7 |d, =10
ts =3 |d; =13
t4_ — 5 Id4 — 7
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

. Gbal: schedule all jobs with minimum lateness L
— Schedule: s(i), f (i): start and finishing times of request i

Note: f(i) = s(i) + t; =— 30 44 =40

e Lateness L :=

Qﬂ-‘{u§5 E
max {_O.) mlaX{]_C_(_l) _..Cil._}} u:w'))o,’ﬁf('ﬂ—d;%

— largest amount of time bVWhich some job finishes late

 Many other natural objective functions possible...
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Greedy Algorithm?
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Schedule jobs in order of increasing length?

e |gnores deadlines: seems too simplistic... .

e E.g.: /
—©° tl = 10 deadline d1 =10
—p=2] - - = -, — T -P£2=100
N
Schedule:| t, = 2 t, = 10 L.=2

Schedule by increasing slack time?
e Should be concerned about slack time: d; — t;

—= t; = 10 | deadline d, = 10
?
— tz — 2 Idz - 3
T t L=9
Schedule: t; = 10 t, =2 | °
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Greedy Algorithm
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Schedule by earliest deadline?
e Schedule in increasing order of d;
e Ignores lengths of jobs: too simplistic?

e Earliest deadline is optimal! =
s=e, fin="t,, s(ucﬁmgmc{,,-ee,/,_

Algorithm:
e Assume jobs are reordered suchthatd; < d, <--<d,
e Start/finishing times: "1 [ 31
— First job starts at time s(1) = 0
— Duration of job iist;: f(i) = s(i) + t;
— No gaps between jobs: s(i + 1) = f(i)

(idle time: gaps in a schedule = alg. gives schedule with no idle time)

. ———
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Example
2
Jobs ordered by deadline:
tl — 5 Id4 — 7
Lo ! Id2 zég)quww‘f
t3 — 7 | I Idl = 11
{
ts =3 ! , | d; =13
0123456'{}891011121314
)
Schedule: | '\
t1:5 t2:3 t3:7 t3=3
44—+ r
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 (clong =<

Lateness: job 1: 0, job 2: 0, job 3: 4, job 4£ ; !
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Basic Facts
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1. Thereis an optimal schedule with no idle time

] —
- Tt t

2. Inversion: Job i scheduled before job j if d; > d;
Schedules with no inversions have the same maximum lateness

— Canjust schedule jobs earlier..
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Earliest Deadline is Optimal
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Theorem:
There is an optimal schedule O with no inversions and no idle time.

Proof:
e Consider optimal schedule O’ with no idle time

* If 0" hasinversions, 3 pair (i, ), s.t. [ is scheduled immediately
before j and d; < d; T

Aos d died, sdy _ . d'<d

(¢ b (, =

e Claim: Swapping i and j gives schedule with
1. Lessinversions<—

2.  Maximum lateness no larger than in O’
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Earliest Deadline is Optimal
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Claim: Swapping i and j: maximum lateness no larger than in O’

d.
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e General approach that often works to analyze greedy algorithms

e Start with any solution

e Define basic exchange step that allows to transform solution into
a new solution that is not worse

 Show that exchange step move solution closer to the solution
produced by the greedy algorithm

e Number of exchange steps to reach greedy solution should be
finite...
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Another Exchange Argument Example
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e Minimum spanning tree (MST) problem

— Classic graph-theoretic optimization problem

e Given: weighted graph
e Goal: spanning tree with min. total weight

e Several greedy algorithms work

e Kruskal’s algorithm:
— Start with empty edge set

— As long as we do not have a spanning tree:
add minimum weight edge that doesn’t close a cycle
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Kruskal Algorithm: Example
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Kruskal is Optimal
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e Basic exchange step: swap to edges to get from tree T to tre
— Swap out edge not in Kruskal tree, swap in edge in Kruskal tree

— Swapping does not increase total weight

e For simplicity, assume, weights are unique:

T voeg spber T Unokd bree
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Matroids
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e Same, but more abstract... = 1
Matroid: pair (E, I) @
e E: set, called the ground set Q

e [: finite family of finite subsets of E (i.e., I € 2%), 4
. s ~—— R
called independent sets
(E,I) needs to satisfy 3 properties:
1. Empty set is independent, i.e., @ € I (implies that I # @)
2. Hereditary property: ForallA € [ and all A" C 4,
if A€ I, thenalsoA’ €1
3. Augmentation / Independent set exchange property:
If A,B € [ and |A| > |B|, there exists x € A \ B such that
B':=BU{x}el
— —_—
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Example
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* Fano matroid:

— Smallest finite projective plane of order 2...
Y
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Matroids and Greedy Algorithms

Weighted matroid: each e € E has a weight w(e) > 0

Goal: find maximum weight independent set

Greedy algorithm:
1. StartwithS =0
2. Add max. weighte € E'\ StoSsuchthatS U {e} €1l

Claim: greedy algorithm computes optimal solution
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&

A: any other solution

Greedy is Optimal
* §:greedy solution
z [A
S+ A WXz W) 2 - .
A —
g: XI/XZ/ XS/ "/Xh—cfﬁtl---’
A: Xi s X)Xy oo / ---
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